Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Cell Death Differ ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871948

RESUMO

Hepatic stellate cells (HSCs) secrete extracellular matrix for collagen deposition, contributing to liver fibrosis. Ferroptosis is a novel type of programmed cell death induced by iron overload-dependent lipid peroxidation. Regulation of ferroptosis in hepatic stellate cells (HSCs) may have therapeutic potential for liver fibrosis. Here, we found that Maf bZIP transcription factor G (MafG) was upregulated in human and murine liver fibrosis. Interestingly, MafG knockdown increased HSCs ferroptosis, while MafG overexpression conferred resistance of HSCs to ferroptosis. Mechanistically, MafG physically interacted with non-muscle myosin heavy chain IIa (MYH9) to transcriptionally activate lipocalin 2 (LCN2) expression, a known suppressor for ferroptosis. Site-directed mutations of MARE motif blocked the binding of MafG to LCN2 promoter. Re-expression of LCN2 in MafG knockdown HSCs restored resistance to ferroptosis. In bile duct ligation (BDL)-induced mice model, we found that treatment with erastin alleviated murine liver fibrosis by inducing HSC ferroptosis. HSC-specific knowdown MafG based on adeno-associated virus 6 (AAV-6) improved erastin-induced HSC ferroptosis and alleviation of liver fibrosis. Taken together, MafG inhibited HSCs ferroptosis to promote liver fibrosis through transcriptionally activating LCN2 expression. These results suggest that MafG/MYH9-LCN2 signaling pathway could be a novel targets for the treatment of liver fibrosis.

2.
Int J Biol Sci ; 20(4): 1218-1237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385082

RESUMO

MCJ (Methylation-Controlled J protein), an endogenous repressor of the mitochondrial respiratory chain, is upregulated in multiple liver diseases but little is known about how it is regulated. S-adenosylmethionine (SAMe), the biological methyl donor, is frequently depleted in chronic liver diseases. Here, we show that SAMe negatively regulates MCJ in the liver. While deficiency in methionine adenosyltransferase alpha 1 (MATα1), enzyme that catalyzes SAMe biosynthesis, leads to hepatic MCJ upregulation, MAT1A overexpression and SAMe treatment reduced MCJ expression. We found that MCJ is methylated at lysine residues and that it interacts with MATα1 in liver mitochondria, likely to facilitate its methylation. Lastly, we observed that MCJ is upregulated in alcohol-associated liver disease, a condition characterized by reduced MAT1A expression and SAMe levels along with mitochondrial injury. MCJ silencing protected against alcohol-induced mitochondrial dysfunction and lipid accumulation. Our study demonstrates a new role of MATα1 and SAMe in reducing hepatic MCJ expression.


Assuntos
Hepatopatias Alcoólicas , S-Adenosilmetionina , Humanos , S-Adenosilmetionina/metabolismo , Transporte de Elétrons , Fígado/metabolismo , Mitocôndrias/metabolismo , Hepatopatias Alcoólicas/metabolismo
3.
J Hepatol ; 80(3): 443-453, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38086446

RESUMO

BACKGROUND & AIMS: The liver is a common site of cancer metastasis, most commonly from colorectal cancer, and primary liver cancers that have metastasized are associated with poor outcomes. The underlying mechanisms by which the liver defends against these processes are largely unknown. Prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) are highly expressed in the liver. They positively regulate each other and their deletion results in primary liver cancer. Here we investigated their roles in primary and secondary liver cancer metastasis. METHODS: We identified common target genes of PHB1 and MAT1A using a metastasis array, and measured promoter activity and transcription factor binding using luciferase reporter assays and chromatin immunoprecipitation, respectively. We examined how PHB1 or MAT1A loss promotes liver cancer metastasis and whether their loss sensitizes to colorectal liver metastasis (CRLM). RESULTS: Matrix metalloproteinase-7 (MMP-7) is a common target of MAT1A and PHB1 and its induction is responsible for increased migration and invasion when MAT1A or PHB1 is silenced. Mechanistically, PHB1 and MAT1A negatively regulate MMP7 promoter activity via an AP-1 site by repressing the MAFG-FOSB complex. Loss of MAT1A or PHB1 also increased MMP-7 in extracellular vesicles, which were internalized by colon and pancreatic cancer cells to enhance their oncogenicity. Low hepatic MAT1A or PHB1 expression sensitized to CRLM, but not if endogenous hepatic MMP-7 was knocked down first, which lowered CD4+ T cells while increasing CD8+ T cells in the tumor microenvironment. Hepatocytes co-cultured with colorectal cancer cells express less MAT1A/PHB1 but more MMP-7. Consistently, CRLM raised distant hepatocytes' MMP-7 expression in mice and humans. CONCLUSION: We have identified a PHB1/MAT1A-MAFG/FOSB-MMP-7 axis that controls primary liver cancer metastasis and sensitization to CRLM. IMPACT AND IMPLICATIONS: Primary and secondary liver cancer metastasis is associated with poor outcomes but whether the liver has underlying defense mechanism(s) against metastasis is unknown. Here we examined the hypothesis that hepatic prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) cooperate to defend the liver against metastasis. Our studies found PHB1 and MAT1A form a complex that suppresses matrix metalloproteinase-7 (MMP-7) at the transcriptional level and loss of either PHB1 or MAT1A sensitizes the liver to metastasis via MMP-7 induction. Strategies that target the PHB1/MAT1A-MMP-7 axis may be a promising approach for the treatment of primary and secondary liver cancer metastasis.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/genética , Neoplasias Hepáticas/patologia , Metaloproteinase 7 da Matriz/genética , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Proibitinas , Microambiente Tumoral
4.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958505

RESUMO

Arsenic is a carcinogenic metalloid toxicant widely found in the natural environment. Acute or prolonged exposure to arsenic causes a series of damages to the organs, mainly the liver, such as hepatomegaly, liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Therefore, it is imperative to seek drugs to prevent arsenic-induced liver injury. Quinazolines are a class of nitrogen heterocyclic compounds with biological and pharmacological effects in vivo and in vitro. This study was designed to investigate the ameliorating effects of quinazoline derivatives on arsenic-induced liver injury and its molecular mechanism. We investigated the mechanism of the quinazoline derivative KZL-047 in preventing and ameliorating arsenic-induced liver injury in vitro by cell cycle and apoptosis. We performed real-time fluorescence quantitative polymerase chain reaction (qPCR) and Western blotting combined with molecular docking. In vivo, the experiments were performed to investigate the mechanism of KZL-047 in preventing and ameliorating arsenic-induced liver injury using arsenic-infected mice. Physiological and biochemical indices of liver function in mouse serum were measured, histopathological changes in liver tissue were observed, and immunohistochemical staining was used to detect changes in the expression of RecQ-family helicases in mouse liver tissue. The results of in vitro experiments showed that sodium arsenite (SA) inhibited the proliferation of L-02 cells, induced apoptosis, blocked the cell cycle at the G1 phase, and decreased the expression of RecQ family helicase; after KZL-047 treatment in arsenic-induced L-02 cells, the expression of RecQ family helicase was upregulated, and the apoptosis rate was slowed, leading to the restoration of the cell viability level. KZL-047 inhibited arsenic-induced oxidative stress, alleviated oxidative damage and lipid peroxidation in vivo, and ameliorated arsenic toxicity-induced liver injury. KZL-047 restored the expression of RecQ family helicase proteins, which is consistent with the results of in vitro studies. In summary, KZL-047 can be considered a potential candidate for the treatment of arsenic-induced liver injury.


Assuntos
Arsênio , Arsenitos , Doença Hepática Crônica Induzida por Substâncias e Drogas , Camundongos , Animais , Arsênio/toxicidade , Arsênio/metabolismo , RecQ Helicases/metabolismo , Quinazolinas/farmacologia , Quinazolinas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Simulação de Acoplamento Molecular , Fígado/metabolismo , Estresse Oxidativo , Cirrose Hepática/metabolismo , Arsenitos/toxicidade
5.
Hepatol Commun ; 7(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347224

RESUMO

BACKGROUND: We established a novel diethylnitrosamine (DEN) -induced mouse model that reflected the progression of cholangiocarcinoma (CCA) from atypical cystic hyperplasia. METHODS: BALB/c mice were administered DEN by oral gavage. Cells isolated from livers were analyzed for expression of CSNK2A1, MAX and MAX-interacting proteins. Human CCA cell lines (MzChA-1, HuCCT1), normal human cholangiocyte (H69), human hepatic stellate cells (LX-2), macrophages (RAW 264.7), and primary hepatic cells were used for cellular and molecular biology assays. RESULTS: Expression of MAX, CSNK2A1, C-MYC, ß-catenin, HMGB1, and IL-6 was upregulated in hepatic cells from CCA liver tissue. The half-life of MAX is higher in CCA cells, and this favors their proliferation. Overexpression of MAX increased growth, migration, and invasion of MzChA-1, whereas silencing of MAX had the opposite effect. MAX positively regulated IL-6 and HMGB1 through paracrine signaling in HepG2, LX2, and RAW cells and autocrine signaling in MzChA-1 cells. CSNK2A1-mediated MAX phosphorylation shifts MAX-MAX homodimer to C-MYC-MAX and ß-catenin-MAX heterodimers and increases the HMGB1 and IL-6 promoter activities. Increase of MAX phosphorylation promotes cell proliferation, migration, invasion, and cholangiocarcinogenesis. The casein kinase 2 inhibitor CX-4945 induces cell cycle arrest and inhibits cell proliferation, migration, invasion, and carcinogenesis in MzChA-1 cells through the downregulation of CSNK2A1, MAX, and MAX-interaction proteins. CONCLUSION: C-MYC-MAX and ß-catenin-MAX binding to E-box site or ß-catenin-MAX bound to TCFs/LEF1 enhanced HMGB1 or IL-6 promoter activities, respectively. IL-6 and HMGB1 secreted by hepatocytes, HSCs, and KCs exert paracrine effects on cholangiocytes to promote cell growth, migration, and invasion and lead to the progression of cholangiocarcinogenesis. CX-4945 provides perspectives on therapeutic strategies to attenuate progression from atypical cystic hyperplasia to cholangiocarcinogenesis.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Proteína HMGB1 , Animais , Camundongos , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Interleucina-6/genética , Hiperplasia/metabolismo , Hiperplasia/patologia , Caseína Quinase II/metabolismo , Proteína HMGB1/genética , Fosforilação , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos
6.
Front Endocrinol (Lausanne) ; 13: 1007944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267567

RESUMO

Fatty liver disease is a spectrum of liver pathologies ranging from simple hepatic steatosis to non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and culminating with the development of cirrhosis or hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is complex and diverse, and there is a lack of effective treatment measures. In this review, we address hepatokines identified in the pathogenesis of NAFLD and NASH, including the signaling of FXR/RXR, PPARα/RXRα, adipogenesis, hepatic stellate cell activation/liver fibrosis, AMPK/NF-κB, and type 2 diabetes. We also highlight the interaction between hepatokines, and cytokines or peptides secreted from muscle (myokines), adipose tissue (adipokines), and hepatic stellate cells (stellakines) in response to certain nutritional and physical activity. Cytokines exert autocrine, paracrine, or endocrine effects on the pathogenesis of NAFLD and NASH. Characterizing signaling pathways and crosstalk amongst muscle, adipose tissue, hepatic stellate cells and other liver cells will enhance our understanding of interorgan communication and potentially serve to accelerate the development of treatments for NAFLD and NASH.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Adipocinas , NF-kappa B , PPAR alfa , Diabetes Mellitus Tipo 2/complicações , Proteínas Quinases Ativadas por AMP , Cirrose Hepática/complicações , Citocinas
7.
Oncogene ; 40(39): 5866-5879, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34349244

RESUMO

Methionine adenosyltransferase 1A (MAT1A) is a tumor suppressor downregulated in hepatocellular carcinoma and cholangiocarcinoma, two of the fastest rising cancers worldwide. We compared MATα1 (protein encoded by MAT1A) interactome in normal versus cancerous livers by mass spectrometry to reveal interactions with 14-3-3ζ. The MATα1/14-3-3ζ complex was critical for the expression of 14-3-3ζ. Similarly, the knockdown and small molecule inhibitor for 14-3-3ζ (BV02), and ChIP analysis demonstrated the role of 14-3-3ζ in suppressing MAT1A expression. Interaction between MATα1 and 14-3-3ζ occurs directly and is enhanced by AKT2 phosphorylation of MATα1. Blocking their interaction enabled nuclear MATα1 translocation and inhibited tumorigenesis. In contrast, overexpressing 14-3-3ζ lowered nuclear MATα1 levels and promoted tumor progression. However, tumor-promoting effects of 14-3-3ζ were eliminated when liver cancer cells expressed mutant MATα1 unable to interact with 14-3-3ζ. Taken together, the reciprocal negative regulation that MATα1 and 14-3-3ζ exert is a key mechanism in liver tumorigenesis.


Assuntos
Neoplasias Hepáticas , Proteínas 14-3-3 , Animais , Carcinogênese , Carcinoma Hepatocelular , Transformação Celular Neoplásica , Humanos , Metionina Adenosiltransferase , Camundongos
9.
World J Surg Oncol ; 18(1): 235, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883303

RESUMO

BACKGROUND: Several randomized controlled trials (RCTs) have compared the treatment of acute lung injury (ALI) with omega-3 fatty, yet the results remained inconsistent. Therefore, we attempted this meta-analysis to analyze the role of omega-3 fatty in the treatment of ALI patients. METHODS: We searched PubMed databases from inception date to October 31, 2019, for RCTs that compared the treatment of ALI with or without omega-3 fatty. Two authors independently screened the studies and extracted data from the published articles. Summary mean differences (MD) with 95% confidence intervals (CI) were calculated for each outcome by fixed- or random-effects model. RESULTS: Six RCTs with a total of 277 patients were identified, of whom 142 patients with omega-3 fatty acid treatment and 135 patients without omega-3 fatty treatment. Omega-3 fatty treatments significantly improve the PaO2 (MD = 13.82, 95% CI 8.55-19.09), PaO2/FiO2 (MD = 33.47, 95% CI 24.22-42.72), total protein (MD = 2.02, 95% CI 0.43-3.62) in ALI patients, and omega-3 fatty acid treatments reduced the duration of mechanical ventilation (MD = - 1.72, 95% CI - 2.84 to - 0.60) and intensive care unit stay (MD = - 1.29, 95% CI - 2.14 to - 0.43) in ALI patients. CONCLUSIONS: Omega-3 fatty can effectively improve the respiratory function and promote the recovery of ALI patients. Future studies focused on the long-term efficacy and safety of omega-3 fatty use for ALI are needed.


Assuntos
Lesão Pulmonar Aguda , Ácidos Graxos Ômega-3 , Lesão Pulmonar Aguda/tratamento farmacológico , Ácidos Graxos Ômega-3/uso terapêutico , Humanos , Unidades de Terapia Intensiva , Prognóstico , Respiração Artificial
10.
Hepatology ; 72(5): 1682-1700, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32080887

RESUMO

BACKGROUND AND AIMS: Forkhead box M1 (FOXM1) and nuclear factor kappa B (NF-ĸB) are oncogenic drivers in liver cancer that positively regulate each other. We showed that methionine adenosyltransferase 1A (MAT1A) is a tumor suppressor in the liver and inhibits NF-ĸB activity. Here, we examined the interplay between FOXM1/NF-κB and MAT1A in liver cancer. APPROACH AND RESULTS: We examined gene and protein expression, effects on promoter activities and binding of proteins to promoter regions, as well as effects of FOXM1 inhibitors T0901317 (T0) and forkhead domain inhibitory-6 (FDI-6) in vitro and in xenograft and syngeneic models of liver cancer. We found, in both hepatocellular carcinoma and cholangiocarcinoma, that an induction in FOXM1 and NF-κB expression is accompanied by a fall in MATα1 (protein encoded by MAT1A). The Cancer Genome Atlas data set confirmed the inverse correlation between FOXM1 and MAT1A. Interestingly, FOXM1 directly interacts with MATα1 and they negatively regulate each other. In contrast, FOXM1 positively regulates p50 and p65 expression through MATα1, given that the effect is lost in its absence. FOXM1, MATα1, and NF-κB all bind to the FOX binding sites in the FOXM1 and MAT1A promoters. However, binding of FOXM1 and NF-κB repressed MAT1A promoter activity, but activated the FOXM1 promoter. In contrast, binding of MATα1 repressed the FOXM1 promoter. MATα1 also binds and represses the NF-κB element in the presence of p65 or p50. Inhibiting FOXM1 with either T0 or FDI-6 inhibited liver cancer cell growth in vitro and in vivo. However, inhibiting FOXM1 had minimal effects in liver cancer cells that do not express MAT1A. CONCLUSIONS: We have found a crosstalk between FOXM1/NF-κB and MAT1A. Up-regulation in FOXM1 lowers MAT1A, but raises NF-κB, expression, and this is a feed-forward loop that enhances tumorigenesis.


Assuntos
Proteína Forkhead Box M1/metabolismo , Neoplasias Hepáticas/genética , Metionina Adenosiltransferase/genética , NF-kappa B/genética , Proteínas Supressoras de Tumor/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Retroalimentação Fisiológica/efeitos dos fármacos , Proteína Forkhead Box M1/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hepatócitos , Humanos , Hidrocarbonetos Fluorados/administração & dosagem , Fígado/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Metionina Adenosiltransferase/metabolismo , Camundongos , Camundongos Knockout , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , Piridinas/administração & dosagem , S-Adenosilmetionina/metabolismo , Sulfonamidas/administração & dosagem , Tiofenos/administração & dosagem , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Biomed ; 1(1): 6, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35006413

RESUMO

Toll-like receptors (TLRs) are a family of proteins that recognize pathogen associated molecular patterns (PAMPs). Their primary function is to activate innate immune responses while also involved in facilitating adaptive immune responses. Different TLRs exert distinct functions by activating varied immune cascades. Several TLRs are being pursued as cancer drug targets. We discovered a novel, highly potent and selective small molecule TLR8 agonist DN052. DN052 exhibited strong in vitro cellular activity with EC50 at 6.7 nM and was highly selective for TLR8 over other TLRs including TLR4, 7 and 9. DN052 displayed excellent in vitro ADMET and in vivo PK profiles. DN052 potently inhibited tumor growth as a single agent. Moreover, combination of DN052 with the immune checkpoint inhibitor, selected targeted therapeutics or chemotherapeutic drugs further enhanced efficacy of single agents. Mechanistically, treatment with DN052 resulted in strong induction of pro-inflammatory cytokines in ex vivo human PBMC assay and in vivo monkey study. GLP toxicity studies in rats and monkeys demonstrated favorable safety profile. This led to the advancement of DN052 into phase 1 clinical trials.

12.
J Nanosci Nanotechnol ; 19(12): 7509-7516, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31196254

RESUMO

By using ethylenediamine (ED) with nitric acid (NA) and formic acid (FA) as raw materials, two types of new carbon dots (CDs) were prepared using microwave method. The as-prepared CDs showed excellent water solubility and photoluminescence properties. The optimum excitation wavelength and emission wavelength of new CDs were at 430 nm and 500 nm (for CDs fabricated with ED and NA) and at 480 nm and 570 nm (for CDs synthesized with ED and FA), respectively. Dyeing the oral tissue with these new CDs was found to be an effective means to stain oral tissue sections. The cell morphology and distribution of the oral tissues can be clearly observed under a fluorescence microscopy. Compared with the hematoxylin-eosin (HE) staining method, a common staining method in biopsy, the dyeing operation of the new CDs is simpler with clearer imaging effect. The difference in cell morphology and distribution between normal oral tissues and pathological oral tissues was observed under a fluorescence microscope by CDs staining to distinguish normal tissues from pathological tissues. Thus, a novel method for detecting oral cancer was developed.


Assuntos
Neoplasias Bucais , Pontos Quânticos , Carbono , Sobrevivência Celular , Corantes Fluorescentes , Humanos , Coloração e Rotulagem
13.
J Biol Chem ; 294(6): 1984-1996, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30523154

RESUMO

Prohibitin 1 (PHB1) is a mitochondrial chaperone whose expression is dysregulated in cancer. In liver cancer, PHB1 acts as a tumor suppressor, but the mechanisms of tumor suppression are incompletely understood. Here we aimed to determine PHB1 target genes to better understand how PHB1 influences liver tumorigenesis. Using RNA-Seq analysis, we found interleukin-8 (IL-8) to be one of the most highly up-regulated genes following PHB1 silencing in HepG2 cells. Induction of IL-8 expression also occurred in multiple liver and nonliver cancer cell lines. We examined samples from 178 patients with hepatocellular carcinoma (HCC) and found that IL-8 mRNA levels were increased, whereas PHB1 mRNA levels were decreased, in the tumors compared with adjacent nontumorous tissues. Notably, HCC patients with high IL-8 expression have significantly reduced survival. An inverse correlation between PHB1 and IL-8 mRNA levels is found in HCCs with reduced PHB1 expression. To understand the molecular basis for these observations, we altered PHB1 levels in liver cancer cells. Overexpression of PHB1 resulted in lowered IL-8 expression and secretion. Silencing PHB1 increased c-Jun N-terminal kinase (JNK) and NF-κB activity, induced nuclear accumulation of c-JUN and p65, and enhanced their binding to the IL-8 promoter containing AP-1 and NF-κB elements. Conditioned medium from PHB1-silenced HepG2 cells increased migration and invasion of parental HepG2 and SK-hep-1 cells, and this was blocked by co-treatment with neutralizing IL-8 antibody. In summary, our findings show that reduced PHB1 expression induces IL-8 transcription by activating NF-κB and AP-1, resulting in enhanced IL-8 expression and release to promote tumorigenesis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Interleucina-8/biossíntese , Neoplasias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Células HCT116 , Células Hep G2 , Humanos , Interleucina-8/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Proteínas de Neoplasias/genética , Proibitinas , Proteínas Repressoras/genética
14.
Anal Bioanal Chem ; 410(18): 4379-4386, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29707752

RESUMO

A simple and readily available fluorescent probe is needed for the real-time monitoring of endogenous cysteine (Cys) levels in living cells, as such a probe could be used to study the role of Cys in related diseases. Herein, we report the first fluorescent probe based on carbon dots (CDs-FITA) for the selective and ratiometric imaging of endogenous Cys in live cells. In this ratiometric fluorescent probe, a fluorescein derivative (FITA) that recognizes Cys is covalently linked to the surfaces of carbon dots (CDs); employing CDs greatly improves the water solubility of the probe. Acrylate on FITA is selectively cleaved by Cys in aqueous solution under mild conditions, leading to a dramatic increase in the fluorescence from fluorescein. The probe therefore allows the highly selective ratiometric fluorescent detection of Cys even in the presence of various interferents. The as-prepared CDs-FITA showed excellent performance when applied to detect Cys in blood serum. In addition, due to its negligible cytotoxicity, the CDs-FITA can also be utilized for the real-time monitoring of endogenous cysteine (Cys) levels in living cells. Graphical abstract Illustration of the CD-based probe for Cys imaging in living cells.


Assuntos
Carbono/química , Cisteína/metabolismo , Corantes Fluorescentes/química , Nanopartículas/química , Espectrometria de Fluorescência/métodos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cisteína/sangue , Fluoresceína/química , Células HeLa , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Solubilidade , Espectrometria de Massas por Ionização por Electrospray , Água/química
15.
Gastroenterology ; 155(2): 557-571.e14, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29733835

RESUMO

BACKGROUND & AIMS: MAF bZIP transcription factor G (MAFG) is activated by the farnesoid X receptor to repress bile acid synthesis. However, expression of MAFG increases during cholestatic liver injury in mice and in cholangiocarcinomas. MAFG interacts directly with methionine adenosyltransferase α1 (MATα1) and other transcription factors at the E-box element to repress transcription. We studied mechanisms of MAFG up-regulation in cholestatic tissues and the pathways by which S-adenosylmethionine (SAMe) and ursodeoxycholic acid (UDCA) prevent the increase in MAFG expression. We also investigated whether obeticholic acid (OCA), an farnesoid X receptor agonist, affects MAFG expression and how it contributes to tumor growth in mice. METHODS: We obtained 7 human cholangiocarcinoma specimens and adjacent non-tumor tissues from patients that underwent surgical resection in California and 113 hepatocellular carcinoma (HCC) specimens and adjacent non-tumor tissues from China, along with clinical data from patients. Tissues were analyzed by immunohistochemistry. MAT1A, MAT2A, c-MYC, and MAFG were overexpressed or knocked down with small interfering RNAs in MzChA-1, KMCH, Hep3B, and HepG2 cells; some cells were incubated with lithocholic acid (LCA, which causes the same changes in gene expression observed during chronic cholestatic liver injury in mice), SAMe, UDCA (100 µM), or farnesoid X receptor agonists. MAFG expression and promoter activity were measured using real-time polymerase chain reaction, immunoblot, and transient transfection. We performed electrophoretic mobility shift, and chromatin immunoprecipitation assays to study proteins that occupy promoter regions. We studied mice with bile-duct ligation, orthotopic cholangiocarcinomas, cholestasis-induced cholangiocarcinoma, diethylnitrosamine-induced liver tumors, and xenograft tumors. RESULTS: LCA activated expression of MAFG in HepG2 and MzChA-1 cells, which required the activator protein-1, nuclear factor-κB, and E-box sites in the MAFG promoter. LCA reduced expression of MAT1A but increased expression of MAT2A in cells. Overexpression of MAT2A increased activity of the MAFG promoter, whereas knockdown of MAT2A reduced it. MAT1A and MAT2A had opposite effects on the activator protein-1, nuclear factor-κB, and E-box-mediated promoter activity. Expression of MAFG and MAT2A increased, and expression of MAT1A decreased, in diethylnitrosamine-induced liver tumors in mice. SAMe and UDCA had shared and distinct mechanisms of preventing LCA-mediated increased expression of MAFG. OCA increased expression of MAFG, MAT2A, and c-MYC, but reduced expression of MAT1A. Incubation of human liver and biliary cancer cells lines with OCA promoted their proliferation; in nude mice given OCA, xenograft tumors were larger than in mice given vehicle. Levels of MAFG were increased in human HCC and cholangiocarcinoma tissues compared with non-tumor tissues. High levels of MAFG in HCC samples correlated with hepatitis B, vascular invasion, and shorter survival times of patients. CONCLUSIONS: Expression of MAFG increases in cells and tissues with cholestasis, as well as in human cholangiocarcinoma and HCC specimens; high expression levels correlate with tumor progression and reduced survival time. SAMe and UDCA reduce expression of MAFG in response to cholestasis, by shared and distinct mechanisms. OCA induces MAFG expression, cancer cell proliferation, and growth of xenograft tumors in mice.


Assuntos
Neoplasias dos Ductos Biliares/genética , Carcinoma Hepatocelular/genética , Colangiocarcinoma/genética , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas/genética , Fator de Transcrição MafG/metabolismo , Proteínas Repressoras/metabolismo , Animais , Neoplasias dos Ductos Biliares/etiologia , Neoplasias dos Ductos Biliares/mortalidade , Neoplasias dos Ductos Biliares/patologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Colangiocarcinoma/etiologia , Colangiocarcinoma/patologia , Colestase/etiologia , Colestase/patologia , Ácidos Cólicos/farmacologia , Dietilnitrosamina/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Fígado/patologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas Experimentais/etiologia , Neoplasias Hepáticas Experimentais/patologia , Fator de Transcrição MafG/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Proteínas Repressoras/genética , S-Adenosilmetionina/farmacologia , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Oncol Lett ; 15(6): 9242-9250, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29805653

RESUMO

Epigenetic modifications serve important roles in non-small cell lung cancer (NSCLC) tumorigenesis; however, the role of DNA methyltransferase 1 (DNMT1) in lung cancer progression remains unclear. In the present study, the expression of DNMT1 in the human NSCLC cell lines 95D (high invasive ability) and 95C (low invasive ability) was analyzed by western blotting. The results demonstrated that the expression of DNMT1 in 95D cells was significantly higher, compared with in 95C cells and small airway epithelial cells. To further define the role of DNMT1 in tumor migration and invasion in NSCLC cells, RNA interference was used to silence DNMT1 expression. Depletion of DNMT1 significantly inhibited 95D cell invasion and migration. In addition, treatment with DNMT1 small interfering RNA resulted in compact cell morphology and significantly increased epithelial marker E-cadherin expression whilst also decreasing the expression of certain mesenchymal markers, including vimentin and fibronectin. Suppression of DNMT1 increased cytoplasmic ß-catenin levels while downregulating nuclear ß-catenin and Snail, an important regulator of EMT. The results from the present study suggest that the inhibition of DNMT1 reverses the epithelial-mesenchymal transition partly via the inhibition of the Wnt/ß-catenin signaling pathway, and therefore inhibits cell migration and invasion. These results indicate that targeting DNMT1 may inhibit tumor metastasis and that DNMT1 is a promising target for the novel treatment of lung cancer.

17.
Anal Bioanal Chem ; 410(7): 2001-2009, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29362851

RESUMO

The development of simple methods with high sensitivity and selectivity to differentiate toxic aromatic thiols (thiophenols) from aliphatic thiols (cysteine, homocysteine, and glutathione) and hydrogen sulfide (H2S) is of great significance. Herein, we report on the fabrication of a novel near-infrared (NIR) fluorescent sensor for rapid and highly selective detection of thiophenols through the photoinduced electron transfer (PET) mechanism. In the presence of the thiophenols, an obvious enhancement of NIR fluorescence at 658 nm could be visualized with the aid of nucleophilic aromatic substitution (SNAr) reaction. The sensor displays large Stokes shift (~ 227 nm), fast response time (< 30 s), high sensitivity (~ 8.3 nM), and good biocompatibility. Moreover, the as-prepared sensor possesses an excellent anti-interference feature even when other possible interferents exist (aliphatic thiols and H2S) and has been successfully utilized for thiophenol detection in both water samples and living cells. Graphical abstract Illustration of the sensor for thiophenol imaging in living cells.


Assuntos
Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Fenóis/análise , Espectrometria de Fluorescência/métodos , Compostos de Sulfidrila/análise , Poluentes Químicos da Água/análise , Transporte de Elétrons , Monitoramento Ambiental/economia , Monitoramento Ambiental/métodos , Fluorescência , Células HeLa , Humanos , Microscopia de Fluorescência/economia , Imagem Óptica/economia , Imagem Óptica/métodos , Espectrometria de Fluorescência/economia
18.
Oncol Rep ; 39(2): 611-618, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29207183

RESUMO

Cisplatin resistance is a major cause of chemotherapeutic failure in lung cancer patients. Unraveling the molecular mechanisms underlying cisplatin (CDDP) resistance is important in lung cancer therapeutics. To explore the role of Src homology phosphotyrosyl phosphatase 2 (SHP2) in the development of cisplatin resistance in lung cancer and the underlying mechanism, we established stable SHP2­overexpressing H446­SHP2-OE cells and SHP2­knockdown H446/CDDP­SHP2-shRNA cells derived from H446 and H446/CDDP (cisplatin-resistant) parental lung cancer cells. The cell viability and apoptosis of these cells exposed to CDDP were observed to determine the influence of SHP2 on drug resistance. In addition, the expression of SHP2, Ras, Akt1 and survivin was assessed by western blot analysis after the lung cancer cells were challenged by cisplatin or silenced by Ras siRNA. As a result, the 50% inhibitory concentration (IC50) of the H446-SHP2-OE cells exposed to CDDP increased from 1.01 to 1.218 µg/ml vs. the H446-control vector cells. The percentage of apoptotic cells was smaller in the H446-SHP2-OE cells vs. the H446-control vector cells after cisplatin challenge. In addition, the expression of Ras, pAkt1, Akt1 and survivin in the H446/CDDP cells was significantly increased vs. the H446 cells. Furthermore, the IC50 of the H446/CDDP­SHP2­shRNA cells exposed to CDDP decreased from 11.92 to 4.382 µg/ml vs. the H446/CDDP­mock cells. There were significantly more apoptotic cells among the H446/CDDP­SHP2-shRNA cells vs. the H446/CDDP-mock cells exposed to cisplatin. A smaller percentage of the H446/CDDP-SHP2-shRNA cells vs. the H446/CDDP­mock cells was observed. In addition, the expression of pAkt1 and survivin in the H446, H446/CDDP and H446/CDDP-mock cells was increased upon exposure to cisplatin however, a corresponding change was not observed in the H446/CDDP-SHP2-shRNA cells. Upon Ras RNA silencing with cisplatin, the Ras expression was significantly decreased in the H446, H446-SHP2-OE and H446/CDDP cells. However, upon Ras RNA interference, the SHP2 expression was not significantly changed, but the expression of Akt1, pAkt1 and survivin was significantly increased in the H446-SHP2-OE and H446/CDDP cells. In conclusion, SHP2 is a new cisplatin resistance-related phosphatase in lung cancer, which inhibits apoptosis by activating the Ras/PI3K/Akt1/survivin signaling pathway.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Survivina , Proteínas ras/metabolismo
19.
Apoptosis ; 22(9): 1157-1168, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28677094

RESUMO

Curcumin, a dietary supplement or herbal medicine from Curcuma longa, has shown antitumor activity in different cancer cell lines and clinical trials. CA916798, a novel protein, is overexpressed in multidrug-resistant tumor cells. This study aimed to assess the effects of curcumin on regulating chemosensitivity in cisplatin-resistant non-small cell lung cancer (NSCLC) cells in vitro and to explore the underlying molecular mechanisms. Human cisplatin-sensitive A549 and cisplatin-resistant A549/CDDP lung adenocarcinoma cells were treated with curcumin to assess cell viability and gene modulations using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting. CA916798 shRNA and point mutations were used to assess the CA916798 functions and phosphorylation sites. Bisdemethoxycurcumin sensitized cisplatin-resistant lung cancer cells to various chemotherapeutic agents, including cisplatin. Bisdemethoxycurcumin reduced the levels of CA916798 mRNA and protein in A549 and A549/CDDP cells, while it also suppressed phosphatidylinositol-3-kinase (PI3K)/AKT signaling. CA916798, as a downstream gene, interacted with AKT after bisdemethoxycurcumin treatment in A549 and A549/CDDP cells. Moreover, A549/CDDP cells expressing the point-mutated CA916798-S20D protein were more resistant to cisplatin and bisdemethoxycurcumin, whereas tumor cells expressing CA916798-S20A, CA916798-S31A, CA916798-S60A, CA916798-S93A, or CA916798-T97A (different sites of amino acid phosphorylation) showed similar sensitivity or resistance to cisplatin and bisdemethoxycurcumin, compared with the control cells. Bisdemethoxycurcumin is able to sensitize cisplatin-resistant NSCLC cells to chemotherapeutic agents by inhibition of CA916798 and PI3K/AKT activities. Moreover, phosphorylation of CA916798 at the S20 residue plays a critical role in mediating bisdemethoxycurcumin antitumor activity.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Curcumina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
20.
Hepatology ; 65(4): 1249-1266, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27981602

RESUMO

Prohibitin 1 (PHB1) is best known as a mitochondrial chaperone, and its role in cancer is conflicting. Mice lacking methionine adenosyltransferase α1 (MATα1) have lower PHB1 expression, and we reported that c-MYC interacts directly with both proteins. Furthermore, c-MYC and MATα1 exert opposing effects on liver cancer growth, prompting us to examine the interplay between PHB1, MATα1, and c-MYC and PHB1's role in liver tumorigenesis. We found that PHB1 is highly expressed in normal hepatocytes and bile duct epithelial cells and down-regulated in most human hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). In HCC and CCA cells, PHB1 expression correlates inversely with growth. PHB1 and MAT1A positively regulate each other's expression, whereas PHB1 negatively regulates the expression of c-MYC, MAFG, and c-MAF. Both PHB1 and MATα1 heterodimerize with MAX, bind to the E-box element, and repress E-box promoter activity. PHB1 promoter contains a repressive E-box element and is occupied mainly by MAX, MNT, and MATα1 in nonmalignant cholangiocytes and noncancerous tissues that switched to c-MYC, c-MAF, and MAFG in cancer cells and human HCC/CCA. All 8-month-old liver-specific Phb1 knockout mice developed HCC, and one developed CCA. Five-month-old Phb1 heterozygotes, but not Phb1 flox mice, developed aberrant bile duct proliferation; and one developed CCA 3.5 months after left and median bile duct ligation. Phb1 heterozygotes had a more profound fall in the expression of glutathione synthetic enzymes and higher hepatic oxidative stress following left and median bile duct ligation. CONCLUSION: We have identified that PHB1, down-regulated in most human HCC and CCA, heterodimerizes with MAX to repress the E-box and positively regulates MAT1A while suppressing c-MYC, MAFG, and c-MAF expression; in mice, reduced PHB1 expression predisposes to the development of cholestasis-induced CCA. (Hepatology 2017;65:1249-1266).


Assuntos
Neoplasias dos Ductos Biliares/patologia , Carcinoma Hepatocelular/patologia , Colangiocarcinoma/patologia , Neoplasias Hepáticas/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Animais , Neoplasias dos Ductos Biliares/metabolismo , Biópsia por Agulha , Western Blotting , Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Colangiocarcinoma/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Elementos E-Box/genética , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase/métodos , Proibitinas , RNA Mensageiro/análise , Distribuição Aleatória , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA