Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39265156

RESUMO

Significant challenges in ensuring long-term stability, addressing environmental safety issues, and improving efficiency have hindered the commercialization of inverted Pb-based halide perovskite solar cells (PeSCs). One reasonable approach to addressing these issues is to place an effective buffer layer between the perovskite active layer and the electrode. In this study, we demonstrate the use of crown ether, di-tert-butyl dibenzo-18-crown-6, as a single buffer layer to improve the efficiency, long-term stability, and environmental safety of PeSCs for the first time. The crown ether buffer layer suppressed Ag diffusion from the Ag metal electrodes, thereby improving the performance and lifetime of the device. In addition, it effectively captures Pb ions that may leak into the environment during the whole lifetime of devices, thereby enhancing the environmental safety of PeSCs. Furthermore, PeSCs incorporating crown ethers as buffer layers demonstrated enhanced stability in a nitrogen atmosphere and achieved a high power conversion efficiency of 22.8%. Consequently, this crown ether buffer layer offers an effective and straightforward strategy capable of achieving efficient, stable, and environmentally safe PeSCs.

2.
Environ Sci Pollut Res Int ; 28(48): 69200-69209, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34291413

RESUMO

Pine wood nematode, Bursaphelenchus xylophilus, is a plant parasitic nematode which causes severe damage to several Pinus species. Two natural compounds, dipropyl trisulfide (DPTS) and methyl propyl trisulfide (MPTS), showed strong nematicidal activity against the pine wood nematode, presenting 4.24 and 17.81 µg/mL LC50 values, respectively. However, hydrophobicity and low stability have limited their practical use in the field as nematicides. To overcome these problems, chitosan-coated nanoemulsions of DPTS and MPTS were developed. The optimum chitosan concentration for the delivery system of the two sulfides was 0.5%. Optimized chitosan-coated nanoemulsions of sulfides have a uniform size distribution (mean diameter = 203.7 and 207.7 nm, mean polydispersity index = 0.176 and 0.178) with sufficient colloidal stability (mean zeta potential = +40 and +45 mV). The LC50 values of DPTS and MPTS nanoemulsions coated with 0.5% chitosan against the pine wood nematode were 5.01 and 16.60 µg/mL, respectively. In addition, chitosan coating improved the long-term storage stability and persistence of nematicidal activity of the nanoemulsions. This study indicates that the chitosan-coated nanoemulsion is a suitable formulation for sulfides as novel nematicides against the pine wood nematode for field application.


Assuntos
Quitosana , Óleos Voláteis , Pinus , Tylenchida , Animais , Cebolas , Doenças das Plantas , Sulfetos/farmacologia , Xylophilus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA