Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 103(13): 6198-6207, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37140538

RESUMO

BACKGROUND: Shortening is used widely in cookie preparation to improve quality and texture. However, large amounts of saturated and trans fatty acids present in shortening have adverse effects on human health, and much effort has been made to reduce the use of shortening. The use of oleogels might be a suitable alternative. In this study, the oleogels of high oleic sunflower oil with beeswax (BW), BW-glyceryl monopalmitate (BW-GMP), and BW-Span80 (BW-S80) were prepared and their suitability to replace shortening in cookie preparation was evaluated. RESULTS: The solid fat content of BW, BW-GMP, and BW-S80 oleogels was significantly lower than that of commercial shortening when the temperature was not higher than 35 °C. However, the oil-binding capacity of these oleogels was almost similar to that of shortening. The crystals in the shortening and oleogels were ß' form mainly; however, the morphology of crystal aggregates in these oleogels was different from that of shortening. The textural and rheological properties of doughs prepared with the oleogels were similar, and clearly different from those of dough with commercial shortening. The breaking strengths of cookies made with oleogels were lower than that of cookies prepared with shortening. However, cookies containing BW-GMP and BW-S80 oleogels were similar in density and color to those prepared with shortening. CONCLUSION: The textural properties and color of cookies with BW-GMP and BW-S80 oleogels were very similar to those of the cookies containing commercial shortening. The BW-GMP and BW-S80 oleogels could act as alternatives to shortening in the preparation of cookies. © 2023 Society of Chemical Industry.


Assuntos
Alimentos , Óleo de Girassol/química , Culinária , Reologia
2.
J Oleo Sci ; 71(10): 1427-1438, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36089396

RESUMO

Blend oils composed by leaf lard (LL) and cottonseed oil stearin (COS) were prepared and the thermal property, microstructure and crystallization of these blends were investigated in the present study. Solid fat content (SFC), thermal behaviors, triacylglycerols composition, crystal structure and morphology of the LL and COS blends were determined by pulsed nuclear magnetic resonance (pNMR), differential scanning calorimetry (DSC), high-performance liquid chromatography (HPLC), X-ray diffractometer (XRD) and polarized light microscope (PLM), respectively. SFC profiles and iso-solid diagrams indicated that SFCs of all blends were almost close to the weighted averages of the fat components at temperatures beyond 20°C; however, below 20°C, SFCs of blends exhibited higher than those of the weighted averages of the fat components. With the content of COS increasing, palmitic acid and linoleic acid in the blends increased, while stearic acid and oleic acid decreased; monounsaturated-disaturated (USS) and triunsaturated (UUU) glycerides in the blends enhanced, while monosaturated-diunsaturated (UUS) glycerides declined. The melting temperature of the blends decreased with the increase of COS content. The crystal forms in LL were ß' and ß, and the packing pattern was double and triple chain length (2L and 3L). With COS in blends increasing, ß' form crystals and 3L pattern reduced. Polarized light micrographs showed that the number of crystal particles in the blends raised with the increase of COS content, meanwhile, the grainsize of the sample gradually decreased. Visual appearances of the blends indicated that blending LL with COS could efficiently reduce the graininess of LL. The addition of COS had a significant effect on the crystallization behavior of LL. LL presented one-step crystallization at 10°C and 20°C, while COS showed two-step crystallization at 10°C and one-step crystallization at 20°C. However, the blends exhibited obvious two-step crystallization at 10°C, one-step or slight two-step crystallization at 20°C.


Assuntos
Óleo de Sementes de Algodão , Ácido Oleico , Cristalização , Gorduras na Dieta , Glicerídeos/química , Ácido Linoleico , Óleo de Palmeira/química , Ácido Palmítico , Folhas de Planta/química , Óleos de Plantas/química , Triglicerídeos/química
3.
Food Chem ; 377: 131946, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34979403

RESUMO

Synthetic antioxidant tert-butylhydroquinone (TBHQ) is easily oxidized to tert-butylquinone (TQ) during the storage of edible oils, resulting in an obvious decrease in the content of TBHQ in edible oils. Therefore, it is quite desirable to develop a simple analytical method for accurately tracking the original content of TBHQ in edible oils. In this work, deep eutectic solvents (DESs) have been successfully used in room temperature vortex-assisted liquid-liquid microextraction (VALLME) of TBHQ from edible oils. The DES composed of ethylene glycol and choline chloride (ChCl) could selectively extract TBHQ from edible oils containing both TBHQ and TQ. The DES composed of sesamol and ChCl (molar ratio of 3:1) could efficiently reduce TQ to TBHQ and extract TBHQ from edible oils. The whole VALLME process only required 5 min at room temperature. This switchable DESs-based VALLME with common RP-HPLC analysis showed high efficiency and good performance with linearity (R2 = 0.9999) in 5-500 mg/kg range, detection limit of 0.02 mg/kg, recoveries of 96.1-106.0% and intra-/inter-day precision below 2.0%. This analytical method is suitable for detecting the current content of TBHQ and tracking the original content of TBHQ during the storage of edible oils at room temperature, respectively.


Assuntos
Microextração em Fase Líquida , Antioxidantes , Cromatografia Líquida de Alta Pressão , Solventes Eutéticos Profundos , Hidroquinonas , Limite de Detecção , Óleos de Plantas , Solventes
4.
RSC Adv ; 11(25): 15204-15212, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35424029

RESUMO

Phytosterol esters are functional compounds that can effectively reduce plasma cholesterol concentration, and have wide applications in the food industry. In this study, a simple and efficient enzymatic method was successfully applied to synthesize phytosterol oleic acid esters with fatty acids from high-oleic sunflower seed oil. Among the tested lipases, Candida rugosa lipase (CRL) exhibited higher catalytic activity in the esterification of phytosterols with fatty acids (oleic acid 84%) from high-oleic sunflower seed oil. Box-Behnken design and response surface methodology were used to investigate the influence of reaction factors on the conversion of phytosterols. The maximum conversion of phytosterols (96.8%) and yield of phytosterol esters (92%) could be obtained under optimal conditions: reaction temperature 50 °C, a molar ratio of phytosterols to fatty acids at 1 : 2.3, enzyme loading of 5.8%, isooctane volume of 2 mL and reaction time of 2 h. It was noteworthy that this enzymatic esterification method indeed expended a much shorter reaction time (2 h) than that observed in previous reports. In general, the enzymatic preparation of phytosterol oleic acid esters with fatty acids from high-oleic sunflower seed oil will be a simple and rapid method for producing unsaturated fatty acid esters of phytosterol with both higher oil solubility and oxidative stability, which is beneficial as functional food ingredients.

5.
J Oleo Sci ; 68(10): 977-988, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31511464

RESUMO

Free fatty acids (FFAs) are the important material used in food, personal care, emulsifiers, adhesives and surfactants. In order to enhance the preparation of FFAs, the effects of reaction variables, optimization, thermodynamic property for the Amano lipase PS catalyzed hydrolysis of pine nut oil (PNO) using deep eutectic solvents (DESs) as co-solvents were studied. The results showed that FFAs could be successfully prepared from pine nut oil through Amano lipase PS catalyzed hydrolysis using Choline chloride:Urea (ChCl:U, 1:2, mol/mol) as co-solvent. Under the optimal conditions (reaction temperature 46°C, water amount 38%, DES addition 43%, lipase dosage 7.6%, reaction time 13 h), the maximum content of FFAs in the products and degree of hydrolysis (DH) of oil were up to 89.1 ± 1.9% and 92.7 ± 2.2%, respectively. The effects of reaction variables on the hydrolysis increased in the order of DES addition < reaction temperature < reaction time < lipase dosage < water amount. The thermodynamics (Arrhenius equation) for the triglycerides hydrolysis was V = 4289.39·exp(-22942.09/RT) with the activation energy (Ea) of 22.94 kJ/mol. The Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were 81.50 ± 2.64 kJ/mol, 20.18 ± 0.12 kJ/mol and -184.59 ± 0.36 J/mol/K, respectively. The lipase in the aqueous DES could be directly re-used for 3 times.


Assuntos
Biocatálise , Burkholderia cepacia/enzimologia , Ácidos Graxos/biossíntese , Lipase/metabolismo , Nozes/metabolismo , Pinus/metabolismo , Óleos de Plantas/metabolismo , Ácidos Graxos/química , Hidrólise , Nozes/química , Pinus/química , Óleos de Plantas/química , Solventes/química , Termodinâmica
6.
RSC Adv ; 10(1): 244-252, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35492564

RESUMO

Phytosterol-based oleogels have been engineered in edible oils for potential applications as sustainable replacements for petrolatum. Oleogels have emerged with a crystal network structure with oil molecules trapped inside. In addition, the viscosity of highly thixotropic oleogels could be tuned by manipulating the concentration of phytosterols and monoglycerides, and the type of surface-active small molecules and bulk vegetable oils. Furthermore, viscous soft matter could also be tunably made with 8-20% oleogelators in olive oil with favourable water vapour occlusive and wettability properties, in addition to having good texture, and outstanding thixotropic and thermal reversibility properties. These properties are quite similar to those of commercial petrolatum. This work demonstrates that the natural phytosterol-oleogels in edible oils can be a novel source of sustainable and green replacements for petrolatum.

7.
J Oleo Sci ; 65(9): 739-48, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27477072

RESUMO

The rules and patterns of thermal losses of tertiary butylhydroquinone (TBHQ) in palm oil (PO) and its effect on the qualities of PO were investigated by oven heating method. Volatilization and transformation products of TBHQ in PO were also studied in detail under heating treatment. Results showed that at low temperature (< 135°C), TBHQ had better antioxidative properties, while its antioxidative potency to PO was significantly weakened at high temperature (≥ 135°C). In addition, as heating temperatures increased and heating time prolonged, losses of TBHQ significantly increased in PO. Volatilization was the major pathway for losses of TBHQ in PO under heating treatment. Meanwhile, a small portion of TBHQ was transformed and the major transformation product was 2-tertbutyl-1,4- benzoquinone (TQ). Moreover, TQ and several decomposition products of PO were also observed in the volatilization products of TBHQ.


Assuntos
Hidroquinonas/química , Óleos de Plantas/química , Temperatura , Estrutura Molecular , Óleo de Palmeira
8.
Food Chem ; 188: 415-21, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26041212

RESUMO

This study was performed to develop a hierarchical approach for detection and quantification of adulteration of sesame oil with vegetable oils using gas chromatography (GC). At first, a model was constructed to discriminate the difference between authentic sesame oils and adulterated sesame oils using support vector machine (SVM) algorithm. Then, another SVM-based model is developed to identify the type of adulterant in the mixed oil. At last, prediction models for sesame oil were built for each kind of oil using partial least square method. To validate this approach, 746 samples were prepared by mixing authentic sesame oils with five types of vegetable oil. The prediction results show that the detection limit for authentication is as low as 5% in mixing ratio and the root-mean-square errors for prediction range from 1.19% to 4.29%, meaning that this approach is a valuable tool to detect and quantify the adulteration of sesame oil.


Assuntos
Cromatografia Gasosa , Contaminação de Alimentos/análise , Óleos de Plantas/química , Óleo de Gergelim/química , Análise por Conglomerados , Análise dos Mínimos Quadrados , Análise Multivariada , Análise de Componente Principal , Máquina de Vetores de Suporte
9.
J Agric Food Chem ; 54(20): 7672-7, 2006 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17002438

RESUMO

Characterizations of lotus plumule and plumule oil, focusing on approximate composition analysis of lotus plumule powder and fatty acid composition, lipid classes, triglyceride (TG) profiles, and sterol analysis of the plumule oil, were conducted in this work. The results revealed that the lotus plumule constitutes 7.8% moisture, 4.2% ash, and 12.5% crude oil and 26.3% protein on the dry base. Lotus plumule oil is rich in linoleic acid (50.4%) and oleic acid (13.5%), and the dominating saturated fatty acids are palmitic acid (18.0%) and behenic acid (6.8%). The principal components of TG in lotus plumule oil are LLL (12.80%), beta-PLL (11.27%), beta-POL (8.28%), beta-PLO (8.58%), and beta-BeLL (8.32%). Lipid class assay of the crude oil gave the saponification value of 153.4 KOH mg/g and tocopherol content 390 mg/100 g. A distinct characteristic of lotus plumule oil is that its unsaponifiable matter is incredibly high, up to 14-19%, which consists mainly of beta-sitosterol (32%), Delta(5)-avenasterol (20%), and campesterol (6.3%). The major occurring form of sterols was found to be steryl ester. This work might be useful to develop innovative applications of lotus plumule oil.


Assuntos
Lotus/química , Óleos de Plantas/química , Fenômenos Químicos , Físico-Química , Ácidos Graxos/análise , Lipídeos/análise , Fitosteróis/análise , Triglicerídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA