Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 10900, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035355

RESUMO

Proteogenomics is an increasingly common method for species identification as it allows for rapid and inexpensive interrogation of an unknown organism's proteome-even when the proteome is partially degraded. The proteomic method typically uses tandem mass spectrometry to survey all peptides detectable in a sample that frequently contains hundreds or thousands of proteins. Species identification is based on detection of a small numbers of species-specific peptides. Genetic analysis of proteins by mass spectrometry, however, is a developing field, and the bone proteome, typically consisting of only two proteins, pushes the limits of this technology. Nearly 20% of highly confident spectra from modern human bone samples identify non-human species when searched against a vertebrate database-as would be necessary with a fragment of unknown bone. These non-human peptides are often the result of current limitations in mass spectrometry or algorithm interpretation errors. Consequently, it is difficult to know if a "species-specific" peptide used to identify a sample is actually present in that sample. Here we evaluate the causes of peptide sequence errors and propose an unbiased, probabilistic approach to determine the likelihood that a species is correctly identified from bone without relying on species-specific peptides.


Assuntos
Osso e Ossos/metabolismo , Colágeno/metabolismo , Proteômica/métodos , Algoritmos , Animais , Teorema de Bayes , Bases de Dados de Proteínas , Humanos , Peptídeos/análise , Espectrometria de Massas em Tandem
2.
Int J Legal Med ; 127(6): 1065-77, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23525663

RESUMO

Standard methods for body fluid identification typically rely on detection of the functional proteins specific to or enriched in them, such as hemoglobin in blood, alkaline phosphatase and PSA in semen, or α-amylase in saliva. While these markers can be relatively specific, the multiple methods used to identify them frequently rely on nonspecific chemical, enzymatic, or antibody reactions that usually require the structural integrity of the markers and are not confirmatory because other proteins or substances can also give positive test results. Recent advances in proteomics and mass spectrometry offer the ability to simultaneously detect multiple body fluid protein markers in a single, confirmatory test. Here, multiple markers for blood, saliva, and semen are identified by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Data demonstrate the ability to detect these body fluids at nanoliter to subnanoliter levels and to distinguish mixtures. Protein stability of mock samples assayed after 16 months showed no diminution of signal. Because multiple peptides from multiple protein markers are detected and effectively sequenced by MALDI MS/MS, the assay is confirmatory. As mass spectrometry detects whatever peptides are present in a sample, no a priori knowledge of an unknown stain is necessary to perform the test.


Assuntos
Líquidos Corporais/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Humanos , Nanotecnologia , Peptídeos/análise , Proteômica/classificação , Proteômica/métodos , Sensibilidade e Especificidade
3.
Mol Cell Proteomics ; 11(10): 1024-35, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22822186

RESUMO

Menstruation is the expulsion of the endometrial lining of the uterus following a nearly month long preparation for embryo implantation and pregnancy. Increasingly, the health of the endometrium is being recognized as a critical factor in female fertility, and proteomes and transcriptomes from endometrial biopsies at different stages of the menstrual cycle have been studied for both diagnostic and therapeutic purposes (1 Kao, L. C., et al. 2003 Endocrinology 144, 2870-2881; Strowitzki, Tet al. 2006 Hum. Reprod. Update 12, 617-630; DeSouza, L., et al. 2005 Proteomics 5, 270-281). Disorders of the uterus ranging from benign to malignant tumors, as well as endometriosis, can cause abnormal menstrual bleeding and are frequently diagnosed through endometrial biopsy (Strowitzki, Tet al. 2006 Hum. Reprod. Update 12, 617-630; Ferenczy, A. 2003 Maturitas 45, 1-14). Yet the proteome of menstrual blood, an easily available noninvasive source of endometrial tissue, has yet to be examined for possible causes or diagnoses of infertility or endometrial pathology. This study employed five different methods to define the menstrual blood proteome. A total of 1061 proteins were identified, 361 were found by at least two methods and 678 were identified by at least two peptides. When the menstrual blood proteome was compared with those of circulating blood (1774 proteins) and vaginal fluid (823 proteins), 385 proteins were found unique to menstrual blood. Gene ontology analysis and evaluation of these specific menstrual blood proteins identified pathways consistent with the processes of the normal endometrial cycle. Several of the proteins unique to menstrual blood suggest that extramedullary uterine hematopoiesis or parenchymal hemoglobin synthesis may be occurring in late endometrial tissue. The establishment of a normal menstrual blood proteome is necessary for the evaluation of its usefulness as a diagnostic tool for infertility and uterine pathologies. Identification of unique menstrual blood proteins should aid the forensic community in distinguishing menstrual blood from circulating blood.


Assuntos
Líquidos Corporais/química , Endométrio/metabolismo , Ciclo Menstrual/sangue , Menstruação/sangue , Proteoma/análise , Adulto , Cromatografia Líquida de Alta Pressão , Endométrio/química , Feminino , Hematopoese Extramedular/fisiologia , Hemoglobinas/biossíntese , Humanos , Pessoa de Meia-Idade , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vagina/química , Vagina/metabolismo
4.
J Biol Chem ; 285(26): 20252-61, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20406818

RESUMO

RIG-I (retinoic acid-inducible gene I) and TRIM25 (tripartite motif protein 25) have emerged as key regulatory factors to induce interferon (IFN)-mediated innate immune responses to limit viral replication. Upon recognition of viral RNA, TRIM25 E3 ligase binds the first caspase recruitment domain (CARD) of RIG-I and subsequently induces lysine 172 ubiquitination of the second CARD of RIG-I, which is essential for the interaction with downstream MAVS/IPS-1/CARDIF/VISA and, thereby, IFN-beta mRNA production. Although ubiquitination has emerged as a major factor involved in RIG-I activation, the potential contribution of other post-translational modifications, such as phosphorylation, to the regulation of RIG-I activity has not been addressed. Here, we report the identification of serine 8 phosphorylation at the first CARD of RIG-I as a negative regulatory mechanism of RIG-I-mediated IFN-beta production. Immunoblot analysis with a phosphospecific antibody showed that RIG-I serine 8 phosphorylation steady-state levels were decreased upon stimulation of cells with IFN-beta or virus infection. Substitution of serine 8 in the CARD RIG-I functional domain with phosphomimetic aspartate or glutamate results in decreased TRIM25 binding, RIG-I ubiquitination, MAVS binding, and downstream signaling. Finally, sequence comparison reveals that only primate species carry serine 8, whereas other animal species carry an asparagine, indicating that serine 8 phosphorylation may represent a primate-specific regulation of RIG-I activation. Collectively, these data suggest that the phosphorylation of RIG-I serine 8 operates as a negative switch of RIG-I activation by suppressing TRIM25 interaction, further underscoring the importance of RIG-I and TRIM25 connection in type I IFN signal transduction.


Assuntos
RNA Helicases DEAD-box/metabolismo , Interferon beta/metabolismo , Serina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteína DEAD-box 58 , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Interferon beta/farmacologia , Microscopia Confocal , Modelos Moleculares , Mutação , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Imunológicos , Serina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Transfecção , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Células Vero
5.
J Biol Chem ; 284(49): 34231-43, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19776016

RESUMO

Previously, we have shown that statistical synergism between amino acid variants in thyroglobulin (Tg) and specific HLA-DR3 pocket sequence signatures conferred a high risk for autoimmune thyroid disease (AITD). Therefore, we hypothesized that this statistical synergism mirrors a biochemical interaction between Tg peptides and HLA-DR3, which is key to the pathoetiology of AITD. To test this hypothesis, we designed a recombinant HLA-DR3 expression system that was used to express HLA-DR molecules harboring either AITD susceptibility or resistance DR pocket sequences. Next, we biochemically generated the potential Tg peptidic repertoire available to HLA-DR3 by separately treating 20 purified human thyroglobulin samples with cathepsins B, D, or L, lysosomal proteases that are involved in antigen processing and thyroid biology. Sequences of the cathepsin-generated peptides were then determined by matrix-assisted laser desorption ionization time-of-flight-mass spectroscopy, and algorithmic means were employed to identify putative AITD-susceptible HLA-DR3 binders. From four predicted peptides, we identified two novel peptides that bound strongly and specifically to both recombinant AITD-susceptible HLA-DR3 protein and HLA-DR3 molecules expressed on stably transfected cells. Intriguingly, the HLA-DR3-binding peptides we identified had a marked preference for the AITD-susceptibility DR signatures and not to those signatures that were AITD-protective. Structural analyses demonstrated the profound influence that the pocket signatures have on the interaction of HLA-DR molecules with Tg peptides. Our study suggests that interactions between Tg and discrete HLA-DR pocket signatures contribute to the initiation of AITD.


Assuntos
Regulação da Expressão Gênica , Antígeno HLA-DR3/metabolismo , Proteínas Recombinantes/química , Algoritmos , Animais , Doenças Autoimunes , Catepsinas/química , Linhagem Celular , Células HeLa , Antígenos de Histocompatibilidade Classe II , Humanos , Peptídeos/química , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tireoglobulina/química , Doenças da Glândula Tireoide/imunologia , Glândula Tireoide/metabolismo
6.
Pflugers Arch ; 458(2): 303-14, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19151997

RESUMO

Phosphorylation of the Kir3 channel by cAMP-dependent protein kinase (PKA) potentiates activity and strengthens channel-PIP(2) interactions, whereas phosphorylation by protein kinase C (PKC) exerts the opposite effects (Keselman et al., Channels 1:113-123, 2007; Lopes et al., Channels 1:124-134, 2007). Unequivocal identification of phosphorylated residues in ion channel proteins has been difficult, but recent advances in mass spectrometry techniques have allowed precise identification of phosphorylation sites (Park et al., Science 313:976-979, 2006). In this study, we utilized mass spectrometry to identify phosphorylation sites within the Kir3.1 channel subunit. We focused on the Kir3.1 C-terminal cytosolic domain that has been reported to be regulated by several modulators. In vitro phosphorylation by PKA exhibited a convincing signal upon treatment with a phosphoprotein stain. The phosphorylated C terminus was subjected to mass spectrometric analysis using matrix-assisted lased desorption/ionization-time of flight mass spectroscopy (MS). Peptides whose mass underwent a shift corresponding to addition of a phosphate group were then subjected to tandem MS (MS/MS) in order to confirm the modification and determine its precise location. Using this approach, we identified S385 as an in vitro phosphorylation site. Mutation of this residue to alanine resulted in a reduced sensitivity of Kir3.1* currents to H89 and Forskolin, confirming an in vivo role for this novel site of the Kir3.1 channel subunit in its regulation by PKA.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Animais , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Humanos , Oócitos/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Serina/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Xenopus laevis
7.
J Am Chem Soc ; 130(26): 8251-60, 2008 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-18528979

RESUMO

Protein tyrosine phosphatases (PTPs) play key roles in the regulation of normal and pathological processes ranging from cell proliferation, differentiation, metabolism, and survival to many human diseases including cancer and diabetes. Functional studies of PTP can be greatly facilitated by small molecule probes that covalently label the active site of a PTP through an activity-dependent chemical reaction. In this article, we characterize phenyl vinyl sulfonate (PVSN) and phenyl vinyl sulfone (PVS) as a new class of mechanism-based PTP probes. PVSN and PVS inactivate a broad range of PTPs in a time- and concentration-dependent fashion. The PVSN- and PVS-mediated PTP inactivation is active site-directed and irreversible, resulting from a Michael addition of the active-site Cys Sgamma onto the terminal carbon of the vinyl group. Structural and mechanistic analyses reveal the molecular basis for the preference of PVSN/PVS toward the PTPs, which lies in the ability of PVSN and PVS to engage the conserved structural and catalytic machinery of the PTP active site. In contrast to early alpha-bromobenzyl phosphonate-based probes, PVSN and PVS are resistant to solvolysis and are cell-permeable and thus hold promise for in vivo applications. Collectively, these properties bode well for the development of aryl vinyl sulfonate/sulfone-based PTP probes to interrogate PTP activity in complex proteomes.


Assuntos
Sulfonatos de Arila , Técnicas de Sonda Molecular , Proteínas Tirosina Fosfatases/análise , Sulfonas
8.
J Proteome Res ; 5(8): 1898-905, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16889411

RESUMO

Protein tyrosine phosphatases (PTPs) consist of a large family of enzymes known to play important roles in controlling virtually all aspects of cellular processes. However, assigning functional significance of PTPs in normal physiology and in diseases remains a major challenge in cell signaling. Since the function of a PTP is directly associated with its intrinsic activity, which is subject to post-translational regulation, new tools are needed to monitor the dynamic activities of PTPs, rather than mere abundance, on a global scale within the physiologically relevant environment of cells. To meet this objective, we report the synthesis and characterization of two rhodamine-conjugated probes that covalently label the active site of the PTPs in an activity-dependent manner, thus providing a direct readout of PTP activity and superior sensitivity, robustness, and quantifiability to previously reported biotinylated probes. We present evidence that the fluorescent probes can be used to identify new PTP markers and targets for potential diagnosis and treatment of human diseases. We also show that the fluorescent probes are capable of monitoring H(2)O(2)-mediated PTP inactivation, which should facilitate the study of regulated H(2)O(2) production as a new tier of control over tyrosine phosphorylation-dependent signal transduction. The ability to profile the entire PTP family on the basis of changes in their activity is expected to yield new functional insights into pathways regulated by PTPs and contribute to the discovery of PTPs as novel therapeutic targets.


Assuntos
Corantes Fluorescentes/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Biotina/química , Biotina/metabolismo , Linhagem Celular Tumoral , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Peróxido de Hidrogênio/metabolismo , Estrutura Molecular , Oxidantes/metabolismo , Rodaminas/química , Rodaminas/metabolismo
9.
Biochemistry ; 44(36): 12009-21, 2005 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-16142898

RESUMO

The PRL (phosphatase of regenerating liver) phosphatases constitute a novel class of small, prenylated phosphatases that are implicated in promoting cell growth, differentiation, and tumor invasion, and represent attractive targets for anticancer therapy. Here we describe the crystal structures of native PRL-1 as well as the catalytically inactive mutant PRL-1/C104S in complex with sulfate. PRL-1 exists as a trimer in the crystalline state, burying 1140 A2 of accessible surface area at each dimer interface. Trimerization creates a large, bipartite membrane-binding surface in which the exposed C-terminal basic residues could cooperate with the adjacent prenylation group to anchor PRL-1 on the acidic inner membrane. Structural and kinetic analyses place PRL-1 in the family of dual specificity phopsphatases with closest structural similarity to the Cdc14 phosphatase and provide a molecular basis for catalytic activation of the PRL phosphatases. Finally, native PRL-1 is crystallized in an oxidized form in which a disulfide is formed between the active site Cys104 and a neighboring residue Cys49, which blocks both substrate binding and catalysis. Biochemical studies in solution and in the cell support a potential regulatory role of this intramolecular disulfide bond formation in response to reactive oxygen species such as H2O2.


Assuntos
Diferenciação Celular , Invasividade Neoplásica/patologia , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Proliferação de Células , Cristalografia por Raios X , Dissulfetos/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA