Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
2.
J Agric Food Chem ; 72(15): 8401-8414, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587493

RESUMO

Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is a promising target for green herbicide discovery. However, the ligand configuration effects on PPO activity were still poorly understood. Herein, we designed 3-(N-phenyluracil)but-2-enoates using our previously developed active fragments exchange and link (AFEL) approach and synthesized a series of novel compounds with nanomolar ranges of Nicotiana tabacum PPO (NtPPO) inhibitory potency and promising herbicidal potency. Our systematic structure-activity relationship investigations showed that the E isomers of 3-(N-phenyluracil)but-2-enoates displayed improved bioactivity than their corresponding Z isomers. Using molecular simulation studies, we found that the E isomers showed a relatively lower entropy change and could sample more stable binding conformation to the receptor than the Z isomers. Our density functional theory (DFT) calculations showed that the E isomers showed higher chemical reactivity and lower electronic chemical potential than their corresponding Z isomers. Compound E-Ic emerged as the optimal compound with a Ki value of 3.0 nM against NtPPO, exhibiting a broader spectrum of weed control than saflufenacil at 37.5-75 g ai/ha and also safe to maize at 75 g ai/ha, which could be considered as a promising lead herbicide for further development.


Assuntos
Inibidores Enzimáticos , Herbicidas , Protoporfirinogênio Oxidase , Ligantes , Inibidores Enzimáticos/química , Controle de Plantas Daninhas , Herbicidas/farmacologia , Herbicidas/química , Nicotiana
3.
Adv Sci (Weinh) ; : e2305382, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493499

RESUMO

Insufficient tumor immunogenicity and immune escape from tumors remain common problems in all tumor immunotherapies. Recent studies have shown that pyroptosis, a form of programmed cell death that is accompanied by immune checkpoint inhibitors, can induce effective immunogenic cell death and long-term immune activation. Therapeutic strategies to jointly induce pyroptosis and reverse immunosuppressive tumor microenvironments are promising for cancer immunotherapy. In this regard, a dual-responsive supramolecular polymeric nanomedicine (NCSNPs) to self-cascade amplify the benefits of cancer immunotherapy is designed. The NCSNPs are formulated by ß-cyclodextrin coupling nitric oxide (NO) donor, a pyroptosis activator, and NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor, and self-assembled through host-guest molecular recognition and hydrophobic interaction to obtain nanoparticles. NCSNPs possess excellent tumor accumulation and bioavailability attributed to ingenious supramolecular engineering. The study not only confirms the occurrence of NO-triggered pyroptosis in tumors for the first time but also reverses the immunosuppressive microenvironment in tumor sites via an IDO inhibitor by enhancing the infiltration of cytotoxic T lymphocytes, to achieve remarkable inhibition of tumor proliferation. Thus, this study provides a novel strategy for cancer immunotherapy.

4.
Nat Chem Biol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538923

RESUMO

Telomere dysfunction is intricately linked to the aging process and stands out as a prominent cancer hallmark. Here we demonstrate that telomerase activity is differentially regulated in cancer and normal cells depending on the expression status of fructose-1,6-bisphosphatase 1 (FBP1). In FBP1-expressing cells, FBP1 directly interacts with and dephosphorylates telomerase reverse transcriptase (TERT) at Ser227. Dephosphorylated TERT fails to translocate into the nucleus, leading to the inhibition of telomerase activity, reduction in telomere lengths, enhanced senescence and suppressed tumor cell proliferation and growth in mice. Lipid nanoparticle-mediated delivery of FBP1 mRNA inhibits liver tumor growth. Additionally, FBP1 expression levels inversely correlate with TERT pSer227 levels in renal and hepatocellular carcinoma specimens and with poor prognosis of the patients. These findings demonstrate that FBP1 governs cell immortality through its protein phosphatase activity and uncover a unique telomerase regulation in tumor cells attributed to the downregulation or deficiency of FBP1 expression.

5.
Adv Mater ; : e2310189, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414097

RESUMO

Stimulating the cyclic guanosine monophophate(GMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway is a crucial strategy by which bacteria activate the tumor immune system. However, the limited stimulation capability poses significant challenges in advancing bacterial immunotherapy. Here, an adenosine 5'-triphosphate (ATP)-responsive manganese (Mn)-based bacterial material (E. coli@PDMC-PEG (polyethylene glycol)) is engineered successfully, which exhibits an exceptional ability to synergistically activate the cGAS-STING pathway. In the tumor microenvironment, which is characterized by elevated ATP levels, this biohybrid material degrades, resulting in the release of divalent manganese ions (Mn2+ ) and subsequent bacteria exposure. This combination synergistically activates the cGAS-STING pathway, as Mn2+ enhances the sensitivity of cGAS to the extracellular DNA (eDNA) secreted by the bacteria. The results of the in vivo experiments demonstrate that the biohybrid materials E. coli@PDMC-PEG and VNP20009@PDMC-PEG effectively inhibit the growth of subcutaneous melanoma in mice and in situ liver cancer in rabbits. Valuable insights for the development of bacteria-based tumor immunotherapy are provided here.

6.
Int J Biol Macromol ; 258(Pt 2): 128691, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072344

RESUMO

The effective delivery and targeted release of drugs within tumor cells are critical factors in determining the therapeutic efficacy of nanomedicine. To achieve this objective, a conjugate of maltose (Mal) and bovine serum albumin (BSA) was synthesized by the Maillard reaction and self-assembled into nanoparticles with active-targeting capabilities upon pH/heating induction. This nanoparticle could be effectively loaded with doxorubicin (DOX) to form stable nanodrugs (Mal-BSA/DOX) that were sensitive to low pH or high glutathione (GSH), thereby achieving a rapid drug release (96.82 % within 24 h). In vitro cell experiments indicated that maltose-modified BSA particles efficiently enhance cellular internalization via glucose transporters (GLUT)-mediated endocytosis, resulting in increased intracellular DOX levels and heightened expression of γ-H2AX. Consequently, these results ultimately lead to selective tumor cells death, as evidenced by an IC50 value of 3.83 µg/mL in HepG2 cells compared to 5.87 µg/mL in 293t cells. The efficacy of Mal-BSA/DOX in tumor targeting therapy has been further confirmed by in vivo studies, as it effectively delivered a higher concentration of DOX to tumor tissue. This targeted delivery approach not only reduces the systemic toxicity of DOX but also effectively inhibits tumor growth (TGI, 75.95 %). These findings contribute valuable insights into the advancement of targeting-albumin nanomedicine and further support its potential in tumor treatment.


Assuntos
Neoplasias Hepáticas , Nanopartículas , Humanos , Maltose , Portadores de Fármacos , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Soroalbumina Bovina , Neoplasias Hepáticas/tratamento farmacológico , Glutationa , Concentração de Íons de Hidrogênio
7.
Adv Mater ; 36(5): e2304257, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37788635

RESUMO

Probiotics have the potential as biotherapeutic agents for cancer management in preclinical models and human trials by secreting antineoplastic or immunoregulatory agents in the tumor microenvironment (TME). However, current probiotics lack the ability to dynamically respond to unique TME characteristics, leading to limited therapeutic accuracy and efficacy. Although progress has been made in customizing controllable probiotics through synthetic biology, the engineering process is complex and the predictability of production is relatively low. To address this, here, for the first time, this work adopts pH-dependent peroxidase-like (POD-like) artificial enzymes as both an inducible "nano-promoter" and "nano-effector" to engineer clinically relevant probiotics to achieve switchable control of probiotic therapy. The nanozyme initially serves as an inducible "nano-promoter," generating trace amounts of nonlethal reactive oxygen species (ROS) stress to upregulate acidic metabolites in probiotics. Once metabolites acidify the TME to a threshold, the nanozyme switches to a "nano-effector," producing a great deal of lethal ROS to fight cancer. This approach shows promise in subcutaneous, orthotopic, and colitis-associated colorectal cancer tumors, offering a new methodology for modulating probiotic metabolism in a pathological environment.


Assuntos
Antineoplásicos , Neoplasias , Probióticos , Humanos , Espécies Reativas de Oxigênio , Probióticos/uso terapêutico , Neoplasias/terapia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Microambiente Tumoral
8.
Biomed J ; : 100682, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38065365

RESUMO

INTRODUCTION: BK Polyomavirus (BKPyV) infection is a common complication in kidney transplant recipients and can result in poor outcome and graft failure. Currently, there is no known effective antiviral agent. This study investigated the possible antiviral effects of Interferon alpha (IFNα) and its induced protein, MxA, against BKPyV. METHODS: In vitro cell culture experiments were conducted using human primary renal proximal tubular epithelial cells (HRPTECs). We also did animal studies using Balb/c mice with unilateral kidney ischemic reperfusion injury. RESULTS: Our results demonstrated that IFNα effectively inhibited BKPyV in vitro and murine polyomavirus in animal models. Additionally, IFNα and MxA were found to suppress BKPyV TAg and VP1 production. Silencing MxA attenuated the antiviral efficacy of IFNα.We observed that MxA interacted with BKPyV TAg, causing it to remain in the cytosol and preventing its nuclear translocation. To determine MxA's essential domain for its antiviral activities, different mutant MxA constructs were generated. The MxA mutant K83A retained its interaction with BKPyV TAg, and its antiviral effects were intact. The MxA T103A mutant, on the other hand, abolished GTPase activity and lost its protein-protein interaction with BKPyV TAg, and lost its antiviral effect. CONCLUSION: IFNα and its downstream protein, MxA, have potent antiviral properties against BKPyV. Furthermore, our findings indicate that the interaction between MxA and BKVPyV TAg plays a crucial role in determining the anti-BKPyV effects of MxA.

9.
Hepatology ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016019

RESUMO

BACKGROUND AND AIMS: Base editing has shown great potential for treating human diseases with mutated genes. However, its potential for treating HCC has not yet been explored. APPROACH AND RESULTS: We employed adenine base editors (ABEs) to correct a telomerase reverse transcriptase ( TERT ) promoter mutation, which frequently occurs in various human cancers, including HCC. The mutated TERT promoter -124 C>T is corrected to -124 C by a single guide (sg) RNA-guided and deactivated Campylobacter jejuni Cas9 (CjCas9)-fused adenine base editor (CjABE). This edit impairs the binding of the E-twenty six/ternary complex factor transcription factor family, including E-twenty six-1 and GABPA, to the TERT promoter, leading to suppressed TERT promoter and telomerase activity, decreased TERT expression and cell proliferation, and increased cell senescence. Importantly, injection of adeno-associated viruses expressing sgRNA-guided CjABE or employment of lipid nanoparticle-mediated delivery of CjABE mRNA and sgRNA inhibits the growth of liver tumors harboring TERT promoter mutations. CONCLUSIONS: These findings demonstrate that a sgRNA-guided CjABE efficiently converts the mutated TERT promoter -124 C>T to -124 C in HCC cells and underscore the potential to treat HCC by the base editing-mediated correction of TERT promoter mutations.

10.
Sci Rep ; 13(1): 16199, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758848

RESUMO

With ageing populations, new elderly end-stage kidney disease (ESKD) cases rise. Unlike younger patients, elderly ESKD patients are less likely to undergo kidney transplant, and therefore the decision of receiving peritoneal dialysis (PD) and hemodialysis (HD) is more crucial. A total of 36,852 patients, aged more than 65, who were newly diagnosed with ESKD and initiated renal replacement therapy between 2013 and 2019 were identified. These patients were categorized into two groups: the PD group and the HD group according to their long-term renal replacement treatment. After propensity score matching, the PD group (n = 1628) displayed a lower incidence of major adverse cardiac and cerebrovascular events (MACCE) (10.09% vs. 13.03%, hazard ratio (HR): 0.74, 95% confidence interval (CI): 0.66-0.83), malignancy (1.23% vs. 2.14%, HR: 0.55, 95% CI: 0.40-0.76), and MACCE-associated mortality (1.35% vs. 2.25%, HR: 0.62, 95% CI: 0.46-0.84) compared to the HD group (n = 6512). However, the PD group demonstrated a higher rate of infection (34.09% vs. 24.14%, HR: 1.28, 95% CI: 1.20-1.37). The risks of all-cause mortality and infection-associated mortality were not different. This study may provide valuable clinical information to assist elderly ESKD patients to choose HD or PD as their renal replacement therapy.


Assuntos
Terapia de Substituição Renal Contínua , Falência Renal Crônica , Diálise Peritoneal , Idoso , Humanos , Estudos de Coortes , Diálise Renal/efeitos adversos , Falência Renal Crônica/terapia , Diálise Peritoneal/efeitos adversos
11.
Adv Sci (Weinh) ; 10(27): e2300470, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37505480

RESUMO

Myocardial infarction (MI) causes excessive damage to the myocardium, including the epicardium. However, whether pluripotent stem cell-derived epicardial cells (EPs) can be a therapeutic approach for infarcted hearts remains unclear. Here, the authors report that intramyocardial injection of human embryonic stem cell-derived EPs (hEPs) at the acute phase of MI ameliorates functional worsening and scar formation in mouse hearts, concomitantly with enhanced cardiomyocyte survival, angiogenesis, and lymphangiogenesis. Mechanistically, hEPs suppress MI-induced infiltration and cytokine-release of inflammatory cells and promote reparative macrophage polarization. These effects are blocked by a type I interferon (IFN-I) receptor agonist RO8191. Moreover, intelectin 1 (ITLN1), abundantly secreted by hEPs, interacts with IFN-ß and mimics the effects of hEP-conditioned medium in suppression of IFN-ß-stimulated responses in macrophages and promotion of reparative macrophage polarization, whereas ITLN1 downregulation in hEPs cancels beneficial effects of hEPs in anti-inflammation, IFN-I response inhibition, and cardiac repair. Further, similar beneficial effects of hEPs are observed in a clinically relevant porcine model of reperfused MI, with no increases in the risk of hepatic, renal, and cardiac toxicity. Collectively, this study reveals hEPs as an inflammatory modulator in promoting infarct healing via a paracrine mechanism and provides a new therapeutic approach for infarcted hearts.


Assuntos
Células-Tronco Embrionárias Humanas , Infarto do Miocárdio , Suínos , Camundongos , Humanos , Animais , Miocárdio , Miócitos Cardíacos , Infarto do Miocárdio/tratamento farmacológico , Macrófagos
12.
Adv Healthc Mater ; 12(29): e2301693, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37285905

RESUMO

Cancer immunotherapy is a favorable strategy for facilitating anti-tumor immunity, but it shows limited benefits in clinical practice owing to the immunosuppressive tumor microenvironment. Pyroptosis shows great immunostimulatory effect on tumor, whereas the lack of pyroptotic inducer with imaging property has restricted its progress in tumor theranostics. Herein, a mitochondria-targeted aggregation-induced emission (AIE) luminogen (TPA-2TIN) with NIR-II emission is designed for highly efficient induction of tumor cell pyroptosis. The fabricated TPA-2TIN nanoparticles can be efficiently taken up by tumor cells and selectively accumulated in tumor for a long term observed by NIR-II fluorescence imaging. More importantly, the TPA-2TIN nanoparticles can effectively stimulate immune responses both in vitro and in vivo mediated by the mitochondrial dysfunctions and the subsequent activation of the pyroptotic pathway. Ultimately, the reversal of the immunosuppressive tumor microenvironment significantly enhances the immune checkpoint therapy. This study paves a new avenue for adjuvant immunotherapy of cancer.


Assuntos
Nanopartículas , Neoplasias , Humanos , Piroptose , Imunoterapia , Imunização , Mitocôndrias , Microambiente Tumoral , Neoplasias/terapia , Linhagem Celular Tumoral
13.
Biomed J ; 46(4): 100595, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37142093

RESUMO

Leptospirosis is a neglected bacterial disease caused by leptospiral infection that carries a substantial mortality risk in severe cases. Research has shown that acute, chronic, and asymptomatic leptospiral infections are closely linked to acute and chronic kidney disease (CKD) and renal fibrosis. Leptospires affect renal function by infiltrating kidney cells via the renal tubules and interstitium and surviving in the kidney by circumventing the immune system. The most well-known pathogenic molecular mechanism of renal tubular damage caused by leptospiral infection is the direct binding of the bacterial outer membrane protein LipL32 to toll-like receptor-2 expressed in renal tubular epithelial cells (TECs) to induce intracellular inflammatory signaling pathways. These pathways include the production of tumor necrosis factor (TNF)-α and nuclear factor kappa activation, resulting in acute and chronic leptospirosis-related kidney injury. Few studies have investigated the relationship between acute and chronic renal diseases and leptospirosis and further evidence is necessary. In this review, we intend to discuss the roles of acute kidney injury (AKI) to/on CKD in leptospirosis. This study reviews the molecular pathways underlying the pathogenesis of leptospirosis kidney disease, which will assist in concentrating on potential future research directions.


Assuntos
Injúria Renal Aguda , Leptospira , Leptospirose , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/patologia , Rim/microbiologia , Rim/patologia , Leptospira/metabolismo
14.
Comput Biol Med ; 159: 106943, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37099974

RESUMO

BACKGROUND: Mounting evidence suggests that noncoding RNAs (lncRNAs) were involved in various human cancers. However, the role of these lncRNAs in HPV-driven cervical cancer (CC) has not been extensively studied. Considering that HR-HPV infections contribute to cervical carcinogenesis by regulating the expression of lncRNAs, miRNAs and mRNAs, we aim to systematically analyze lncRNAs and mRNAs expression profile to identify novel lncRNAs-mRNAs co-expression networks and explore their potential impact on tumorigenesis in HPV-driven CC. METHODS: LncRNA/mRNA microarray technology was utilized to identify the differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) in HPV-16 and HPV-18 cervical carcinogenesis compared to normal cervical tissues. Venn diagram and weighted gene co-expression network analysis (WGCNA) were used to identify the hub DElncRNAs/DEmRNAs that were both significantly correlated with HPV-16 and HPV-18 CC patients. LncRNA-mRNA correlation analysis and functional enrichment pathway analysis were performed on these key DElncRNAs/DEmRNAs in HPV-16 and HPV-18 CC patients to explore their mutual mechanism in HPV-driven CC. A lncRNA-mRNA co-expression score (CES) model was established and validated by using the Cox regression method. Afterward, the clinicopathological characteristics were analyzed between CES-high and CES-low groups. In vitro, functional experiments were performed to evaluate the role of LINC00511 and PGK1 in cell proliferation, migration and invasion in CC cells. To understand whether LINC00511 play as an oncogenic role partially via modulating the expression of PGK1, rescue assays were used. RESULTS: We identified 81 lncRNAs and 211 mRNAs that were commonly differentially expressed in HPV-16 and HPV-18 CC tissues compared to normal tissues. The results of lncRNA-mRNA correlation analysis and functional enrichment pathway analysis showed that the LINC00511-PGK1 co-expression network may make an important contribution to HPV-mediated tumorigenesis and be closely associated with metabolism-related mechanisms. Combined with clinical survival data, the prognostic lncRNA-mRNA co-expression score (CES) model based on LINC00511 and PGK1 could precisely predict patients' overall survival (OS). CES-high patients had a worse prognosis than CES-low patients and the enriched pathways and potential targets of applicable drugs were explored in CES-high patients. In vitro experiments confirmed the oncogenic functions of LINC00511 and PGK1 in the progression of CC, and revealed that LINC00511 functions in an oncogenic role in CC cells partially via modulating the expression of PGK1. CONCLUSIONS: Together, these data identify co-expression modules that provide valuable information to understand the pathogenesis of HPV-mediated tumorigenesis, which highlights the pivotal function of the LINC00511-PGK1 co-expression network in cervical carcinogenesis. Furthermore, our CES model has a reliable predicting ability that could stratify CC patients into low- and high-risk groups of poor survival. This study provides a bioinformatics method to screen prognostic biomarkers which leads to lncRNA-mRNA co-expression network identification and construction for patients' survival prediction and potential drug applications in other cancers.


Assuntos
MicroRNAs , Infecções por Papillomavirus , RNA Longo não Codificante , Neoplasias do Colo do Útero , Feminino , Humanos , Biomarcadores Tumorais/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , Infecções por Papillomavirus/genética , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias do Colo do Útero/genética
15.
Acta Biomater ; 162: 85-97, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948328

RESUMO

The therapeutic effects of photothermal therapy (PTT) are dependent on the photothermal conversion efficiency of photothermal agents (PTAs) in tumors and the subsequent activation of the antitumor immune system. However, the insufficient tumor accumulation of current PTAs and the inevitable recruitment of tumor-associated macrophages (TAMs) could further compromise the antitumor activities of PTT. To address these issues, a biomimetic photothermal nanoplatform Au@Fe-PM is developed for the targeted remodeling of TAMs, which promotes the antitumor immunity of PTT. Au nanorods with second near-infrared (NIR-II) absorptions are fabricated to serve as PTAs to induce immunogenic cell death in tumor cells. The ferric hydroxide shell coated on Au nanorods can release iron ions to repolarize M2-like TAMs into the tumoricidal M1 phenotype via P38 and STAT1-mediated signaling pathways. Moreover, the surface decoration of platelet membranes endows biomimetic nanoplatform with enhanced tumor targeting ability for precise tumor ablation and TAM regulation. Consequently, Au@Fe-PM under NIR-II laser irradiation exhibits significantly higher inhibitory effects in a poor immunogenic 4T1 tumor-bearing mouse model with a 50% complete remission rate compared to conventional PTT (0%). By simultaneously reversing the immunosuppressive tumor microenvironment, this biomimetic nanoplatform offers a promising strategy for enhancing the antitumor efficacy of PTT. STATEMENT OF SIGNIFICANCE: The therapeutic effects of current photothermal therapy (PTT) are hindered by the insufficient tumor accumulation of conventional photothermal agents and the recruitment of immunosuppressive tumor-associated macrophages (TAMs) after PTT. Herein, we report a biomimetic iron-based second near-infrared (NIR-II) photothermal nanoplatform (Au@Fe-PM) for targeted TAMs reprogramming and NIR-II mediated anti-tumor immunity. Au@Fe-PM can actively target the tumor site with the help of surface-decorated platelet membranes. Meanwhile, iron ions would be released from Au@Fe-PM in acidic lysosomes to reprogram TAMs into tumoricidal M1-like macrophages, which promotes the antitumor responses elicited by NIR-II PTT, thereby contributing to remarkable tumor inhibitory effects, with 50% higher complete remission rate than that of conventional PTT.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Fototerapia , Macrófagos Associados a Tumor/patologia , Biomimética , Neoplasias/patologia , Ferro , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
16.
J Agric Food Chem ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780578

RESUMO

Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is an established site for green herbicide discovery. In this work, based on structural analysis, we develop an active fragment exchange and link (AFEL) approach to designing a new class of N-1,4-diketophenyltriazinones I-III as potent Nicotiana tabacum PPO (PPO) inhibitors. After systematic structure-activity relationship optimizations, a series of new compounds with Ki values in the single-digit nanomolar range toward NtPPO and promising herbicidal activity were discovered. Among them, Ii (Ki = 0.11 nM) displays 284- and 90-fold improvement in NtPPO inhibitory activity over trifludimoxazin (Ki = 31 nM) and saflufenacil (Ki = 10 nM), respectively. In addition, Ip (Ki = 2.14 nM) not only exhibited good herbicidal activity at 9.375-37.5 g ai/ha but also showed high crop safety to rice at 75 g ai/ha by the postemergence application, indicating that Ip could be developed as a potential herbicide for weed control in rice fields. Additionally, our molecular dynamic simulation clarified the molecular basis for the interactions of these molecules with NtPPO. The metabolism studies in planta showed that IIIc could be converted to Ic, which displayed higher herbicidal activity than IIIc. The density functional theory analysis showed that due to the effect of two sulfur atoms at the triazinone moiety, IIIc is more reactive than Ic, making it more easily degraded in planta. Our work indicates that the AFEL strategy could be used to design new molecules with improved bioactivity.

18.
Hemodial Int ; 27(2): 134-145, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36719854

RESUMO

INTRODUCTION: Data on the incidence rates of hungry bone syndrome after parathyroidectomy in patients on dialysis are inconsistent, as the published rates vary from 15.8% to 92.9%. METHODS: Between 2009 and 2019, 120 hemodialysis patients underwent parathyroidectomy for secondary hyperparathyroidism at the Chang Gung Memorial Hospital. The patients were stratified into two groups based on the presence (n = 100) or absence (n = 20) of hungry bone syndrome after parathyroidectomy. FINDINGS: Subtotal parathyroidectomy was the most common surgery performed (76.7%), followed by total parathyroidectomy with autoimplantation (23.3%). Pathological examination revealed parathyroid hyperplasia. Hungry bone syndrome developed within 0.3 ± 0.3 months and lasted for 11.1 ± 14.7 months. After surgery, compared with patients without hungry bone syndrome, patients with hungry bone syndrome had lower levels of nadir corrected calcium (P < 0.001), as well as lower nadir (P < 0.001) and peak (P < 0.001) intact parathyroid hormone levels. During 59.3 ± 44.0 months of follow-up, persistence and recurrence of hyperparathyroidism occurred in 25 (20.8%) and 30 (25.0%) patients, respectively. Furthermore, patients with hungry bone syndrome had a lower rate of persistent hyperparathyroidism than those without hungry bone syndrome (P < 0.001). Four patients (3.3%) underwent a second parathyroidectomy. Patients with hungry bone syndrome received fewer second parathyroidectomies than those without hungry bone syndrome (P < 0.001). Finally, a multivariate logistic regression model revealed that the preoperative blood ferritin level was a negative predictor of the development of hungry bone syndrome (P = 0.038). DISCUSSION: Hungry bone syndrome is common (83.3%) after parathyroidectomy for secondary hyperparathyroidism in patients undergoing hemodialysis, and this complication should be monitored and managed appropriately.


Assuntos
Hiperparatireoidismo Secundário , Hipocalcemia , Humanos , Diálise Renal/efeitos adversos , Hipocalcemia/diagnóstico , Hipocalcemia/etiologia , Hipocalcemia/cirurgia , Hiperparatireoidismo Secundário/etiologia , Hiperparatireoidismo Secundário/cirurgia , Cálcio , Paratireoidectomia/efeitos adversos , Hormônio Paratireóideo , Estudos Retrospectivos
19.
J Allergy Clin Immunol ; 151(4): 1123-1131, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36586539

RESUMO

BACKGROUND: A dysregulated immune response is a hallmark of autoimmune disorders. Evidence suggests that systemic autoimmune diseases and primary immunodeficiency disorders (PIDs) may be similar diseases with different clinical phenotypes. OBJECTIVE: This study aimed to investigate the burden of PID-associated genetic variants in patients with childhood-onset systemic lupus erythematosus (cSLE). METHODS: We enrolled 118 cSLE patients regularly followed at Chang Gung Memorial Hospital. Targeted next-generation sequencing identified PID genetic variants in patients versus 1475 unrelated healthy individuals, which were further filtered by allelic frequency and various functional scores. Customized immune assays tested the functions of the identified variants. RESULTS: On filtration, 36 patients (30.5%) harbored rare variants in PID-associated genes predicted to be damaging. One homozygous TREX1 (c.294dupA) mutation and 4 heterozygous variants with possible dominant PID traits, including BCL11B (c.G1040T), NFKB1 (c.T695G), and NFKB2 (c.G1210A, c.G1651A), were discovered. With recessive traits, variants were found across all PID types; one fifth involved phagocyte number or function defects. Predicted pathogenic PID variants were more predominant in those with a family history of lupus, regardless of infection susceptibility. Moreover, mutation loads were greater among cSLE patients than controls despite sex or age at disease onset. While greater mutation loads were observed among cSLE patients with peripubertal disease onset, no significant differences in sex or phenotype were noted among cSLE patients. CONCLUSION: cSLE is mostly not monogenic. Gene-specific analysis and mutation load investigations suggested that rare and predicted damaging variants in PID-related genes can potentially contribute to cSLE susceptibility.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Criança , Humanos , Idade de Início , Lúpus Eritematoso Sistêmico/genética , Mutação , Fenótipo , Proteínas Repressoras , Proteínas Supressoras de Tumor
20.
Infection ; 51(4): 967-980, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36512270

RESUMO

PURPOSE: BK Polyomavirus (BKPyV) infection manifests as renal inflammation and can cause kidney damage. Tumor necrosis factor-α (TNF-α) is increased in renal inflammation and injury. The aim of this study was to investigate the effect of TNF-α blockade on BKPyV infection. METHODS: Urine specimens from 22 patients with BKPyV-associated nephropathy (BKPyVN) and 35 non-BKPyVN kidney transplant recipients were analyzed. RESULTS: We demonstrated increased urinary levels of TNF-α and its receptors, TNFR1 and TNFR2, in BKPyVN patients. Treating BKPyV-infected human proximal tubular cells (HRPTECs) with TNF-α stimulated the expression of large T antigen and viral capsid protein-1 mRNA and proteins and BKPyV promoter activity. Knockdown of TNFR1 or TNFR2 expression caused a reduction in TNF-α-stimulated viral replication. NF-κB activation induced by overexpression of constitutively active IKK2 significantly increased viral replication and the activity of the BKPyV promoter containing an NF-κB binding site. The addition of a NF-κB inhibitor on BKPyV-infected cells suppressed viral replication. Blockade of TNF-α functionality by etanercept reduced BKPyV-stimulated expression of TNF-α, interleukin-1ß (IL-1ß), IL-6 and IL-8 and suppressed TNF-α-stimulated viral replication. In cultured HRPTECs and THP-1 cells, BKPyV infection led to increased expression of TNF-α, interleukin-1 ß (IL-1ß), IL-6 and TNFR1 and TNFR2 but the stimulated magnitude was far less than that induced by poly(I:C). This may suggest that BKPyV-mediated autocrine effect is not a major source of TNFα. CONCLUSION: TNF-α stimulates BKPyV replication and inhibition of its signal cascade or functionality attenuates its stimulatory effect. Our study provides a therapeutic anti-BKPyV target.


Assuntos
Vírus BK , Infecções por Polyomavirus , Humanos , Vírus BK/genética , Fator de Necrose Tumoral alfa , Receptores Tipo I de Fatores de Necrose Tumoral , Receptores Tipo II do Fator de Necrose Tumoral/genética , NF-kappa B , Interleucina-6 , Infecções por Polyomavirus/metabolismo , Infecções por Polyomavirus/patologia , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA