Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(15): 7249-7258, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35731714

RESUMO

BACKGROUND: 2,3-Dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one (DDMP) and 5-hydroxymethylfurfural (HMF) are two main enolization products in the Maillard reaction and found in some foodstuffs. For many years, whether they are functional or noxious to human health has been a matter of debate. Thus, insight into their formation pathways is important to manage Maillard reaction products. In this study, DDMP and HMF were quantified and compared with regard to their formation and degradation in the d-glucose and l-proline Maillard reaction models using different moisture contents (0, 0.1, 0.5, 1.0, and 4.0 mL) at 150 °C for various heating times. RESULTS: DDMP was predominantly generated in dry or low water-content heating models along with n increased 1-deoxyglucosone (1-DG) generation via 2,3-enolization. However, increasing moisture content resulted in a decay of reaction intensity, 1-DG, and DDMP due to a change in the reaction mechanism from 2,3-enolization to 1,2-enolization, which facilitated 3-deoxyglucosone (3-DG) and HMF formation. CONCLUSION: Increased moisture content in glucose-proline models reduced reaction intensity and also inhibited DDMP and facilitated HMF formation by promoting the pathway change from 2,3-enolization to 1,2-enolization to generate more 3-DG. A water content of 1.0 mL was identified as a critical value, from which the 1,2-enolization became a primary pathway occurring in the Maillard reaction. © 2022 Society of Chemical Industry.


Assuntos
Glucose , Reação de Maillard , Humanos , Glucose/química , Prolina , Temperatura Alta , Água
2.
Cell Biosci ; 11(1): 7, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413648

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have been proved to drive castration resistant prostate cancer (CRPC). In this study, we aim to investigate the contribution of MSCs to the development of docetaxel resistance in CRPC cells and its potential mechanisms. METHODS: The effect of MSCs on CRPC cells resistance to docetaxel was determined using in vivo and in vitro approaches. CCK8 and PI/Annexin V-FITC assay were used to examined the cell viability and apoptosis. The concentration of transforming growth factor-ß1 was measured by enzyme-linked immunosorbent assay and small interfering RNA was used for functional analyses. RESULTS: MSCs significantly reduced the sensitivity of CRPC cells to docetaxel-induced proliferation inhibition and apoptosis promotion in vivo and in vitro. CRPC cells cocultured with MSCs under docetaxel administration have an increased autophagy activation, while autophagy inhibitor could effectively reversed MSCs-induced resistance to docetaxel. Additionally, MSCs-induced CRPC cell autophagy increase under docetaxel administration depends on MSCs secreting TGF-ß1 and inhibition of TGF-ß1 secretion in MSCs could consequently increase the sensitivity of CRPC cells to docetaxel. CONCLUSIONS: These results suggest that docetaxel administrated CRPC cells may elicit MSCs secreting TGF-ß1 increase, which desensitizes CRPC to docetaxel chemotherapy accelerating chemoresistance occurrence via inducing cell autophagy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA