Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Chempluschem ; : e202400119, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619207

RESUMO

Down-regulator of transcription 1 (DR1) is considered as a biomarker of hashimoto's thyroiditis (HT), which is a risk factor for thyroid cancer. Here, a label-free electrochemical biosensor for DR1 detection was constructed based on polyamidoamine (PAMAM) polymer and the nanocomposite (WO3@AuNPs) composed of tungsten trioxide (WO3) and gold nanoparticles (AuNPs). WO3@AuNPs was obtained by combining monolayer WO3 nanosheets, which has high conductivity, and AuNPs. The modification of WO3@AuNPs can not only increase the conductivity of the electrode but also provide more active sites for signaling units, thus greatly improve the sensitivity of the sensor. The polymer PAMAM is biocompatible and non-immunogenic, and its end functional group can bind to the target molecules, providing them with more binding sites and thus improving the sensitivity of the sensor. Under optimal conditions, the label-free biosensor showed a good linear relationship between the logarithm of DR1 concentration and the impedance in the range of 10 fg ⋅ mL-1 to 100 ng ⋅ mL-1, with a detection limit as low as 0.3 fg ⋅ mL-1. Besides, this label-free electrochemical platform exhibited satisfactory selectivity and anti-interference capability in human serum samples. Therefore, this method has considerable potential in clinical detection of DR1.

2.
Talanta ; 275: 126130, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38653117

RESUMO

Human epidermal growth factor receptor 2 (HER2), a common proto-oncogene, is overexpressed in a subset of breast cancer patients. It is essential to track HER2 expression for early breast cancer diagnosis. Herein, a ratiometric electrochemical biosensor for detection of HER2 based on activators generated by electron transfer for atom transfer radical polymerisation (AGET ATRP) and hairpin DNA was developed. Specifically, hairpin DNA was first self-assembled on the gold electrode by Au-S bond. Upon capturing HER2, the stem-loop structure of hairpin DNA was unfolded, the signal value of methylene blue (MB) decreased as it moved away from the electrode surface. cDNA was linked with HER2 by complementary base pairing to introduce amino group. Then, the initiator 2-bromo-2-methylpropionic acid (BMP) were connected to the amino group on the cDNA to activate ARGET ATRP. The detection performance of biosensors for HER2 was explored by the ratio signal between two signal molecules. Under optimal conditions, this ratiometric electrochemical biosensor shows good selectivity and stability with a wide detection range of 1-1 × 106 pM and a detection limit of 78.47 fM. Furthermore, the biosensor exhibits satisfactory anti-interference ability due to the hairpin DNA and dual signal system, and has promising application prospects in the detection of other DNA disease markers.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Proto-Oncogene Mas , Receptor ErbB-2 , Técnicas Biossensoriais/métodos , Receptor ErbB-2/genética , Humanos , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Limite de Detecção , Polimerização , DNA/química , DNA/genética
3.
Noise Health ; 26(120): 19-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570306

RESUMO

BACKGROUND: Patients undergoing total knee arthroplasty (TKA) need to tolerate the effects of noise. MATERIALS AND METHODS: This study retrospectively analyzed the clinical data of 167 TKA patients at The Affiliated Hospital of Southwest Medical University from April 2019 to April 2021. A total of 154 patients who met inclusion criteria were divided into the conventional noise reduction management group (CMG) and the noise reduction earplug group (EPG), following different management schemes. The CMG received routine noise reduction management after surgery, while the EPG used noise reduction earplugs based on the CMG. The clinical indexes of the two groups were compared. RESULTS: In this study, 79 patients were included in the CMG, and 75 patients were included in the EPG. The results showed that the Pittsburgh Sleep Quality Index (PSQI) scores of both groups 2 weeks after surgery were significantly lower than those before management (ZEPG = 5.995, ZCMG = 4.109, all P < 0.001), and the EPG exhibited a significantly lower PSQI score than the CMG (Z = -2.442, P < 0.05). Two weeks after surgery, the EPG had significantly lower levels of systolic blood pressure (ZSBP = -4.303) and diastolic blood pressure (ZDBP = -3.115), as well as lower scores on the Hospital Anxiety and Depression Scale-Anxiety (HADS-A; ZHADS-A = -7.140) and Hospital Anxiety and Depression Scale-Depression (HADS-D; ZHADS-D = -4.545) compared to the CMG (all P < 0.05). In addition, no significant correlation existed between the duration of wearing earplugs and the HADS-A and HADS-D scores (r = -0.201, r = -0.002, P > 0.05). CONCLUSION: Noise reduction earplugs can improve sleep quality and regulate negative emotions of patients undergoing TKA treatment through a complex mechanism involving noise, which is beneficial to the prognosis of the disease.


Assuntos
Artroplastia do Joelho , Humanos , Estudos Retrospectivos , Dispositivos de Proteção das Orelhas , Ruído/efeitos adversos
4.
Mikrochim Acta ; 191(3): 148, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38374311

RESUMO

A unique combination of a specific nucleic acid restriction endonuclease (REase) and atom transfer radical polymerization (ATRP) signal amplification strategy was employed for the detection of T790M mutations prevalent in the adjuvant diagnosis of lung cancer. REase selectively recognizes and cleaves T790M mutation sites on double-stranded DNA formed by hybridization of a capture sequence and a target sequence. At the same time, the ATRP strategy resulted in the massive aggregation of upconverted nanoparticles (UCNPs), which significantly improved the sensitivity of the biosensor. In addition, the UCNPs have excellent optical properties and can eliminate the interference of autofluorescence in the samples, thus further improving the detection sensitivity. The proposed upconversion fluorescent biosensor is characterized by high specificity, high sensitivity, mild reaction conditions, fast response time, and a detection limit as low as 0.14 fM. The performance of the proposed biosensor is comparable to that of clinical PCR methods when applied to clinical samples. This work presents a new perspective for assisted diagnosis in the pre-intervention stage of tumor diagnostics in the early stage of precision oncology treatments.


Assuntos
Técnicas Biossensoriais , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Enzimas de Restrição do DNA , Receptores ErbB/genética , Polimerização , Clivagem do DNA , Limite de Detecção , Mutação , Medicina de Precisão , Inibidores de Proteínas Quinases , Técnicas Biossensoriais/métodos
5.
Chemistry ; 29(65): e202301602, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37622405

RESUMO

The levels of KRAS G12C point mutation is recognized to be closely related to the earlier diagnosis of non-small cell lung cancer (NSCLC). Here, based on nitrogen-doped graphene quantum dots (NGQDs) and photo-induced electron/energy transfer reversible addition-fragment chain transfer (PET-RAFT) signal amplification strategy, we fabricated a novel electrochemiluminescence (ECL) biosensor for the detection of KRAS G12C mutation for the first time. NGQDs as ECL-emitting species with cathodic ECL were prepared by a simple calcination method. Firstly, KRAS G12C mutation DNA, i. e., target DNA (tDNA), was captured by specific identification with hairpin DNA (hDNA). Then, PET-RAFT was initiated by blue light, and large numbers of monomers were successfully polymerized to form controllable polymer chains. Lastly, massive NGQDs was introduced via amidation reaction with N-(3-aminopropyl)methacrylamide hydrochloride (APMA), which significantly amplified the ECL signal intensity. Under optimal conditions, this biosensor achieved a good linear relationship between ECL intensity and logarithm of the levels of KRAS G12C mutation in the range from 10 fM to 10 nM. Moreover, this strategy exhibited high selectivity and excellent applicability for KRAS G12C mutation detection in the serum samples. Therefore, this biosensor has great potential in clinical diagnosis and practical application.


Assuntos
Técnicas Biossensoriais , Carcinoma Pulmonar de Células não Pequenas , Grafite , Neoplasias Pulmonares , Pontos Quânticos , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Nitrogênio , Medições Luminescentes/métodos , DNA , Técnicas Biossensoriais/métodos , Mutação , Tomografia por Emissão de Pósitrons
6.
Talanta ; 262: 124659, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37220688

RESUMO

Accurate and ultrasensitive detection of cytokeratin 19 fragment (CYFRA21-1) is of vital importance for screening and diagnosis of potential lung cancer patient. In this paper, surface-modified upconversion nanomaterials (UCNPs) capable of aggregation by atom transfer radical polymerization (ATRP) were used as luminescent materials for the first time to achieve signal-stable, low-biological background, and sensitive detection of CYFRA21-1. Upconversion nanomaterials (UCNPs) feature extremely low biological background signals and narrow emission peaks, making them ideal sensor luminescent materials. The combination of UCNPs and ATRP not only improves sensitivity, but also reduces biological background interference for detecting CYFRA21-1. The target CYFRA21-1 was captured by specific binding of the antigen and the antibody. Subsequently, the end of the sandwich structure with the initiator reacts with monomers modified on UCNPs. Then, massive UCNPs are aggregated by ATRP that amplify the detection signal exponentially. Under optimal conditions, a linear calibration plot of the logarithm of CYFRA21-1 concentration versus the upconversion fluorescence intensity was obtained in the range of 1 pg/mL to 100 µg/mL with a detection limit of 38.7 fg/mL. The proposed upconversion fluorescent platform can distinguish the analogues of the target with excellent selectivity. Besides, the precision and accuracy of the developed upconversion fluorescent platform were verified by clinical methods. As an enhanced upconversion fluorescent platform of CYFRA21-1, it is expected to be useful in screening potential patients with NSCLC and provides a promising solution for the high-performance detection of other tumor markers.


Assuntos
Técnicas Biossensoriais , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Humanos , Antígenos de Neoplasias , Queratina-19 , Neoplasias Pulmonares/diagnóstico , Técnicas Biossensoriais/métodos , Limite de Detecção , Nanopartículas/química
7.
Talanta ; 257: 124360, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801566

RESUMO

Plant diseases caused by tobacco mosaic viruses (TMV) reduce the yield and quality of crops and cause significant losses. Early detection and prevention of TMV has important value of research and reality. Herein, a fluorescent biosensor was constructed for highly sensitive detection of TMV RNA (tRNA) based on the principle of base complementary pairing, polysaccharides and atom transfer radical polymerization by electron transfer activated regeneration catalysts (ARGET ATRP) as double signal amplification strategy. The 5'-end sulfhydrylated hairpin capture probe (hDNA) was first immobilized on amino magnetic beads (MBs) by a cross-linking agent, which specifically recognizes tRNA. Then, chitosan binds to BIBB, providing numerous active sites for fluorescent monomer polymerization, which successfully significantly amplifying the fluorescent signal. Under optimal experimental conditions, the proposed fluorescent biosensor for the detection of tRNA has a wide detection range from 0.1 pM to 10 nM (R2 = 0.998) with a limit of detection (LOD) as low as 1.14 fM. In addition, the fluorescent biosensor showed satisfactory applicability for the qualitative and quantitative analysis of tRNA in real samples, thereby demonstrating the potential in the field of viral RNA detection.


Assuntos
Técnicas Biossensoriais , Vírus do Mosaico do Tabaco , RNA , Polissacarídeos , Limite de Detecção
8.
Anal Biochem ; 660: 114971, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328214

RESUMO

Exosome is an emerging tumor marker, whose concentration level can reflect the occurrence and development of tumors. The development of rapid and sensitive exosome detection platform is of great significance for early warning of cancer occurrence. Here, a strategy for electrochemical detection of A549-cell-derived exosomes was established based on DNA/ferrocene-modified single-walled carbon nanotube complex (DNA/SWCNT-Fc). DNA/SWCNT-Fc complexes function as a signal amplification platform to promote electron transfer between electrochemical signal molecules and electrodes, thereby improving sensitivity. At the same time, the exosomes can be attached to DNA/SWCNT-Fc nanocomposites via the established PO43--Ti4+-PO43- method. Moreover, the application of EGFR antibody, which can specifically capture A549 exosomes, could improve the accuracy of this sensing system. Under optimal experimental conditions, the biosensor showed good linear relationship between the peak current and the logarithm of exosomes concentration from 4.66 × 106 to 9.32 × 109 exosomes/mL with a detection limit of 9.38 × 104 exosomes/mL. Furthermore, this strategy provides high selectivity for exosomes of different cancer cells, which can be applied to the detection of exosomes in serum samples. Thus, owing to its advantages of high sensitivity and good selectivity, this method provides a diversified platform for exosomes identification and has great potential in early diagnosis and biomedical applications.


Assuntos
Exossomos , Nanotubos de Carbono , Metalocenos , DNA
9.
Anal Biochem ; 655: 114834, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35940299

RESUMO

Herein, an electroluminescence (ECL) biosensor was constructed by combining click chemistry with activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP) to sensitively assay tobacco mosaic virus (TMV) RNA for the first time. First, hairpin DNA (hDNA) was self-assembled on the gold electrode surface through Au-S bonding. The hDNA hybridized with the tDNA to form tRNA/hDNA hybrids in the presence of TMV RNA (tRNA), so that the azide group labelled at the end of the hDNA was kept away from the electrode surface. Subsequently, the initiator for the ARGET-ATRP reaction was modified on the electrode surface by chemical bonds via click chemistry. Then, N-acryloxysuccinimide (NAS)-labelled polymer chains were successfully formed on the electrode surface by ARGET-ATRP. Under the optimized conditions, a good linear relationship existed with the ECL signal and the logarithm of tRNA concentration in the range of 0.1 pM-10 nM, and the limit of detection was 2.61 fM. In addition, this strategy can identify mismatched bases and performs well in recovery assays in real samples. For its high sensitivity, selectivity, simplicity and economy, the ECL biosensor shows great potential for practical applications.


Assuntos
Técnicas Biossensoriais , Vírus do Mosaico do Tabaco , Química Click , Polimerização , RNA , Vírus do Mosaico do Tabaco/genética
10.
Bioelectrochemistry ; 144: 108037, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34906819

RESUMO

Herein, an electrochemical biosensor for detecting tobacco mosaic virus (TMV) RNA is constructed by activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) combined with duplex-specific nuclease (DSN)-assisted target recycling. First, the captured DNA (cDNA) is self-assembled on the electrode surface and hybridizes with the TMV RNA (tRNA) to form cDNA/tRNA hybrids. And then the initiator of ARGET ATRP (α-bromoisobutyric acid, BMP) is attached to the cDNA via an amide bond and later triggers ARGET ATRP. Many electroactive monomers (ferrocenylmethyl methacrylate, FMMA) are polymerized and a remarkable electrical signal response of ferrocene (Fc) is obtained. However, with the present of DSN, DSN cleaves the cDNA/tRNA hybrid and releases tRNA to hybridize with another cDNA, thereby causing significant shortening of the length of the cDNA. The number of polymer chains on the electrode surface is drastically reduced, which is followed by a noticeable reduction in the signal of Fc. The method shows high sensitivity, superior selectivity, excellent stability and good reproducibility under optimal conditions with the limit of detection (LOD) of 2.9 fM. Furthermore, the biosensor showed satisfactory applicability in detecting tRNA in real samples, thereby demonstrating the potential of the method for practical TMV RNA detection.


Assuntos
Vírus do Mosaico do Tabaco
11.
Talanta ; 238(Pt 1): 122987, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34857321

RESUMO

Cytokeratin fragment antigen 21-1 (CYFRA21-1) is a sensitive marker for detecting non-small cell lung cancer (NSCLC). Ti3C2Tx modified by gold nanoparticles (AuNPs) and molybdenum disulfide (MoS2) were synthesized for the first time to obtain the AuNPs@MoS2@Ti3C2Tx composites, which have large specific surface area and good electrocatalytic properties. A novel electrochemical immunoassay for sensitive detection of CYFRA21-1 was developed by loading a large quantity of secondary antibodies (Ab2) and toluidine blue (TB) on the surface of the material as signal probe, and Nafion-AuNPs mixture as electrode material. When the electrochemical response value of CYFRA21-1 increased linearly within the concentration range of 0.5 pg mL-1-50 ng mL-1, the detection limit can reach as low as 0.03 pg mL-1. In addition, the experimental results showed that the biosensor had the potential to rapidly detect CYFRA21-1 in the complex samples such as patient serum, and had a broad application prospect in the early diagnosis and monitoring of NSCLC.


Assuntos
Técnicas Biossensoriais , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas Metálicas , Antígenos de Neoplasias , Técnicas Eletroquímicas , Ouro , Humanos , Imunoensaio , Queratina-19 , Limite de Detecção , Neoplasias Pulmonares/diagnóstico , Molibdênio , Titânio
12.
Anal Chim Acta ; 1180: 338889, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34538315

RESUMO

The cytokeratin19 fragment (CYFRA 21-1) is an essential biomarker for non-small cell lung cancer (NSCLC). This work proposed a novel electrochemical immunosensor with a high selective and sensitive detection of CYFRA 21-1via the ring-opening polymerization (ROP) signal amplification strategy. Specifically, 3-mercaptopropionic (MPA) was employed as a cross-linking agent to immobilize cAb on the electrode surface for subsequent specific capture of CYFRA 21-1. After CYFRA 21-1 bound to cAb, the amino groups of them were blocked with acrolein. Then, the sandwich-type compositions were formed via the specific recognition between detection antibody (dAb) and CYFRA 21-1. Finally, the ROP was triggered by the amino group on dAb and the polymers containing a large number of ferrocene electroactive molecules were in situ grown on the electrode surface, thereby outputting a high sensing signal. Under optimal conditions, the fabricated immunosensor showed an ultrasensitive and highly selective with a linear range of 1 pg/mL ∼1 µg/mL, and the detection limit down to 9.08 fg/mL. Furthermore, a bright correlation was obtained for CYFRA 21-1 detection in the clinical serum samples. By merits of its ease of operation, environmental friendliness and low cost, this method had considerable potential application in bioanalytical for the ultrasensitive quantitation of biological molecules.


Assuntos
Técnicas Biossensoriais , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas Metálicas , Antígenos de Neoplasias , Técnicas Eletroquímicas , Ouro , Humanos , Imunoensaio , Queratina-19 , Limite de Detecção , Polimerização
13.
Talanta ; 235: 122803, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517661

RESUMO

An electrochemical biosensor for highly sensitive detection of tobacco mosaic virus (TMV) RNA (tRNA) based on click chemistry and photoinduced atom transfer radical polymerization (photoATRP) is developed for the first time. Herein, tRNA is recognized and captured by hairpin DNA immobilized on the gold electrode surface by Au-S self-assembly. Propyl 2-bromoisobutyrate (PBIB), a photoATRP initiator containing an alkyne group, is conjugated to the azide group of hairpin DNA via a Cu(I)-catalyzed azidoalkyl cyclization reaction (CuAAC). Under the irradiation of 470 nm blue light, photoATRP is activated by the photoredox catalyst (eosin Y, EY), resulting in the formation of a large number of electroactive probes (ferrocenylmethyl methacrylate, FMMA), which significantly amplifies the signal. Under the optimal experimental parameters, the strategy has a wide linear detection (0.1 pM-10 nM) (R2 = 0.995) with a limit of detection (LOD) as low as 3.5 fM. In addition, the biosensor also exhibited good selectivity for mismatched bases, excellent stability and reproducibility. Moreover, satisfactory result was achieved when the biosensor was applied to the detection of tRNA from healthy rehmannia total RNA extracts, which demonstrates the great potential of the method in the practical detection of TMV.


Assuntos
Técnicas Biossensoriais , Vírus do Mosaico do Tabaco , Química Click , Técnicas Eletroquímicas , Limite de Detecção , Polimerização , RNA , Reprodutibilidade dos Testes
14.
Talanta ; 233: 122531, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215034

RESUMO

Exosomes, as a biomarker with enhancing tumor invasion and spread, play an essential role for lung cancer diagnosis, therapy, and prognosis. In this work, a novel electrochemical sensor was fabricated for detecting exosomes secreted by lung cancer cells based on polysaccharide-initiated ring-opening polymerization (ROP) and click polymerization. First, MPA formed a self-assembled monolayer on the gold electrode surface, and then anti-EGFR was immobilized on the electrode surface by amide bond. Subsequently, a lot of phosphate groups were introduced by the specific recognition between anti-EGFR and exosomes, then sodium alginate grafted Glycidyl propargyl ether (SA-g-GPE) prepared via ROP was attached to the exosomes through PO43-Zr4+-COOH coordination bond. After that, click polymerization was initiated by alkyne groups on the SA-g-GPE polymerization chain to realize highly sensitive detection of A549 exosomes. Under the optimum conditions, the fabricated sensor showed a good linear relationship between the logarithm of exosomes concentration and peak current in the range of 5 × 103 - 5 × 109 particles/mL, and the limit of detection (LOD) was as low as 1.49 × 102 particles/mL. In addition, this method had the advantages of high specificity, anti-interference, high sensitivity, simplicity, rapidity and green economy, which proposed a novel avenue for the detection of exosomes, and also had potential applications in early cancer diagnosis and biomedicine.


Assuntos
Técnicas Biossensoriais , Exossomos , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Polimerização , Polissacarídeos
15.
Mikrochim Acta ; 188(4): 115, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686530

RESUMO

The cytokeratin fragment antigen 21-1 (CYFRA 21-1) protein is a critical tumor biomarker tightly related to non-small cell lung cancer (NSCLC). Herein, we prepared an effective electrochemiluminescence (ECL) immunosensor for CYFRA 21-1 detection using electrochemically mediated atom transfer radical polymerization (eATRP). The CYFRA 21-1 antigen was fixed on the electrode surface by constructing a sandwich type antibody-antigen-antibody immune system. The sensitivity of ECL was improved by using the eATRP reaction. In this method, eATRP was applied to CYFRA 21-1 detection antibody with N-acryloyloxysuccinimide as functional monomer. This is the first time that ECL and eATRP signal amplification technology had been combined. Under the optimized testing conditions, the immunosensor showed a good linear relation in the range from 1 fg mL-1 to 1 µg mL-1 at a limit of detection of 0.8 fg mL-1 (equivalent to ~ 134 molecules in a 10 µL sample). The ECL immunosensing system based on eATRP signal amplification technology provided a new way for rapid diagnosis of lung cancer by detecting CYFRA 21-1. The paper prepared an electrochemiluminescence biosensor for ultrasensitive detection of CYFRA 21-1 via eATRP signal amplification strategy, which had the advantages of high sensitivity, reproducibility, and held potential prospect for analysis of low-abundance.


Assuntos
Antígenos de Neoplasias/sangue , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Queratina-19/sangue , Acrilatos/química , Anticorpos Imobilizados/imunologia , Antígenos de Neoplasias/imunologia , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Eletrodos , Humanos , Imunoensaio/instrumentação , Queratina-19/imunologia , Limite de Detecção , Luminescência , Substâncias Luminescentes/química , Luminol/química , Polimerização , Reprodutibilidade dos Testes , Succinimidas/química
16.
Mikrochim Acta ; 188(4): 123, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712913

RESUMO

Improving the sensitivity of detection is crucial to monitor biomarker, assess toxicity, and track therapeutic agent. Herein, a sensitivity-improved immunosensor is reported for the first time via functionalized graphene oxide (GO) and a "grafting-to" ring-opening polymerization (ROP) dual signal amplification strategy. Through the ROP reaction using 2-[(4-ferrocenylbutoxy)methyl] oxirane (FcEpo) as the monomer, lots of electroactive tags are linked in situ from multiple initiation sites on the GO surface modified with ethanol amine (GO-ETA), thereby achieving high sensitivity even in the case of trace amounts of tumor markers. The utmost important factor for achieving this high sensitivity is to select functionalized GO as the initiator that contains a large number of repeated hydroxyl functional groups so as to trigger additional ROP reaction. Under the optimal conditions, the high sensitivity and applicability is demonstrated by the use of GO-ETA-mediated ROP-based immunosensor to detect non-small cell lung cancer (NSCLC)-specific biomarker down to 72.58 ag/mL (equivalent to ~6 molecules in a 5 µL sample). Furthermore, the satisfactory results for the determination of biomarkers in clinical serum samples highlighted that this immunosensor holds a huge potential in practical clinical application. This work described an electrochemical immunosensor for ultrasensitive detection of CYFRA 21-1 via the functionalized graphene oxide (GO) and a "grafting-to" ring-opening polymerization (ROP) dual signal amplification strategy, which hold the merits of high sensitivity, applicability, selectivity, efficiency, easy operation and environmental friendliness.


Assuntos
Antígenos de Neoplasias/sangue , Biomarcadores Tumorais/sangue , Grafite/química , Queratina-19/sangue , Fragmentos de Peptídeos/análise , Anticorpos Imobilizados/imunologia , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/imunologia , Técnicas Eletroquímicas/métodos , Humanos , Imunoensaio/métodos , Queratina-19/imunologia , Limite de Detecção , Reprodutibilidade dos Testes
17.
Anal Bioanal Chem ; 413(9): 2543-2551, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33576855

RESUMO

The concentration level of cytokeratin fragment antigen 21-1 (CYFRA21-1) can be used as an important indicator for predicting non-small cell lung cancer (NSCLC). Here, a sandwich-type electrochemical immunosensor for ultrasensitive detection of CYFRA21-1 is developed. The sensor based on a combination of gold nanoparticle (AuNPs) decorated Ti3C2Tx-MXene (Au-Ti3C2Tx) as the substrate enhancer, and toluidine blue (TB) modified AuNPs doped covalent organic framework (COF) polymer as the signal tag (TB-Au-COF). The Au-Ti3C2Tx is used to capture numerous primary antibodies and accelerate the electron transfer rate of the substrate, while the TB-Au-COF can be applied to provide a large number of signal units TB and secondary antibodies. These features of composites endow the proposed immunosensor with high sensitivity and current response to CYFRA21-1. Under optimum conditions, the immunosensor offers a wide current response for CYFRA21-1 from 0.5-1.0 × 104 pg·mL-1 with a detection limit of 0.1 pg·mL-1. Furthermore, the biosensing platform can be applied for CYFRA21-1 detection to analyze real serum samples, providing an effective and useful avenue for the applicability of Au-Ti3C2Tx and TB-Au-COF composite materials in biosensing field.


Assuntos
Antígenos de Neoplasias/sangue , Técnicas Biossensoriais/métodos , Queratina-19/sangue , Estruturas Metalorgânicas/química , Titânio/química , Anticorpos Imobilizados/química , Antígenos de Neoplasias/análise , Carcinoma Pulmonar de Células não Pequenas/sangue , Técnicas Eletroquímicas/métodos , Ouro/química , Humanos , Imunoensaio/métodos , Queratina-19/análise , Limite de Detecção , Neoplasias Pulmonares/sangue , Nanopartículas Metálicas/química
18.
Talanta ; 223(Pt 2): 121730, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298260

RESUMO

Cytokeratin fragment antigen 21-1 (CYFRA 21-1) DNA is perceived as sensitive tumor marker for the diagnosis of non-small cell lung cancer and other tumor. Herein, linear chain poly(ε-caprolactone) (PCL) synthesized by ring-opening polymerization is applied to ultrasensitive label-free electrochemical impedance detection system for CYFRA 21-1 DNA. First, thiolated peptide nucleic acid (PNA) is self-assembled into the Au electrode surface through the formation of Au-S bonds, allowing the PNA to act as biomolecular probe and form PNA/DNA heteroduplex with the target DNA via specific hybridization. Then, PCL is conjugated to the immobilized DNA on the electrode via "carboxylate-Zr4+-phosphate" bridges. Finally, the electrochemical response of modified PNA/DNA/Zr4+/PCL electrode is determined by electrochemical impedance method to quantify of CYFRA 21-1 DNA. Under optimal conditions, this method exhibits highly sensitivity with a broad linear range (0.1 fM - 1 nM) (R2 = 0.995) and the limit of detection (LOD) is as low as 10.73 aM, which is equivalent to just 64 molecules in a 10 µL sample. What's more, the high selectivity, good anti-interference, label-free operation, and real-time monitoring in complex samples of the proposed strategy demonstrate its broad application for the early diagnosis and clinical monitoring.


Assuntos
Técnicas Biossensoriais , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígenos de Neoplasias , DNA , Técnicas Eletroquímicas , Humanos , Queratina-19 , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Hibridização de Ácido Nucleico , Polimerização
19.
Anal Methods ; 12(22): 2827-2834, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32930205

RESUMO

The sensitive detection of biomarker cytokeratin fragment antigen 21-1 (CYFRA21-1) is crucial for early diagnosis and screening of non-small cell lung cancer (NSCLC). In this work, an electrochemical biosensor based on Nafion-initiated eATRP has been built for ultrasensitive detection of CYFRA21-1 DNA for the first time. Specifically, peptide nucleic acid (PNA) probes are immobilized onto a gold electrode surface and then hybridized with target DNA to form PNA/DNA heteroduplexes for the subsequent attachment of Nafion by the identified carboxyl-Zr4+-phosphoric acid chemistry. Finally, polymer chains are obtained by linking the monomer of ferrocenylmethyl methacrylate to the PNA/MCH/DNA/Zr4+/Nafion probes via eATRP. Under optimized steady-state conditions, the sensor offers a wide current response for CYFRA21-1 DNA from 10-11 to 10-16 M with a detection limit of 6.42 × 10-17 M. The proposed method of using Nafion as the eATRP initiator exhibits high sensitivity, reproducibility and stability and is a promising strategy for early diagnosis of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígenos de Neoplasias , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , DNA , Técnicas Eletroquímicas , Polímeros de Fluorcarboneto , Humanos , Queratina-19 , Neoplasias Pulmonares/diagnóstico , Polimerização , Polímeros , Reprodutibilidade dos Testes
20.
Anal Bioanal Chem ; 412(17): 4155-4163, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32306069

RESUMO

In this work, a new method of CYFRA21-1 DNA (tDNA) detection based on electrochemically mediated atom transfer radical polymerization (e-ATRP) and surface-initiated reversible addition-fragmentation chain transfer polymerization (SI-RAFT) cascade polymerization and AgNP deposition is proposed. Firstly, the peptide nucleic acid (PNA) probe is captured on a gold electrode by Au-S bonds for specific recognition of tDNA. After hybridization, PNA/DNA strands provide high-density phosphate groups for the subsequent ATRP initiator by the identified carboxylate-Zr4+-phosphate chemistry. Then, a large number of monomers are successfully grafted from the DNA through the e-ATRP reaction. After that, the chain transfer agent of SI-RAFT and methacrylic acid (MAA) are connected by recognized carboxylate-Zr4+-carboxylate chemistry. Subsequently, through SI-RAFT, the resulting polymer introduces numerous aldehyde groups, which could deposit many AgNPs on tDNA through silver mirror reaction, causing significant amplification of the electrochemical signal. Under optimal conditions, this designed method exhibits a low detection limit of 0.487 aM. Moreover, the method enables us to detect DNA at the level of PCR-like and shows high selectivity and strong anti-interference ability in the presence of serum. It suggests that this new sensing signal amplification technology exhibits excellent potential of application in the early diagnosis of non-small cell lung cancer (NSCLC). Graphical abstract Electrochemical detection principle for CYFRA21-1 DNA based on e-ATRP and SI-RAFT signal amplification technology.


Assuntos
Antígenos de Neoplasias/genética , Técnicas Biossensoriais/métodos , DNA/sangue , Queratina-19/genética , Nanopartículas Metálicas/química , Ácidos Nucleicos Peptídicos/química , Prata/química , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , DNA/genética , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Hibridização de Ácido Nucleico , Ácidos Nucleicos Peptídicos/genética , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA