Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0303692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875291

RESUMO

Electrical signaling plays a crucial role in the cellular response to tissue injury in wound healing and an external electric field (EF) may expedite the healing process. Here, we have developed a standalone, wearable, and programmable electronic device to administer a well-controlled exogenous EF, aiming to accelerate wound healing in an in vivo mouse model to provide pre-clinical evidence. We monitored the healing process by assessing the re-epithelization rate and the ratio of M1/M2 macrophage phenotypes through histology staining. Following three days of treatment, the M1/M2 macrophage ratio decreased by 30.6% and the re-epithelization in the EF-treated wounds trended towards a non-statically significant 24.2% increase compared to the control. These findings provide point towards the effectiveness of the device in shortening the inflammatory phase by promoting reparative macrophages over inflammatory macrophages, and in speeding up re-epithelialization. Our wearable device supports the rationale for the application of programmed EFs for wound management in vivo and provides an exciting basis for further development of our technology based on the modulation of macrophages and inflammation to better wound healing.


Assuntos
Modelos Animais de Doenças , Inflamação , Macrófagos , Cicatrização , Animais , Camundongos , Inflamação/terapia , Inflamação/patologia , Masculino , Dispositivos Eletrônicos Vestíveis
2.
Sci Rep ; 13(1): 16885, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803028

RESUMO

The peripheral nerves (PNs) innervate the dermis and epidermis, and are suggested to play an important role in wound healing. Several methods to quantify skin innervation during wound healing have been reported. Those usually require multiple observers, are complex and labor-intensive, and the noise/background associated with the immunohistochemistry (IHC) images could cause quantification errors/user bias. In this study, we employed the state-of-the-art deep neural network, Denoising Convolutional Neural Network (DnCNN), to perform pre-processing and effectively reduce the noise in the IHC images. Additionally, we utilized an automated image analysis tool, assisted by Matlab, to accurately determine the extent of skin innervation during various stages of wound healing. The 8 mm wound is generated using a circular biopsy punch in the wild-type mouse. Skin samples were collected on days 3, 7, 10 and 15, and sections from paraffin-embedded tissues were stained against pan-neuronal marker- protein-gene-product 9.5 (PGP 9.5) antibody. On day 3 and day 7, negligible nerve fibers were present throughout the wound with few only on the lateral boundaries of the wound. On day 10, a slight increase in nerve fiber density appeared, which significantly increased on day 15. Importantly, we found a positive correlation (R2 = 0.926) between nerve fiber density and re-epithelization, suggesting an association between re-innervation and re-epithelization. These results established a quantitative time course of re-innervation in wound healing, and the automated image analysis method offers a novel and useful tool to facilitate the quantification of innervation in the skin and other tissues.


Assuntos
Aprendizado Profundo , Camundongos , Animais , Cicatrização/fisiologia , Pele/patologia , Nervos Periféricos , Fibras Nervosas/patologia
3.
Res Sq ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461461

RESUMO

The peripheral nerves (PNs) innervate the dermis and epidermis, which have been suggested to play an important role in wound healing. Several methods to quantify skin innervation during wound healing have been reported. Those usually require multiple observers, are complex and labor-intensive, and noise/background associated with the Immunohistochemistry (IHC) images could cause quantification errors/user bias. In this study, we employed the state-of-the-art deep neural network, DnCNN, to perform pre-processing and effectively reduce the noise in the IHC images. Additionally, we utilized an automated image analysis tool, assisted by Matlab, to accurately determine the extent of skin innervation during various stages of wound healing. The 8mm wound is generated using a circular biopsy punch in the wild-type mouse. Skin samples were collected on days 3,7,10 and 15, and sections from paraffin-embedded tissues were stained against pan-neuronal marker- protein-gene-product 9.5 (PGP 9.5) antibody. On day 3 and day 7, negligible nerve fibers were present throughout the wound with few only on the lateral boundaries of the wound. On day 10, a slight increase in nerve fiber density appeared, which significantly increased on day 15. Importantly we found a positive correlation (R 2 = 0.933) between nerve fiber density and re-epithelization, suggesting an association between re-innervation and re-epithelization. These results established a quantitative time course of re-innervation in wound healing, and the automated image analysis method offers a novel and useful tool to facilitate the quantification of innervation in the skin and other tissues.

4.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398108

RESUMO

The peripheral nerves (PNs) innervate the dermis and epidermis, which have been suggested to play an important role in wound healing. Several methods to quantify skin innervation during wound healing have been reported. Those usually require multiple observers, are complex and labor-intensive, and noise/background associated with the Immunohistochemistry (IHC) images could cause quantification errors/user bias. In this study, we employed the state-of-the-art deep neural network, DnCNN, to perform pre-processing and effectively reduce the noise in the IHC images. Additionally, we utilized an automated image analysis tool, assisted by Matlab, to accurately determine the extent of skin innervation during various stages of wound healing. The 8mm wound is generated using a circular biopsy punch in the wild-type mouse. Skin samples were collected on days 3,7,10 and 15, and sections from paraffin-embedded tissues were stained against pan-neuronal marker- protein-gene-product 9.5 (PGP 9.5) antibody. On day 3 and day 7, negligible nerve fibers were present throughout the wound with few only on the lateral boundaries of the wound. On day 10, a slight increase in nerve fiber density appeared, which significantly increased on day 15. Importantly we found a positive correlation (R- 2 = 0.933) between nerve fiber density and re-epithelization, suggesting an association between re-innervation and re-epithelization. These results established a quantitative time course of re-innervation in wound healing, and the automated image analysis method offers a novel and useful tool to facilitate the quantification of innervation in the skin and other tissues.

5.
J Biomed Mater Res B Appl Biomater ; 110(7): 1615-1623, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35099112

RESUMO

A combination product of human mesenchymal stem/stromal cells (MSCs) embedded in an extracellular matrix scaffold and preconditioned with hypoxia and the beta-adrenergic receptor antagonist, timolol, combined with sustained timolol application post implantation, has shown promising results for improving wound healing in a diabetic mouse model. In the present study, we extend those findings to the more translatable large animal porcine wound model and show that the combined treatment promotes wound reepithelialization in these excisional wounds by 40.2% and increases the CD31 immunostaining marker of angiogenesis compared with the matrix control, while maintaining an accumulated timolol plasma concentration below the clinically safe level of 0.3 ng/mL after the 15-day course of topical application. Human GAPDH was not elevated in the day 15 wounds treated with MSC-containing device relative to wounds treated with matrix alone, indicating that the xenografted human MSCs in the treatment do not persist in these immune-competent animals after 15 days. The work demonstrates the efficacy and safety of the combined treatment for improving healing in the clinically relevant porcine wound model.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Modelos Animais de Doenças , Matriz Extracelular , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Suínos , Timolol/farmacologia , Cicatrização
6.
Am J Clin Dermatol ; 22(1): 89-99, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33237496

RESUMO

Ophthalmic timolol solution is increasingly being repurposed as a topical therapeutic for a variety of dermatologic diseases, including pyogenic granulomas, infantile hemangiomas, and chronic wounds. There are no published guidelines or protocols for use in these indications in adults, and the dermatologic community may not be familiar with adverse events that have been extensively documented relating to its ophthalmic use. We review the evidence available relating to adverse events to topical timolol use to evaluate its safety in dermatologic applications and to alert clinicians to screening and monitoring that is needed when repurposing this drug for dermatologic use. The majority of serious adverse events associated with ophthalmic timolol were reported in the first 7 years of use, between 1978 and 1985, of which most common were cardiovascular and respiratory events, but also included 32 deaths. The available evidence suggests that ophthalmic timolol safety profiling may have been incomplete prior to widespread use. Recent clinical trials for dermatologic indications have focused on documenting efficacy and have not had rigorous monitoring for potential adverse events. Topical timolol may be safe and effective for the treatment of various dermatologic conditions in patients whose medical histories have been carefully reviewed for evidence of pre-existing cardiac or pulmonary disease and are monitored for potential adverse events. Despite the wide use of timolol in ophthalmologic practice, safe dermatologic repurposing requires recognition of the potential for facilitated systemic absorption though the skin and appreciation of its history of adverse events.


Assuntos
Antagonistas Adrenérgicos beta/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Reposicionamento de Medicamentos/história , Hemangioma/tratamento farmacológico , Transtornos Respiratórios/mortalidade , Timolol/efeitos adversos , Absorção Fisiológica , Administração Cutânea , Antagonistas Adrenérgicos beta/administração & dosagem , Antagonistas Adrenérgicos beta/história , Doenças Cardiovasculares/mortalidade , História do Século XX , Humanos , Soluções Oftálmicas/administração & dosagem , Soluções Oftálmicas/efeitos adversos , Soluções Oftálmicas/história , Transtornos Respiratórios/induzido quimicamente , Pele/metabolismo , Timolol/administração & dosagem , Timolol/história
7.
Stem Cells Transl Med ; 9(11): 1353-1364, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32720751

RESUMO

Diabetic foot ulcers are a major health care concern with limited effective therapies. Mesenchymal stem cell (MSC)-based therapies are promising treatment options due to their beneficial effects of immunomodulation, angiogenesis, and other paracrine effects. We investigated whether a bioengineered scaffold device containing hypoxia-preconditioned, allogeneic human MSCs combined with the beta-adrenergic antagonist timolol could improve impaired wound healing in diabetic mice. Different iterations were tested to optimize the primary wound outcome, which was percent of wound epithelialization. MSC preconditioned in 1 µM timolol at 1% oxygen (hypoxia) seeded at a density of 2.5 × 105 cells/cm2 on Integra Matrix Wound Scaffold (MSC/T/H/S) applied to wounds and combined with daily topical timolol applications at 2.9 mM resulted in optimal wound epithelialization 65.6% (24.9% ± 13.0% with MSC/T/H/S vs 41.2% ± 20.1%, in control). Systemic absorption of timolol was below the HPLC limit of quantification, suggesting that with the 7-day treatment, accumulative steady-state timolol concentration is minimal. In the early inflammation stage of healing, the MSC/T/H/S treatment increased CCL2 expression, lowered the pro-inflammatory cytokines IL-1B and IL6 levels, decreased neutrophils by 44.8%, and shifted the macrophage ratio of M2/M1 to 1.9 in the wound, demonstrating an anti-inflammatory benefit. Importantly, expression of the endothelial marker CD31 was increased by 2.5-fold with this treatment. Overall, the combination device successfully improved wound healing and reduced the wound inflammatory response in the diabetic mouse model, suggesting that it could be translated to a therapy for patients with diabetic chronic wounds.


Assuntos
Diabetes Mellitus Experimental/complicações , Imunofenotipagem/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Timolol/uso terapêutico , Cicatrização/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Timolol/farmacologia
8.
Radiat Res ; 189(4): 441-445, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29373090

RESUMO

In a scenario involving a nuclear detonation during war or a terrorist attack, acute radiation exposure combined with thermal and blast effects results in severe skin injury. Although the cutaneous injury in such a scenario may not be lethal, it may lead to inflammation, delayed wound healing and loss of the skin barrier, resulting in an increased risk of infection. In this study, we tested the potential use of timolol, a beta-adrenergic receptor antagonist, to improve epidermal wound closure after combined burn and radiation injury using an ex vivo human skin culture model. Daily application of 10 µ M timolol after combined injury (burn and 10 Gy ex vivo irradiation) increased wound epithelialization by 5-20%. In addition, exposure to 10 Gy significantly suppressed epidermal keratinocyte proliferation by 46% at 48 h postirradiation. Similar to what has been observed in a thermal burn injury, the enzyme phenylethanolamine N-methyltransferase (PNMT), which generates epinephrine, was elevated in the combined thermal burn and radiation wounds. This likely resulted in elevated tissue levels of this catecholamine, which has been shown to delay healing. Thus, with the addition of timolol to the wound to block the binding of locally generated epinephrine to the beta-adrenergic receptor, healing is improved. This work suggests that by antagonizing local epinephrine action within the wound, a beta-adrenergic receptor antagonist such as timolol may be a useful adjunctive treatment to improve healing in the combined burn and radiation injury.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Queimaduras/fisiopatologia , Lesões por Radiação/fisiopatologia , Receptores Adrenérgicos beta 2/metabolismo , Timolol/farmacologia , Cicatrização/efeitos dos fármacos , Queimaduras/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Lesões por Radiação/patologia , Cicatrização/efeitos da radiação
9.
J Vis Exp ; (94)2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25549020

RESUMO

The physiological electric field serves specific biological functions, such as directing cell migration in embryo development, neuronal outgrowth and epithelial wound healing. Applying a direct current electric field to cultured cells in vitro induces directional cell migration, or galvanotaxis. The 2-dimensional galvanotaxis method we demonstrate here is modified with custom-made poly(vinyl chloride) (PVC) chambers, glass surface, platinum electrodes and the use of a motorized stage on which the cells are imaged. The PVC chambers and platinum electrodes exhibit low cytotoxicity and are affordable and re-useable. The glass surface and the motorized microscope stage improve quality of images and allow possible modifications to the glass surface and treatments to the cells. We filmed the galvanotaxis of two non-tumorigenic, SV40-immortalized prostate cell lines, pRNS-1-1 and PNT2. These two cell lines show similar migration speeds and both migrate toward the cathode, but they do show a different degree of directionality in galvanotaxis. The results obtained via this protocol suggest that the pRNS-1-1 and the PNT2 cell lines may have different intrinsic features that govern their directional migratory responses.


Assuntos
Ensaios de Migração Celular/instrumentação , Movimento Celular , Próstata/citologia , Células Cultivadas , Eletricidade , Humanos , Queratinócitos/citologia , Masculino , Cicatrização/fisiologia
10.
Dev Biol ; 260(1): 245-59, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12885567

RESUMO

In most animals, successful segregation of female meiotic chromosomes involves sequential associations of the meiosis I and meiosis II spindles with the cell cortex so that extra chromosomes can be deposited in polar bodies. The resulting reduction in chromosome number is essential to prevent the generation of polyploid embryos after fertilization. Using time-lapse imaging of living Caenorhabditis elegans oocytes containing fluorescently labeled chromosomes or microtubules, we have characterized the movements of meiotic spindles relative to the cell cortex. Spindle assembly initiated several microns from the cortex. After formation of a bipolar structure, the meiosis I spindle translocated to the cortex. When microtubules were partially depleted, translocation of the bivalent chromosomes to the cortex was blocked without affecting cell cycle timing. In oocytes depleted of the microtubule-severing enzyme, MEI-1, spindles moved to the cortex, but association with the cortex was unstable. Unlike translocation of wild-type spindles, movement of MEI-1-depleted spindles was dependent on FZY-1/CDC20, a regulator of the metaphase/anaphase transition. We observed a microtubule and FZY-1/CDC20-dependent circular cytoplasmic streaming in wild-type and mei-1 mutant embryos during meiosis. We propose that, in mei-1 mutant oocytes, this cytoplasmic streaming is sufficient to drive the spindle into the cortex. Cytoplasmic streaming is not the normal spindle translocation mechanism because translocation occurred in the absence of cytoplasmic streaming in embryos depleted of either the orbit/CLASP homolog, CLS-2, or FZY-1. These results indicate a direct role of microtubule severing in translocation of the meiotic spindle to the cortex.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Meiose/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Oócitos/fisiologia , Proteínas de Saccharomyces cerevisiae , Fuso Acromático/fisiologia , Adenosina Trifosfatases/genética , Animais , Transporte Biológico Ativo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação ao Cálcio/deficiência , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Cromossomos/metabolismo , Citoplasma/metabolismo , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes de Helmintos , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Katanina , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Oócitos/citologia , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA