Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1380699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469230

RESUMO

[This corrects the article DOI: 10.3389/fonc.2023.1093063.].

2.
J Mol Histol ; 55(2): 159-167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216836

RESUMO

The function of Biliverdin Reductase A (BLVRA) in hepatocellular carcinoma (HCC) cells proliferation, invasion and migration remains unclear. Therefore, this research intends to explore the effect of BLVRA on HCC cells growth and metastasis. BLVRA expression was analyzed in public dataset and examined by using western blot. The malignant function of BLVRA in HCC cell lines and its effect on Wnt/ß-catenin pathway were measured. Analysis from GEPIA website showed that BLVRA expression was significantly increased in HCC tissues, and high expression of BLVRA resulted in worse prognosis of HCC patients. Results from western blot showed that BLVRA expression was obviously increased in HCC cell lines. Moreover, HepG2 and Hep3B cells in si-BLVRA-1 or si-BLVRA-2 group displayed an obvious reduction in its proliferation, cell cycle, invasion and migration compared to those in the si-control group. Additionally, si-BLVRA-1 or si-BLVRA-2 transfection significantly reduced the protein levels of Vimentin, Snail1 and Snail2, as well as decreased Bcl-2 expression and increased Bax and cleaved-caspase 3 expression. Furthermore, si-BLVRA treatment inhibited the protein levels of c-MYC, ß-catenin, and Cyclin D1. After IWP-4 (Wnt/ß-catenin inhibitor) treatment, the proliferation ability of HCC cells was significantly reduced. BLVRA expression was significantly increased in HCC tissues and cell lines, and knocked down of BLVRA could suppress the proliferation, invasion and migration in HCC cell lines, as well as induce cell apoptosis. Moreover, si-BLVRA transfection blocked the activation of Wnt/ß-catenin pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , beta Catenina/metabolismo , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Via de Sinalização Wnt
3.
J Clin Transl Res ; 9(3): 182-194, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37275579

RESUMO

Background and Aim: Hepatocellular carcinoma (HCC) is one of the ten most common malignant tumors in the world, and it is a major problem in the world. Traditional Chinese medicine (TCM) has many advantages in the prevention and treatment of HCC, but its complicated mechanism of action is difficult to clarify, which limits its research and development. The continuous development of bioinformation technology provides new methods and opportunities for the research of TCM. This study used modern network pharmacology and bioinformatic methods to explore the possible molecular mechanism of the Chinese herbal compound Fuzheng Xiaoliu Granule (FZXLG) to treat HCC, to provide a theoretical basis for their clinical application and basic research, to promote the modernization of TCM, and to promote its worldwide application. Methods: The active ingredients of FZXLG were collected and screened through TCMSP, BATMAN-TCM, and other databases. The targets of FZXLG were predicted by PubChem and SwissTargetPrediction; HCC disease-related targets were obtained by GeneCards, OMIM, and other disease databases, and the potential gene targets of FZXLG for HCC treatment were screened. The "Prescription-TCMs-Ingredients-Targets" network of FZXLG for the treatment of HCC was constructed, along with the screening of core effective components. The differentially expressed genes (DEGs) of HCC tumor and non-tumor adjacent tissues combined with clinical data in the TCGA database were analyzed to obtain the prognostic genes of HCC. Then, FZXLG genes affecting HCC prognosis were screened and further screening the core target genes. The correlation between core gene expression with prognosis, immune cell infiltration, and immunohistochemical changes in HCC patients was studied. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology enrichment analysis of the FZXLG genes affecting HCC prognosis were performed using DAVID database. AutoDockTools software was then used for molecular docking verification. Results: The ten core effective ingredients of FZXLG for HCC treatment included multiple flavonoids ingredients such as quercetin, luteolin, and formononetin. 11 core targets of FZXLG affecting the prognosis of HCC were screened, among which estrogen receptor 1 (ESR1) and catalase (CAT) were favorable prognostic factors, while EGF, MMP9, CCNA2, CCNB1, CDK1, CHEK1, and E2F1 were adverse prognostic factors. MMP9 and EGF were positively correlated with six TIIC subsets. The different expression levels of CAT, PLG, AR, MMP9, CCNA2, CCNB1, CDK1, and E2F1 were correlated with the immunohistochemical staining changes in normal liver and liver cancer. KEGG pathway enrichment analysis yielded 33 pathways including cell cycle, p53, hepatitis B, and other signaling pathways. Molecular docking verified that the main core components had good binding to the protective prognostic core targets ESR1 and CAT. Conclusions: FZXLG may treat HCC through multiple ingredients, multiple targets, and multiple pathways, affecting the prognosis, immune microenvironment, and immunohistochemical changes of HCC. Relevance for Patients: FZXLG is a Chinese herbal compound for the treatment of HCC, with significant clinical efficacy. However, the mechanism of action is unclear and lacks theoretical support, which limits its popularization application. This study preliminarily revealed its molecular mechanism, providing a theoretical basis for its clinical application, which can better guide its clinical popularization application, and also provide a new strategy for the treatment of HCC.

4.
Front Oncol ; 13: 1093063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890830

RESUMO

Hepatocellular carcinoma (HCC) is one of the most frequent malignancies, with high incidence and mortality. As the majority of HCC patients are diagnosed at an advanced stage and die of recurrence and metastasis, its pathology and new biomarkers are needed. Circular RNAs (circRNAs) are a large subclass of long non-coding RNAs (lncRNAs) with covalently closed loop structures and abundant, conserved, stable, tissue-specific expression in mammalian cells. CircRNAs exert multiple functions in HCC initiation, growth and progression, serving as promising biomarkers for diagnosis, prognosis and therapeutic targets for this disease. This review briefly describes the biogenesis and biological functions of circRNAs and elucidates the roles of circRNAs in the development and progression of HCC, especially regarding epithelial-mesenchymal transition (EMT), drug resistance and interactions with epigenetic modifications. In addition, this review highlights the implications of circRNAs as potential biomarkers and therapeutic targets for HCC. We hope to provide novel insight into the roles of circRNAs in HCC.

5.
Front Immunol ; 14: 1118449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742318

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has now become the leading chronic liver disease worldwide with lifestyle changes. This may lead to NAFLD becoming the leading cause of end-stage liver disease in the future. To date, there are still no effective therapeutic drugs for NAFLD. An in-depth exploration of the pathogenesis of NAFLD can help to provide a basis for new therapeutic agents or strategies. As the most important immune cells of the liver, macrophages play an important role in the occurrence and development of liver inflammation and are expected to become effective targets for NAFLD treatment. Programmed cell death (PCD) of macrophages plays a regulatory role in phenotypic transformation, and there is also a certain connection between different types of PCD. However, how PCD regulates macrophage polarization has still not been systematically elucidated. Based on the role of lipid metabolic reprogramming in macrophage polarization, PCD may alter the phenotype by regulating lipid metabolism. We reviewed the effects of macrophages on inflammation in NAFLD and changes in their lipid metabolism, as well as the relationship between different types of PCD and lipid metabolism in macrophages. Furthermore, interactions between different types of PCD and potential therapeutic agents targeting of macrophages PCD are also explored.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Inflamação/metabolismo , Apoptose
6.
Front Pharmacol ; 13: 849014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120344

RESUMO

Intestinal barrier disruption due to the intestinal epithelial cells' (IECs) death is one of the critical pathological features of inflammatory bowel diseases (IBDs). SM934, an artemisinin analog, has previously been proven to ameliorate colitis induced by dextran sulfate sodium (DSS) in mice by suppressing inflammation response. In this study, we investigated the protective effects of SM934 on the epithelial barrier and the underlying mechanism in trinitrobenzene sulfonic acid (TNBS)-induced colitis mice. We demonstrated that SM934 restored the body weight and colon length, and improved the intestine pathology. Furthermore, SM934 treatment preserved the intestinal barrier function via decreasing the intestinal permeability, maintaining epithelial tight junction (TJ) protein expressions, and preventing apoptosis of epithelial cells, which were observed both in the colon tissue and the tumor necrosis factor-α (TNF-α)-induced human colonic epithelial cell line HT-29. Specifically, SM934 reduced the pyroptosis of IECs exposed to pathogenic signaling and inhibited pyroptosis-related factors such as NOD-like receptor family pyrin domain containing 3 (NLRP3), adapter apoptosis-associated speck-like protein (ASC), cysteine protease-1 (caspase-1), gasdermin (GSDMD), interleukin-18 (IL-18), and high-mobility group box 1 (HMGB1) both in colon tissue and lipopolysaccharide (LPS) and adenosine triphosphate (ATP) co-stimulated HT-29 cells in vitro. Moreover, SM934 interdicted pyroptosis via blocking the transduction of mitogen-activated protein kinase (MAPK) and nuclear factor-kB (NF-kB) signaling pathways. In conclusion, SM934 protected TNBS-induced colitis against intestinal barrier disruption by inhibiting the apoptosis and pyroptosis of epithelial cells via the NLRP3/NF-κB/MAPK signal axis, and intestinal barrier protection in company with an anti-inflammatory strategy might yield greater benefits in IBD treatment.

7.
Sci Total Environ ; 833: 154894, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35364165

RESUMO

Conversion of waste plastic to carbon materials has been considered as a potential approach for plastic recycling. In this study, polyvinyl chloride (PVC) plastic, one of the most widely used polymers, was used as a single precursor to prepare porous carbons via chemical activation process. The results showed that KOH activation followed by acid washing was an effective strategy to recover all calcium- and up to 92% of titanium-based compounds, the main metal additives in PVC, in the form of soluble salt. Those metal additives in PVC acted as a type of hard template, which benefit the development of microporosity and carbon dioxide (CO2) adsorption. Textural characterization demonstrated that the prepared carbons possessed high surface area and pore volume of up to 2507 m2/g and 1.11 cm3/g, respectively. At 0 °C and 100 kPa, the PVC-derived carbon, PH_73, which has highest ultra-micropore volume among all samples, exhibited excellent CO2 adsorption capacity of 6.90 mmol/g and high CO2/N2 selectivity. Converting the non-degradable PVC into high-quality porous carbon materials could be considered as a potential strategy for plastic waste recycling.


Assuntos
Carvão Vegetal , Cloreto de Polivinila , Adsorção , Dióxido de Carbono/química , Carvão Vegetal/química , Cloreto de Polivinila/química , Porosidade
8.
Acta Pharmacol Sin ; 42(10): 1653-1664, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33441995

RESUMO

Rheumatoid arthritis (RA) is characterized by joint leukocyte infiltration, synovial inflammation and bone damage result from osteoclastogenesis. Bruton's tyrosine kinase (BTK) is a key regulator of B cell receptor (BCR) and Fc gamma receptor (FcγR) signaling involved in the pathobiology of RA and other autoimmune disorders. SOMCL-17-016 is a potent and selective tricyclic BTK inhibitor, structurally distinct from other known BTK inhibitors. In present study we investigated the therapeutic efficacy of SOMCL-17-016 in a mouse collagen-induced arthritis (CIA) model and underlying mechanisms. CIA mice were administered SOMCL-17-016 (6.25, 12.5, 25 mg·kg-1·d-1, ig), or ibrutinib (25 mg·kg-1·d-1, ig) or acalabrutinib (25 mg·kg-1·d-1, ig) for 15 days. We showed that oral administration of SOMCL-17-016 dose-dependently ameliorated arthritis severity and bone damage in CIA mice; it displayed a higher in vivo efficacy than ibrutinib and acalabrutinib at the corresponding dosage. We found that SOMCL-17-016 administration dose-dependently inhibited anti-IgM-induced proliferation and activation of B cells from CIA mice, and significantly decreased anti-IgM/anti-CD40-stimulated RANKL expression in memory B cells from RA patients. In RANKL/M-CSF-stimulated RAW264.7 cells, SOMCL-17-016 prevented osteoclast differentiation and abolished RANK-BTK-PLCγ2-NFATc1 signaling. In summary, this study demonstrates that SOMCL-17-016 presents distinguished therapeutic effects in the CIA model. SOMCL-17-016 exerts a dual inhibition of B cell function and osteoclastogenesis, suggesting that it to be a promising drug candidate for RA treatment.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Células B de Memória/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Autoanticorpos/metabolismo , Inflamação/tratamento farmacológico , Ativação Linfocitária/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos DBA , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Pirimidinas/uso terapêutico , Alcaloides de Pirrolizidina/uso terapêutico , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA