Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 9: 763057, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34796163

RESUMO

Photodynamic therapy (PDT) is a mini-invasive therapy on malignancies via reactive oxygen species (ROS) induced by photosenitizer (PS) upon light irradiation. However, poor target of PS to tumor limits the clinical application of PDT. Compared with normal tissues, tumor tissues have a unique enzymatic environment. The unique enzymatic environment in tumor tissues has been widely used as a target for developing smart materials to improve the targetability of drugs to tumor. Enzyme-responsive materials (ERM) as a smart material can respond to the enzymes in tumor tissues to specifically deliver drugs. In PDT, ERM was designed to react with the enzymes highly expressed in tumor tissues to deliver PS in the target site to prevent therapeutic effects and avoid its side-effects. In the present paper, we will review the application of ERM in PDT and discuss the challenges of ERM as carriers to deliver PS for further boosting the development of PDT in the management of malignancies.

2.
Int J Nanomedicine ; 15: 6519-6529, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32943866

RESUMO

BACKGROUND: Understanding the biocompatibility and biointeractions of nano-carbon quantum dots (nano-CQDs) in vitro and in vivo is important for assessing their potential risk to human health. In the previous research, the physical properties of CQDs synthesized by the laser ablation in liquid (LAL) method were analyzed in detail; however, possible bioapplications were not considered. MATERIALS AND METHODS: CQDs were prepared by LAL and characterized by atomic force microscopy, fluorescence lifetime, absorption spectrum, Fourier-transform infrared spectroscopy, and dynamic light scattering. Their biocompatibility was evaluated in vitro using assays for cytotoxicity, apoptosis, and biodistribution and in vivo using immunotoxicity and the relative expression of genes. Cells were measured in vitro using fluorescence-lifetime imaging microscopy to analyze the biointeractions between CQDs and intracellular proteins. RESULTS: There were no significant differences in biocompatibility between the CQDs and the negative control. The intracellular interactions had no impact on the optical imaging of CQDs upon intake by cells. Optical imaging of zebrafish showed the green fluorescence was well dispersed. CONCLUSION: We have demonstrated that the CQDs have an excellent biocompatibility and can be used as efficient optical nanoprobes for cell tracking and biomedical labeling except for L929 and PC-3M cells.


Assuntos
Pontos Quânticos/química , Pontos Quânticos/toxicidade , Animais , Antígenos CD/sangue , Apoptose/efeitos dos fármacos , Carbono/química , Difusão Dinâmica da Luz , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Imagem Óptica , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Distribuição Tecidual , Testes de Toxicidade , Peixe-Zebra
3.
Curr Med Chem ; 27(40): 6815-6824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31533597

RESUMO

Photodynamic Therapy (PDT) is a promising alternative treatment for malignancies based on photochemical reaction induced by Photosensitizers (PS) under light irradiation. Recent studies show that PDT caused the abundant release of exosomes from tumor tissues. It is well-known that exosomes as carriers play an important role in cell-cell communication through transporting many kinds of bioactive molecules (e.g. lipids, proteins, mRNA, miRNA and lncRNA). Therefore, to explore the role of exosomes in photodynamic anticancer therapy has been attracting significant attention. In the present paper, we will briefly introduce the basic principle of PDT and exosomes, and focus on discussing the role of exosomes in photodynamic anticancer therapy, to further enrich and boost the development of PDT.


Assuntos
Exossomos , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico
4.
Colloids Surf B Biointerfaces ; 135: 416-424, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26277717

RESUMO

A tubular gelatin scaffold for the time-dependent controlled release of epidermal growth factor (EGF) and mitomycin C (MMC) was fabricated. EGF was incorporated using silk fibroin carriers, and MMC was planted using polylactide (PLA) microspheres. The relationship between scaffold properties and crosslinking degrees was evaluated. As the crosslinking degree was increased from 23.7% to 65.3%, the mechanical properties of the scaffold obviously improved, and the compressive modulus increased to approximately 65kPa. The mass degradation of the scaffold was also controlled from 9 days to approximately 1 month. In vitro release tests indicated that the scaffold mainly released EGF in the early period and MMC in the later period. Urethral epithelial cells (UECs) and urethral scar derived fibroblast cells (UFCs) were coseeded in the scaffold at a ratio of 1:1. After 9 days of coculture, immunostaining results displayed that the proportion of UECs continuously increased to approximately 71%. These changes in cell proportion were confirmed by the results of Western blot analysis. Therefore, the scaffold promoted the growth but inhibited the regeneration of UFCs. This scaffold for time-dependent controlled release of multiple biofactors may be potentially useful in urethral reconstruction and other tissue engineering studies.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Fator de Crescimento Epidérmico/administração & dosagem , Gelatina/química , Mitomicina/administração & dosagem , Animais , Antibióticos Antineoplásicos/química , Técnicas de Cocultura , Preparações de Ação Retardada , Fator de Crescimento Epidérmico/química , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroínas , Ácido Láctico/química , Masculino , Mitomicina/química , Poliésteres , Polímeros/química , Coelhos , Regeneração/efeitos dos fármacos , Alicerces Teciduais , Uretra/citologia , Uretra/efeitos dos fármacos , Uretra/crescimento & desenvolvimento
5.
Mater Sci Eng C Mater Biol Appl ; 50: 257-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25746269

RESUMO

The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and ß-tricalcium phosphate (ß-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, ß-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and ß-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with ß-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and ß-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and ß-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials.


Assuntos
Substitutos Ósseos/farmacologia , Carbonato de Cálcio/farmacologia , Cerâmica/farmacologia , Células-Tronco Mesenquimais/citologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Fosfatos de Cálcio/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Força Compressiva , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Ratos , Difração de Raios X
6.
Int J Nanomedicine ; 9: 4043-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25187708

RESUMO

Poor toxicity characterization is one obstacle to the clinical deployment of Gd2O3@ SiO2 core-shell nanoparticles (Gd-NPs) for use as magnetic resonance (MR) imaging contrast agents. To date, there is no systematic toxicity data available for Gd-NPs prepared by laser ablation in liquid. In this article, we systematically studied the Gd-NPs' cytotoxicity, apoptosis in vitro, immunotoxicity, blood circulation half-life, biodistribution and excretion in vivo, as well as pharmacodynamics. The results show the toxicity, and in vivo MR data show that these NPs are a good contrast agent for preclinical applications. No significant differences were found in cell viability, apoptosis, and immunotoxicity between our Gd-NPs and Gd in a DTPA (diethylenetriaminepentaacetic acid) chelator. Biodistribution data reveal a greater accumulation of the Gd-NPs in the liver, spleen, lung, and tumor than in the kidney, heart, and brain. Approximately 50% of the Gd is excreted via the hepatobiliary system within 4 weeks. Furthermore, dynamic contrast-enhanced T1-weighted MR images of xenografted murine tumors were obtained after intravenous administration of the Gd-NPs. Collectively, the single step preparation of Gd-NPs by laser ablation in liquid produces particles with satisfactory cytotoxicity, minimal immunotoxicity, and efficient MR contrast. This may lead to their utility as molecular imaging contrast agents in MR imaging for cancer diagnosis.


Assuntos
Meios de Contraste/toxicidade , Gadolínio/toxicidade , Imageamento por Ressonância Magnética/métodos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/química , Meios de Contraste/farmacocinética , Gadolínio/química , Gadolínio/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Imagem Molecular/métodos , Nanopartículas/química , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA