Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell Commun Signal ; 22(1): 131, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365687

RESUMO

BACKGROUND: Malignant tumours seriously threaten human life and health, and effective treatments for cancer are still being explored. The ability of SHC SH2 domain-binding protein 1 (SHCBP1) to induce cell cycle disturbance and inhibit tumour growth has been increasingly studied, but its dynamic role in the tumour cell cycle and corresponding effects leading to mitotic catastrophe and DNA damage have rarely been studied. RESULTS: In this paper, we found that the nucleoprotein SHCBP1 exhibits dynamic spatiotemporal expression during the tumour cell cycle, and SHCBP1 knockdown slowed cell cycle progression by inducing spindle disorder, as reflected by premature mitotic entry and multipolar spindle formation. This dysfunction was caused by G2/M checkpoint impairment mediated by downregulated WEE1 kinase and NEK7 (a member of the mammalian NIMA-related kinase family) expression and upregulated centromere/kinetochore protein Zeste White 10 (ZW10) expression. Moreover, both in vivo and in vitro experiments confirmed the significant inhibitory effects of SHCBP1 knockdown on tumour growth. Based on these findings, SHCBP1 knockdown in combination with low-dose DNA-damaging agents had synergistic tumouricidal effects on tumour cells. In response to this treatment, tumour cells were forced into the mitotic phase with considerable unrepaired DNA lesions, inducing mitotic catastrophe. These synergistic effects were attributed not only to the abrogation of the G2/M checkpoint and disrupted spindle function but also to the impairment of the DNA damage repair system, as demonstrated by mass spectrometry-based proteomic and western blotting analyses. Consistently, patients with low SHCBP1 expression in tumour tissue were more sensitive to radiotherapy. However, SHCBP1 knockdown combined with tubulin-toxic drugs weakened the killing effect of the drugs on tumour cells, which may guide the choice of chemotherapeutic agents in clinical practice. CONCLUSION: In summary, we elucidated the role of the nucleoprotein SHCBP1 in tumour cell cycle progression and described a novel mechanism by which SHCBP1 regulates tumour progression and through which targeting SHCBP1 increases sensitivity to DNA-damaging agent therapy, indicating its potential as a cancer treatment.


Assuntos
Neoplasias , Proteômica , Animais , Humanos , Proliferação de Células/genética , Ciclo Celular/genética , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Mamíferos/metabolismo , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo
2.
Aging (Albany NY) ; 15(18): 9614-9632, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37724906

RESUMO

Despite advancements in therapeutic options, the overall prognosis for non-small cell lung cancer (NSCLC) remains poor. Therefore, it is crucial to further explore the etiology and targets for novel treatments to effectively manage NSCLC. In this study, immunohistochemistry was used to analyze the expression of aldolase, fructose-bisphosphate C (ALDOC) protein in tumor tissues and adjacent non-malignant tissues from 79 NSCLC patients. Our findings revealed that ALDOC was overexpressed in NSCLC tissues. ALDOC expression was associated with lymph node metastasis, lymphatic metastasis and pathological stage. In addition, Kaplan-Meier analysis showed that higher ALDOC levels were indicative of a poorer prognosis. Additionally, we observed elevated ALDOC mRNA levels in NSCLC cell lines relative to normal cells. To investigate the functional roles of ALDOC, we infected cells with small interfering RNA against ALDOC, which led to attenuated proliferation and migration, as well as ameliorated apoptosis. Furthermore, through our investigations, we discovered that ubiquitin-conjugating enzyme E2N (UBE2N) acts as a downstream factor of ALDOC. ALDOC promoted NSCLC through affecting MYC-mediated UBE2N transcription and regulating the Wnt pathway. More importantly, we found that downregulation of UBE2N or the use of Wnt pathway inhibitor could reverse the promoting effects of ALDOC elevation on NSCLC development in vitro and in vivo. Based on these findings, our study highlights the potential of ALDOC as a future therapeutic target for NSCLC.

3.
Cancer Med ; 12(2): 2058-2074, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35726651

RESUMO

BACKGROUND: The N6-methyladenosine (m6 A) can modify long non-coding RNAs (lncRNAs), thereby influencing a wide array of biological functions. However, the prognosis of m6 A-related lncRNAs (m6 ARLncRNAs) in non-small cell lung cancer (NSCLC) remains largely unknown. METHODS: Pearson correlation analysis was used to identify m6 ARLncRNAs in 1835 NSCLC patients and with the condition (|Pearson R| > 0.4 and p < 0.001). Univariant Cox regression analysis was conducted to explore the prognostic m6 ARLncRNAs. We filtered prognostic m6 ARLncRNAs by LASSO regression and multivariate Cox proportional hazard regression to construct and validate an m6 ARLncRNAs signature (m6 ARLncSig). We analyzed the correlation between the m6 ARLncSig score and clinical features, immune microenvironment, tumor mutation burden, and therapeutic sensitivity and conducted independence and clinical stratification analysis. Finally, we established and validated a nomogram for prognosis prediction in NSCLC patients. RESULTS: Forty-one m6 ARLncRNAs were identified as prognostic lncRNAs, and 12 m6 ARLncRNAs were selected to construct m6 ARLncSig in the TCGA training dataset. The m6 ARLncSig was further validated in the testing dataset, GSE31210, GSE37745, GSE30219, and our NSCLC samples. In terms of m6 ARLncSig, NSCLC patients were divided into high- and low-risk groups, with significantly different overall survival (OS), clinical features (age, sex, and tumor stage), tumor-infiltrating immune cells, chemotherapeutic sensitivity, radiotherapeutic response, and biological pathways. Moreover, m6 ARLncSig independently predicted the OS of NSCLC patients. Finally, the robustness and clinical practicability for predicting NSCLC patient prognosis was improved by constructing a nomogram containing the m6 ARLncSig, age, gender, and tumor stage. CONCLUSIONS: Our study demonstrated that m6 ARLncSig could act as a potential biomarker for evaluating the prognosis and therapeutic efficacy in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Nomogramas , Prognóstico , RNA Longo não Codificante/genética , Microambiente Tumoral
4.
Front Oncol ; 12: 1008283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530971

RESUMO

Introduction: Tyrosine kinase inhibitors (TKIs) that target epidermal growth factor receptor (EGFR) mutations are commonly administered to EGFR-positive lung cancer patients. However, resistance to EGFR-TKIs (mostly gefitinib and erlotinib) is presently a significant problem. Limited studies have focused on an EGFR-TKI resistance-related gene signature (ERS) in lung adenocarcinoma (LUAD). Methods: Gefitinib and erlotinib resistance-related genes were obtained through the differential analyses of three Gene Expression Omnibus datasets. These genes were investigated further in LUAD patients from The Cancer Genome Atlas (TCGA). Patients in the TCGA-LUAD cohort were split into two groups: one for training and one for testing. The training cohort was used to build the ERS, and the testing cohort was used to test it. GO and KEGG analyses were explored for the enriched pathways between the high-risk and low-risk groups. Various software, mainly CIBERSORT and ssGSEA, were used for immune infiltration profiles. Somatic mutation and drug sensitivity analyses were also explored. Results: An ERS based on five genes (FGD3, PCDH7, DEPDC1B, SATB2, and S100P) was constructed and validated using the TCGA-LUAD cohort, resulting in the significant stratification of LUAD patients into high-risk and low-risk groups. Multivariable Cox analyses confirmed that ERS had an independent prognostic value in LUAD. The pathway enrichment analyses showed that most of the genes that were different between the two risk groups were related to the immune system. Further immune infiltration results revealed that a lower immune infiltration score was observed in high-risk patients, and that various leukocytes were significantly related to the ERS. Importantly, samples from the high-risk group showed lower levels of PD-1, PD-L1, and CTLA-4, which are important biomarkers for immunotherapy responses. Patients in the high-risk group also had more gene mutation changes and were more sensitive to chemotherapy drugs like docetaxel and sorafenib. The ERS was also validated in the GSE30219, GSE11969 and GSE72094, and showed a favorable prognostic value for LUAD patients. Discussion: The ERS established during this study was able to predict a poor prognosis for LUAD patients and had great potential for predicting drug responses.

5.
Cancers (Basel) ; 14(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36230634

RESUMO

Tyrosine kinase inhibitors (TKIs) resistance is a challenge in patients with epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC). Here, we examined the effect of Fasudil in reversing TKIs resistance. The results of CCK8 assay, clone formation assay, cell cycle arrest analysis, and apoptosis analysis show that Fasudil treatment effectively suppressed the growth and induced apoptosis of the EGFR-mutant NSCLC cells. Furthermore, Fasudil in combination with gefitinib showed a synergistic anti-tumor effect in gefitinib-resistant NSCLC cells. RNA-seq analysis and immunoblotting indicated that Fasudil treatment significantly inhibited intracellular lipid accumulation and EGFR/PI3K/AKT pathway activation. Mechanistic investigations showed that Fasudil regulated lipogenic gene expressions via AMPK signal pathway. In vivo, Fasudil and gefitinib co-administration significantly attenuated the growth of H1975 nude mouse xenograft models, suggesting that Fasudil treatment combined with gefitinib can be applied as a therapy for gefitinib-resistant NSCLC cells.

6.
Cancers (Basel) ; 14(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36291889

RESUMO

Lung adenocarcinoma (LUAD) is the primary histological subtype of lung cancer with a markedly heterogeneous prognosis. Therefore, there is an urgent need to identify optimal prognostic biomarkers. We aimed to explore the value of the circadian miRNA (cmiRNA) pair in predicting prognosis and guiding the treatment of LUAD. We first retrieved circadian genes (Cgenes) from the CGDB database, based on which cmiRNAs were predicted using the miRDB and mirDIP databases. The sequencing data of Cgenes and cmiRNAs were retrieved from TCGA and GEO databases. Two random cmiRNAs were matched to a single cmiRNA pair. Finally, univariate Cox proportional hazard analysis, LASSO regression, and multivariate Cox proportional hazard analysis were performed to develop a prognostic signature consisting of seven cmiRNA pairs. The signature exhibited good performance in predicting the overall and progression-free survival. Patients in the high-risk group also showed lower IC50 values for several common chemotherapy and targeted medicines. In addition, we constructed a cmiRNA-Cgenes network and performed a corresponding Gene Ontology and Gene Set enrichment analysis. In conclusion, the novel circadian-related miRNA pair signature could provide a precise prognostic evaluation with the potential capacity to guide individualized treatment regimens for LUAD.

7.
Respir Res ; 23(1): 132, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624472

RESUMO

BACKGROUND: Timely identification of epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement status in patients with non-small cell lung cancer (NSCLC) is essential for tyrosine kinase inhibitors (TKIs) administration. We aimed to use artificial intelligence (AI) models to predict EGFR mutations and ALK rearrangement status using common demographic features, pathology and serum tumor markers (STMs). METHODS: In this single-center study, demographic features, pathology, EGFR mutation status, ALK rearrangement, and levels of STMs were collected from Wuhan Union Hospital. One retrospective set (N = 1089) was used to train diagnostic performance using one deep learning model and five machine learning models, as well as the stacked ensemble model for predicting EGFR mutations, uncommon EGFR mutations, and ALK rearrangement status. A consecutive testing cohort (n = 1464) was used to validate the predictive models. RESULTS: The final AI model using the stacked ensemble yielded optimal diagnostic performance with areas under the curve (AUC) of 0.897 and 0.883 for predicting EGFR mutation status and 0.995 and 0.921 for predicting ALK rearrangement in the training and testing cohorts, respectively. Furthermore, an overall accuracy of 0.93 and 0.83 in the training and testing cohorts, respectively, were achieved in distinguishing common and uncommon EGFR mutations, which were key evidence in guiding TKI selection. CONCLUSIONS: In this study, driverless AI based on robust variables could help clinicians identify EGFR mutations and ALK rearrangement status and provide vital guidance in TKI selection for targeted therapy in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinase do Linfoma Anaplásico/genética , Inteligência Artificial , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Aberrações Cromossômicas , Estudos de Coortes , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação/genética , Estudos Retrospectivos
8.
Cell Death Dis ; 13(5): 427, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504868

RESUMO

Lung adenocarcinoma (LUAD) represents the most frequently diagnosed histological subtype of non-small cell lung cancer with the highest mortality worldwide. Transcriptional dysregulation is a hallmark of nearly all kinds of cancers. In the study, we identified that the POU domain, class 6, transcription factor 1 (POU6F1), a member of the POU family of transcription factors, was closely associated with tumor stage and death in LUAD. We revealed that POU6F1 was downregulated in LUAD tissues and downregulated POU6F1 was predictive of an unfavorable prognosis in LUAD patients. In vitro assays, including CCK8, soft agar, transwell, clone formation, wound-healing assay, and nude mouse xenograft model all revealed that POU6F1 inhibited the growth and invasion of LUAD cells. Mechanistically, POU6F1 bound and stabilized retinoid-related orphan receptor alpha (RORA) to exert the transcriptional inhibition of hypoxia-inducible factor 1-alpha (HIF1A) and alter the expression of HIF1A signaling pathway-associated genes, including ENO1, PDK1, and PRKCB, thereby leading to the suppression of LUAD cells. Collectively, these results demonstrated the suppressive role of POU6F1/RORA in the progression of LUAD and may potentially be used as a target for the treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Transdução de Sinais
9.
Onco Targets Ther ; 15: 201-213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250279

RESUMO

PURPOSE: There is a major limitation in the immunotherapy for solid cancer is that it only benefited a minority of cancer patients. This study aims to investigate whether the differential composition of the lung microbiome could affect the sustained clinical responses in lung cancers treated with immunotherapy. METHODS: Twenty-seven non-responders and 19 responders treated with anti-PD-1 therapy were included in the discovery set. Bacterial load in bronchoalveolar lavage from lung cancer patients was examined by quantitative PCR of 16S rRNA copies. Bacterial 16S rDNA was sequenced using the Illumina HiSeq on the 16S rDNA V3-V4 variable region. Operational taxonomic unit (OTU) analysis was performed using VSEARCH v2. The α-diversity and ß-diversity were calculated using QIIME software. RESULTS: The mean copy number of bacterial 16S DNA levels significantly decreased after anti-PD-1 treatment (after: 1.8 ± 0.6×104 copies per milliliter vs prior to treatment: 3.3 ± 1.1x104, p = 0.0036). In addition, longitudinal analysis revealed that microbial diversity was reduced taxonomically after treatment compared to those prior to the treatment (Shannon values: before: 3.291 ± 0.067 vs after: 2.668 ± 0.168, p < 0.01). Further, we observed a reduction of Fusobacterium nucleatum, including phylum Fusobacteria (p < 0.01), class Fusobacteria (p < 0.01), order Fusobacteria (p < 0.01), family Fusobacteria (p < 0.01), genus Fusobacteria (p = 0.025) in the responders post anti-PD-1 treatment. However, there was no significant difference of Fusobacterium in non-responders. An independent cohort was used to validate the levels of Fusobacterium, demonstrating that patients with higher abundance of Fusobacterium prior to treatment were significantly more likely to have poor response to anti-PD-1 therapy (p < 0.001). CONCLUSION: Airway enriched Fusobacterium prior to anti-PD-1 therapy is associated with poor response in lung cancer, which indicated that potential resistance to immunotherapy can be attributed to lung microbiome.

10.
Aging (Albany NY) ; 12(17): 17062-17078, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32903213

RESUMO

Esophageal adenocarcinoma (EAC) is the cancer arising from the esophagus, which frequently develop from Barrett's esophagus (BE). Extracellular vesicles (EVs), particularly exosomes, are nanosized vesicles of endosomal origin released from various types of cells that have been implicated in cancers. However, the significance of circulating exosomes during the progression of BE to EAC remains unknown. Sera exosmal microRNAs were profiled from 13 EAC and 12BE patients compared to 12 healthy controls. We found a substantial dysregulation of exosomal miRNA levels in BE compared to healthy control, and identified a unique signature of 24 up regulated and 14 down regulated miRNAs. Further validation showed exosomal miR-196a, -26b, -21, and -143 expression was significantly higher in BE and continued to have higher levels in EAC compared to healthy controls; while sera exosomal miR-378, -210, -205, and -200c-3p were significantly lower expressed in BE patients compared to compared to controls. Further, miR-378, -210, -205, and -200c-3p continue to have even lower levels in EAC patients compared to BE. Interestingly, sera expression levels of exosomal miR-15a, -16, and -193a-3p were significantly down regulated in BE PD-L1(+) patients; Sera exosomal miR-15a, -15b, -16, and -193a-3p expression levels in EAC PD-L1(+) patients were significantly lower (all p < 0.01) when compared to EAC PD-L1(-) patients. More importantly, the BE-EAC group had longitudinally decreased exosomal expression levels of miR-15a, -15b, -16, and -193a-3p from BE status to their EAC progression. In conclusion, distinct microRNA expression patterns were demonstrated in circulating exosomes from Barrett's esophagus and esophageal adenocarcinoma; Furthermore exosomal microRNAs potentially targeting PD-L1 mRNA were down regulated in PD-L1 (+) BE and EAC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA