Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37398012

RESUMO

Suppression of immune response is a phenomenon that enables biological processes such as gamete fertilization, cell growth, cell proliferation, endophyte recruitment, parasitism, and pathogenesis. Here, we show for the first time that the Plasminogen-Apple-Nematode (PAN) domain present in G-type lectin receptor-like kinases is essential for immunosuppression in plants. Defense pathways involving jasmonic acid and ethylene are critical for plant immunity against microbes, necrotrophic pathogens, parasites, and insects. Using two Salix purpurea G-type lectin receptor kinases, we demonstrated that intact PAN domains suppress jasmonic acid and ethylene signaling in Arabidopsis and tobacco. Variants of the same receptors with mutated residues in this domain could trigger induction of both defense pathways. Assessment of signaling processes revealed significant differences between receptors with intact and mutated PAN domain in MAPK phosphorylation, global transcriptional reprogramming, induction of downstream signaling components, hormone biosynthesis and resistance to Botrytis cinerea . Further, we demonstrated that the domain is required for oligomerization, ubiquitination, and proteolytic degradation of these receptors. These processes were completely disrupted when conserved residues in the domain were mutated. Additionally, we have tested the hypothesis in recently characterized Arabidopsis mutant which has predicted PAN domain and negatively regulates plant immunity against root nematodes. ern1.1 mutant complemented with mutated PAN shows triggered immune response with elevated WRKY33 expression, hyperphosphorylation of MAPK and resistant to necrotrophic fungus Botrytis cinerea . Collectively, our results suggest that ubiquitination and proteolytic degradation mediated by the PAN domain plays a role in receptor turn-over to suppress jasmonic acid and ethylene defense signaling in plants.

2.
Isr J Chem ; 63(10-11)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38737670

RESUMO

Truncated mucin-type O-glycans, such as Tn-associated antigens, are aberrantly expressed biomarkers of cancer, but remain challenging to target. Reactive antibodies to these antigens either lack high-affinity or are prone to antigen escape. Here, we have developed a robust chemoenzymatic strategy for the global labeling of Tn-associated antigens, i.e. Tn (GalNAcα-O-Ser/Thr), Thomsen-Friedenreich (Galß1-3GalNAcα-O-Ser/Thr, TF) and STF (Neu5Acα2-3Galß1-3GalNAcα-O-Ser/Thr, STF) antigens, in human whole blood with high efficiency and selectivity. This method relies on the use of the O-glycan sialyltransferase ST6GalNAc1 to transfer a sialic acid-functionalized adaptor to the GalNAc residue of these antigens. By tagging, the adaptor functionalized antigens can be easily targeted by customized strategies such as, but not limited to, chimeric antigen receptor T-Cells (CAR-T). We expect this tagging system to find broad applications in cancer diagnostics and targeting in combination with established strategies.

3.
Structure ; 30(5): 658-670.e5, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35219398

RESUMO

Carcinoembryonic cellular adhesion molecules (CEACAMs) serve diverse roles in cell signaling, proliferation, and survival and are made up of one or several immunoglobulin (Ig)-like ectodomains glycosylated in vivo. The physiological oligomeric state and how it contributes to protein function are central to understanding CEACAMs. Two putative dimer conformations involving different CEACAM1 N-terminal Ig-like domain (CCM1) protein faces (ABED and GFCC'C″) were identified from crystal structures. GFCC'C″ was identified as the dominant CCM1 solution dimer, but ambiguity regarding the effect of glycosylation on dimer formation calls its physiological relevance into question. We present the first crystal structure of minimally glycosylated CCM1 in the GFCC'C″ dimer conformation and characterization in solution by continuous-wave and double electron-electron resonance electron paramagnetic resonance spectroscopy. Our results suggest the GFCC'C″ dimer is dominant in solution with different levels of glycosylation, and structural conservation and co-evolved residues support that the GFCC'C″ dimer is conserved across CEACAMs.


Assuntos
Antígenos CD , Moléculas de Adesão Celular , Antígenos CD/química , Moléculas de Adesão Celular/metabolismo , Dimerização , Humanos , Polissacarídeos
4.
Biochem J ; 478(8): 1571-1583, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33734311

RESUMO

The α1,6-fucosyltransferase, FUT8, is the sole enzyme catalyzing the core-fucosylation of N-glycoproteins in mammalian systems. Previous studies using free N-glycans as acceptor substrates indicated that a terminal ß1,2-GlcNAc moiety on the Man-α1,3-Man arm of N-glycan substrates is required for efficient FUT8-catalyzed core-fucosylation. In contrast, we recently demonstrated that, in a proper protein context, FUT8 could also fucosylate Man5GlcNAc2 without a GlcNAc at the non-reducing end. We describe here a further study of the substrate specificity of FUT8 using a range of N-glycans containing different aglycones. We found that FUT8 could fucosylate most of high-mannose and complex-type N-glycans, including highly branched N-glycans from chicken ovalbumin, when the aglycone moiety is modified with a 9-fluorenylmethyloxycarbonyl (Fmoc) moiety or in a suitable peptide/protein context, even if they lack the terminal GlcNAc moiety on the Man-α1,3-Man arm. FUT8 could also fucosylate paucimannose structures when they are on glycoprotein substrates. Such core-fucosylated paucimannosylation is a prominent feature of lysosomal proteins of human neutrophils and several types of cancers. We also found that sialylation of N-glycans significantly reduced their activity as a substrate of FUT8. Kinetic analysis demonstrated that Fmoc aglycone modification could either improve the turnover rate or decrease the KM value depending on the nature of the substrates, thus significantly enhancing the overall efficiency of FUT8 catalyzed fucosylation. Our results indicate that an appropriate aglycone context of N-glycans could significantly broaden the acceptor substrate specificity of FUT8 beyond what has previously been thought.


Assuntos
Eritropoetina/metabolismo , Fucose/metabolismo , Fucosiltransferases/metabolismo , Glicoproteínas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Manose/metabolismo , Polissacarídeos/metabolismo , Animais , Sequência de Carboidratos , Galinhas , Eritropoetina/química , Eritropoetina/genética , Fluorenos/química , Fucose/química , Fucosiltransferases/química , Fucosiltransferases/genética , Expressão Gênica , Glicoproteínas/química , Glicoproteínas/genética , Glicosilação , Fator Estimulador de Colônias de Granulócitos e Macrófagos/química , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Células HEK293 , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Humanos , Cinética , Manose/química , Ovalbumina/química , Ovalbumina/genética , Ovalbumina/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Polissacarídeos/química , Especificidade por Substrato
5.
J Biol Chem ; 295(50): 17027-17045, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33004438

RESUMO

Mammalian Asn-linked glycans are extensively processed as they transit the secretory pathway to generate diverse glycans on cell surface and secreted glycoproteins. Additional modification of the glycan core by α-1,6-fucose addition to the innermost GlcNAc residue (core fucosylation) is catalyzed by an α-1,6-fucosyltransferase (FUT8). The importance of core fucosylation can be seen in the complex pathological phenotypes of FUT8 null mice, which display defects in cellular signaling, development, and subsequent neonatal lethality. Elevated core fucosylation has also been identified in several human cancers. However, the structural basis for FUT8 substrate specificity remains unknown.Here, using various crystal structures of FUT8 in complex with a donor substrate analog, and with four distinct glycan acceptors, we identify the molecular basis for FUT8 specificity and activity. The ordering of three active site loops corresponds to an increased occupancy for bound GDP, suggesting an induced-fit folding of the donor-binding subsite. Structures of the various acceptor complexes were compared with kinetic data on FUT8 active site mutants and with specificity data from a library of glycan acceptors to reveal how binding site complementarity and steric hindrance can tune substrate affinity. The FUT8 structure was also compared with other known fucosyltransferases to identify conserved and divergent structural features for donor and acceptor recognition and catalysis. These data provide insights into the evolution of modular templates for donor and acceptor recognition among GT-B fold glycosyltransferases in the synthesis of diverse glycan structures in biological systems.


Assuntos
Fucosiltransferases/química , Dobramento de Proteína , Cristalografia por Raios X , Células HEK293 , Humanos , Domínios Proteicos , Homologia Estrutural de Proteína , Especificidade por Substrato
7.
J Med Food ; 21(10): 1044-1052, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29792544

RESUMO

Menopause induces a loss of bone as a result of estrogen deficiency. Despite pharmaceutical options for the treatment of osteopenia and osteoporosis, many aging women use dietary supplements with estrogenic activity to prevent bone loss and other menopausal-related symptoms. Such supplements are yet to be tested for efficacy against a Food and Drug Administration (FDA) approved medication for menopausal bone loss such as zoledronic acid (ZA). The postmenopausal rat model was used to investigate the efficacy of various synergistic phytochemical blends mixed into the diet for 16 weeks. Retired-breeder, Fischer 344 rats were randomly assigned to sham or ovariectomy surgery and 4 treatment groups: ZA; genistein supplementation; and a low dose and high dose blend of genistein, resveratrol, and quercetin. Ovariectomy resulted in a loss of both trabecular and cortical bone which was prevented with ZA. The phytochemical blends tested were unable to reverse these losses. Despite the lack of effectiveness in preventing bone loss, a significant dose-response trend was observed in the phytochemical-rich diets in bone adipocyte number compared to ovariectomized control rats. Data from this study indicate that estrogenic phytochemicals are not as efficacious as ZA in preventing menopausal-related bone loss but may have beneficial effects on bone marrow adiposity in rats.


Assuntos
Osteoporose Pós-Menopausa/tratamento farmacológico , Compostos Fitoquímicos/administração & dosagem , Adiposidade/efeitos dos fármacos , Animais , Densidade Óssea/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Genisteína/administração & dosagem , Humanos , Osteoporose Pós-Menopausa/etiologia , Osteoporose Pós-Menopausa/fisiopatologia , Ovariectomia/efeitos adversos , Quercetina/administração & dosagem , Ratos , Ratos Endogâmicos F344 , Resveratrol/administração & dosagem
8.
J Biol Chem ; 291(38): 20085-95, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27471271

RESUMO

Human carcinoembryonic antigen-related cell adhesion molecule 1 (C?/Au: EACAM1) is a cell-surface signaling molecule involved in cell adhesion, proliferation, and immune response. It is also implicated in cancer angiogenesis, progression, and metastasis. This diverse set of effects likely arises as a result of the numerous homophilic and heterophilic interactions that CEACAM1 can have with itself and other molecules. Its N-terminal Ig variable (IgV) domain has been suggested to be a principal player in these interactions. Previous crystal structures of the ß-sandwich-like IgV domain have been produced using Escherichia coli-expressed material, which lacks native glycosylation. These have led to distinctly different proposals for dimer interfaces, one involving interactions of ABED ß-strands and the other involving GFCC'C″ ß-strands, with the former burying one prominent glycosylation site. These structures raise questions as to which form may exist in solution and what the effect of glycosylation may have on this form. Here, we use NMR cross-correlation measurements to examine the effect of glycosylation on CEACAM1-IgV dimerization and use residual dipolar coupling (RDC) measurements to characterize the solution structure of the non-glycosylated form. Our findings demonstrate that even addition of a single N-linked GlcNAc at potential glycosylation sites inhibits dimer formation. Surprisingly, RDC data collected on E. coli expressed material in solution indicate that a dimer using the non-glycosylated GFCC'C″ interface is preferred even in the absence of glycosylation. The results open new questions about what other factors may facilitate dimerization of CEACAM1 in vivo, and what roles glycosylation may play in heterophylic interactions.


Assuntos
Antígenos CD/química , Moléculas de Adesão Celular/química , Multimerização Proteica/fisiologia , Antígenos CD/genética , Antígenos CD/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Glicosilação , Células HEK293 , Humanos , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
9.
Sci Rep ; 5: 13231, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26307169

RESUMO

Acquiring sufficient amounts of high-quality cells remains an impediment to cell-based therapies. Induced pluripotent stem cells (iPSC) may be an unparalleled source, but autologous iPSC likely retain deficiencies requiring correction. We present a strategy for restoring physiological function in genetically deficient iPSC utilizing the low-density lipoprotein receptor (LDLR) deficiency Familial Hypercholesterolemia (FH) as our model. FH fibroblasts were reprogrammed into iPSC using synthetic modified mRNA. FH-iPSC exhibited pluripotency and differentiated toward a hepatic lineage. To restore LDLR endocytosis, FH-iPSC were transfected with a 31 kb plasmid (pEHZ-LDLR-LDLR) containing a wild-type LDLR (FH-iPSC-LDLR) controlled by 10 kb of upstream genomic DNA as well as Epstein-Barr sequences (EBNA1 and oriP) for episomal retention and replication. After six months of selective culture, pEHZ-LDLR-LDLR was recovered from FH-iPSC-LDLR and transfected into Ldlr-deficient CHO-a7 cells, which then exhibited feedback-controlled LDLR-mediated endocytosis. To quantify endocytosis, FH-iPSC ± LDLR were differentiated into mesenchymal cells (MC), pretreated with excess free sterols, Lovastatin, or ethanol (control), and exposed to DiI-LDL. FH-MC-LDLR demonstrated a physiological response, with virtually no DiI-LDL internalization with excess sterols and an ~2-fold increase in DiI-LDL internalization by Lovastatin compared to FH-MC. These findings demonstrate the feasibility of functionalizing genetically deficient iPSC using episomal plasmids to deliver physiologically responsive transgenes.


Assuntos
Endocitose/genética , Hiperlipoproteinemia Tipo II/genética , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Plasmídeos/genética , Receptores de LDL/genética , Diferenciação Celular/genética , Células Cultivadas , Melhoramento Genético/métodos , Humanos , Plasmídeos/administração & dosagem , Recuperação de Função Fisiológica
10.
Cell Reprogram ; 15(2): 107-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23402576

RESUMO

The shortage of human organs and tissues for transplant has led to significant interest in xenotransplantation of pig tissues for human patients. However, transplantation of pig organs results in an acute immune rejection, leading to death of the organ within minutes. The α-1,3-galactosyltransferase (GALT) gene has been knocked out in pigs to reduce rejection, yet additional genes need to be modified to ultimately make pig tissue immunocompatible with humans. The development of pig induced pluripotent stem cells (piPSCs) from GALT knockout (GALT-KO) tissue would provide an excellent cell source for complex genetic manipulations (e.g., gene targeting) that often require highly robust and proliferative cells. In this report, we generated GALT-KO piPSCs by the overexpression of POU5F1, SOX2, NANOG, LIN28, KLF-4, and C-MYC reprogramming genes. piPSCs showed classical stem cell morphology and characteristics, expressing integrated reprogramming genes in addition to the pluripotent markers AP, SSEA1, and SSEA4. GALT-KO piPSCs were highly proliferative and possessed doubling times and telomerase activity similar to human embryonic stem cells. These results demonstrated successful reprogramming of GALT-KO fibroblasts into GALT-KO piPSCs. GALT-KO piPSCs are potentially an excellent immortal cell source for the generation of pigs with complex genetic modifications for xenotransplantation, somatic cell nuclear transfer, or chimera formation.


Assuntos
Antígenos de Diferenciação/biossíntese , Galactosiltransferases , Expressão Gênica , Técnicas de Silenciamento de Genes , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/biossíntese , Animais , Antígenos de Diferenciação/genética , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Transplante de Células-Tronco , Suínos , Fatores de Transcrição/genética , Transplante Heterólogo
11.
Cell Transplant ; 22(6): 945-59, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23043799

RESUMO

Neural cells derived from induced pluripotent stem cells (iPSCs) have the potential for autologous cell therapies in treating patients with severe neurological disorders or injury. However, further study of efficacy and safety are needed in large animal preclinical models that have similar neural anatomy and physiology to humans such as the pig. The pig model for pluripotent stem cell therapy has been made possible for the first time with the development of pig iPSCs (piPSCs) capable of in vitro and in vivo differentiation into tissues of all three germ layers. Still, the question remains if piPSCs are capable of undergoing robust neural differentiation using a system similar to those being used with human iPSCs. In this study, we generated a new line of piPSCs from fibroblast cells that expressed pluripotency markers and were capable of embryoid body differentiation into all three germ layers. piPSCs demonstrated robust neural differentiation forming ßIII-TUB/MAP2+ neurons, GFAP+ astrocytes, and O4+ oligodendrocytes and demonstrated strong upregulation of neural cell genes representative of all three major neural lineages of the central nervous system. In the presence of motor neuron signaling factors, piPSC-derived neurons showed expression of transcription factors associated with motor neuron differentiation (HB9 and ISLET1). Our findings demonstrate that SSEA4 expression is required for piPSCs to differentiate into neurons, astrocytes, and oligodendrocytes and furthermore develop specific neuronal subtypes. This indicates that the pigs can fill the need for a powerful model to study autologous neural iPSC therapies in a system similar to humans.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/citologia , Antígenos Embrionários Estágio-Específicos/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Biomarcadores/metabolismo , Forma Celular , Reprogramação Celular/genética , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Humanos , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Neurônios/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Sus scrofa , Transdução Genética , Tubulina (Proteína)/metabolismo
12.
Toxicol Sci ; 129(1): 9-20, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22649186

RESUMO

To assess the potential risks of human exposure to endocrine active compounds (EACs), the mechanisms of toxicity must first be identified and characterized. Currently, there are no robust in vitro models for identifying the mechanisms of toxicity in germ cells resulting from EAC exposure. Human embryonic stem cells can differentiate into numerous functional cell types including germ-like cells (GLCs). These cells possess characteristics indicative of a germ cell state, suggesting they offer a novel system to investigate the consequences of chemical exposure on normal germ cell processes. To characterize these processes, a metabolomic-based approach was employed to determine the response of GLCs following exposure to 0.001, 0.01, 0.1, 1, 10, or 100µM estradiol, testosterone, or progesterone for 48h. Following exposure, cellular extracts underwent gas chromatography coupled with mass spectrometry analysis. Models were then constructed using principal component analysis on acquired spectra to discriminate among steroid hormones as well as doses for each hormone. t-test comparisons generated a preliminary list of metabolites that were statistically significant in GLC's biochemical response to these steroid hormones. Steroid hormone exposures caused fluxes in intracellular pathways such as amino acid synthesis and metabolism, fatty acid synthesis, as well as cholesterol and lipoprotein metabolism. Further pathway analysis, based on these identified metabolites, will aid in modeling the response of GLCs to endogenous steroid hormones and allow for identification of biomarkers delineating germ cell-based developmental and reproductive pathways.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Estradiol/toxicidade , Células Germinativas/efeitos dos fármacos , Metabolômica , Progesterona/toxicidade , Testosterona/toxicidade , Proliferação de Células , Células-Tronco Embrionárias/citologia , Citometria de Fluxo , Células Germinativas/citologia , Humanos
13.
J Med Food ; 12(5): 959-66, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19857057

RESUMO

The effect of octanoate and decanoate, respectively, eight- and 10-carbon medium-chain fatty acids (MCFAs), on apoptotic signaling in 3T3-L1 adipocytes was investigated. 3T3-L1 adipocytes were treated with various concentrations of octanoate or decanoate. Cell viability, apoptosis, and expression of apoptosis-related proteins were investigated. Results indicated that both octanoate and decanoate decreased viability, increased apoptosis, and increased reactive oxygen species production. Immunoblotting analysis showed an increase in the levels of cytoplasmic cytochrome c and cleaved poly(ADP-ribose) polymerase by octanoate and decanoate. Concomitantly, we observed that pro-caspase-3 was decreased, resulting in the induced accumulation of the cleaved form of caspase-3 by both octanoate and decanoate. In addition, both octanoate and decanoate increased the expression of pro-apoptotic Bax with an accompanied decrease of anti-apoptotic Bcl-2. These results show that octanoate and decanoate mediate adipocyte apoptosis via a caspase-dependent mitochondrial pathway in 3T3-L1 adipocytes. MCFAs thus decrease adipocyte number by initiating the apoptotic process in 3T3-L1 adipocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Caprilatos/farmacologia , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Decanoatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células 3T3-L1 , Adipócitos/fisiologia , Animais , Citocromos c/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
14.
J Med Food ; 12(4): 846-53, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19735186

RESUMO

Xanthohumol (XN) and guggulsterone (GS) have each been shown to inhibit adipogenesis and induce apoptosis in adipocytes. In the present study effects of the combination of XN + GS on 3T3-L1 adipocyte apoptosis and adipogenesis were investigated. Mature adipocytes were treated with XN and GS individually and in combination. XN and GS individually decreased cell viability, but XN + GS caused an enhanced decrease in viability and potentiated induction of apoptosis. Likewise, XN + GS caused a potentiated increase in caspase-3/7 activation, whereas neither of the compounds showed any effect individually. In addition, western blot analysis revealed that XN + GS increased Bax expression and decreased Bcl-2 expression, whereas individual compounds did not show any significant effect. XN and GS both decreased lipid accumulation. Individually, XN at 1.5 microM and GS at 3.12 microM decreased lipid accumulation by 26 +/- 4.5% (P < .001) each, whereas XN1.5 + GS3.12 decreased lipid accumulation by 78.2 +/- 1.8% (P < .001). Moreover, expression of the adipocyte-specific proteins was down-regulated with XN1.5 + GS3.12, but no effect was observed with the individual compounds. Finally, XN + GS caused an enhanced stimulation of lipolysis. Thus, combination of XN and GS is more potent in exerting anti-obesity effects than additive effects of the individual compounds.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Pregnenodionas/farmacologia , Propiofenonas/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Fármacos Antiobesidade/uso terapêutico , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Commiphora/química , Regulação para Baixo , Quimioterapia Combinada , Flavonoides/uso terapêutico , Expressão Gênica , Lipólise/efeitos dos fármacos , Camundongos , Obesidade/metabolismo , Obesidade/prevenção & controle , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Propiofenonas/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
15.
Obesity (Silver Spring) ; 16(6): 1232-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18369342

RESUMO

OBJECTIVE: To study the effects of xanthohumol (XN), a flavonoid found in hops (Humulus lupulus) and honokiol (HK), a lignan isolated from Magnolia officinalis, alone and in combination, on apoptotic signaling in 3T3-L1 adipocytes. METHODS AND PROCEDURES: 3T3-L1 mature adipocytes were incubated with various concentrations of XN and HK alone and in combination. Viability and apoptosis were quantified using an MTS-based cell viability assay and single-stranded DNA assay, respectively. Expression of apoptosis related proteins including cleaved poly(ADP-ribose) polymerase (PARP), cytochrome c, Bcl-2, caspase-3/7, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and Akt was analyzed by western blotting. RESULTS: Combinations of XN and HK significantly decreased viability and induced apoptosis in a dose-dependent manner and more than the additive responses to XN and HK alone. Western blot analysis showed an increase in cleaved PARP and cytochrome c release and decrease in expression of Bcl-2 protein by XN plus HK, whereas XN and HK individually had no effect. Furthermore, the combination of XN and HK activated PTEN and inactivated Akt by decreasing levels of phosphorylated PTEN and phosphorylated Akt. DISCUSSION: We demonstrated that although XN and HK showed little or no effect as individual compounds, in combination (XN plus HK) they showed enhanced activity in inducing apoptosis via the cytochrome c/caspase-3/PARP and PTEN/Akt pathways in 3T3-L1 adipocytes.


Assuntos
Adipócitos/citologia , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Propiofenonas/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Flavonoides , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Biofactors ; 33(2): 137-48, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19346589

RESUMO

Withaferin A (WA), a highly oxygenated steroidal lactone that is found in the medicinal plant Withania somnifera (also called ashwagandha) has been reported to have anti-tumor, anti-angiogenesis, and pro-apoptotic activity. We investigated the effects of WA on viability, apoptosis and adipogenesis in 3T3-L1 adipocytes. Pre- and post-confluent preadipocytes and mature adipocytes were treated with WA (1-25 microM) up to 24 hrs. Viability and apoptosis were measured by CellTiter-Blue Cell Viability Assay and single strand DNA ELISA Assay, respectively. WA decreased viability and induced apoptosis in all stages of cells. Induction of apoptosis by WA in mature adipocytes was mediated by increased ERK1/2 phosphorylation and altered Bax and Bcl2 protein expression. The effect of WA on adipogenesis was examined by AdipoRed Assay after treating with WA (0.1-1 microM) during the differentiation period. WA decreased lipid accumulation in a dose-dependent manner and decreased the expression of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha and adipocyte fatty acid binding protein. The effects on apoptosis and lipid accumulation were also confirmed with Hoechst staining and Oil Red O staining, respectively. These results show that WA acts on adipocytes to reduce cell viability and adipogenesis and also induce apoptosis.


Assuntos
Adipócitos/citologia , Adipogenia , Apoptose/efeitos dos fármacos , Ergosterol/análogos & derivados , Células 3T3-L1 , Adipócitos/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Sobrevivência Celular , Relação Dose-Resposta a Droga , Ergosterol/farmacologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , PPAR gama/metabolismo , Fosforilação , Fatores de Tempo , Vitanolídeos
17.
J Nutr ; 137(12): 2668-73, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18029481

RESUMO

Genistein (G) and resveratrol (R) individually inhibit adipogenesis in 3T3-L1 adipocytes and induce apoptosis in cancer cells. We investigated whether the combination of G and R resulted in enhanced effects on adipogenesis, lipolysis, and apoptosis in 3T3-L1 cells. Preadipocytes and mature adipocytes were treated with G and R individually at 50 and 100 micromol/L (G100; R100) and in combination. Both in preadipocytes and mature adipocytes, G and R individually decreased cell viability dose-dependently, but G100 + R100 further decreased viability by 59 +/- 0.97% (P < 0.001) and 69.7 +/- 1.2% (P < 0.001) after 48 h compared with G100 and R100, respectively. G100 + R100 induced apoptosis 242 +/- 8.7% (P < 0.001) more than the control after 48 h, whereas G100 and R100 individually increased apoptosis only 46 +/- 9.2 and 46 +/- 7.9%, respectively. G and R did not modulate mitogen-activated protein kinase expression by themselves, but G100 + R100 increased Jun-N-terminal kinase phosphorylation by 38.8 +/- 4.4% (P < 0.001) and decreased extracellular signal-regulating kinase phosphorylation by 48 +/- 3.4% (P < 0.001). Individually, G and R at 25 micromol/L (G25; R25) decreased lipid accumulation by 30 +/- 1.7% and 20.07 +/- 4.27%, respectively (P < 0.001). However, G25 + R25 decreased lipid accumulation by 77.9 +/- 3.4% (P < 0.001). Lipolysis assay revealed that neither G25 nor R25 induced lipolysis, whereas G25 + R25 significantly increased lipolysis by 25.5 +/- 4.6%. The adipocyte-specific proteins PPARgamma and CCAAT/enhancer binding protein-alpha were downregulated after treatment with G + R, but no effect was observed with individual compounds. These results indicate that G and R in combination produce enhanced effects on inhibiting adipogenesis, inducing apoptosis, and promoting lipolysis in 3T3-L1 adipocytes. Thus, the combination of G and R is more potent in exerting antiobesity effects than the individual compounds.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Genisteína/farmacologia , Estilbenos/farmacologia , Células 3T3-L1 , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Resveratrol
18.
Apoptosis ; 12(11): 1953-63, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17874298

RESUMO

Xanthohumol (XN), the chalcone from beer hops has several biological activities. XN has been shown to induce apoptosis in cancer cells and also has been reported to be involved in lipid metabolism. Based on these studies and our previous work with natural compounds, we hypothesized that XN and its isomeric flavanone, isoxanthohumol (IXN), would induce apoptosis in adipocytes through the mitochondrial pathway and would inhibit maturation of preadipocytes. Adipocytes were treated with various concentrations of XN or IXN. In mature adipocytes both XN and IXN decreased viability, increased apoptosis and increased ROS production, XN being more effective. Furthermore, the antioxidants ascorbic acid and 2-mercaptoethanol prevented XN and IXN-induced ROS generation and apoptosis. Immunoblotting analysis showed an increase in the levels of cytoplasmic cytochrome c and cleaved poly (ADP-ribose) polymerase (PARP) by XN and IXN. Concomitantly, we observed activation of the effectors caspase-3/7. In maturing preadipocytes both XN and IXN were effective in reducing lipid content, XN being more potent. Moreover, the major adipocyte marker proteins such as PPARgamma, C/EBPalpha, and aP2 decreased after treatment with XN during the maturation period and that of DGAT1 decreased after treatment with XN and IXN. Taken together, our data indicate that both XN and IXN inhibit differentiation of preadipocytes, and induce apoptosis in mature adipocytes, but XN is more potent.


Assuntos
Adipogenia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Propiofenonas/farmacologia , Xantonas/farmacologia , Células 3T3-L1 , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Flavonoides , Inibidores do Crescimento/farmacologia , Humulus , Camundongos
19.
Int J Mol Med ; 20(4): 527-31, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17786283

RESUMO

Hypertriglyceridemia is an independent risk factor of cardiovascular diseases. It is caused by the imbalance between hepatic triglyceride production and peripheral removal. Lipoprotein lipase (LPL) plays a central role in the removal of plasma triglyceride. During the screening of possible anti-dyslipidemic drugs, we observed that scopoletin (6-methoxy-7-hydroxycoumarin) significantly increased LPL activity in adipocytes. Scopoletin increased LPL activity in culture medium of 3T3-L1 adipocytes in dose- and time-dependent manners. It did not release LPL from the adipocyte membrane and, instead, increased the LPL mRNA level, suggesting transcriptional control. Scopoletin also partially reversed tumor necrosis factor-alpha-induced suppression of LPL activity. These results suggest the possible action of scopoletin as a facilitator of plasma triglyceride clearance.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/enzimologia , Lipase Lipoproteica/metabolismo , Escopoletina/farmacologia , Células 3T3-L1 , Animais , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Heparina/farmacologia , Lipase Lipoproteica/genética , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa
20.
Biol Pharm Bull ; 30(2): 242-6, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17268059

RESUMO

Cytokines produced by immune cells infiltrating pancreatic islets are important mediators of beta-cell destruction in insulin-dependent diabetes mellitus. Scoparone (6,7-dimethoxycoumarin) is known to have a wide range of pharmacological properties in vitro. In this study, the effects of scoparone on cytokine-induced beta-cell dysfunction were examined. Presence of scoparone significantly protected interleukin-1beta (IL-1beta) and interferon-gamma (IFN-gamma)-mediated cytotoxicity of RINm5F, a rat insulinoma cell line, and preserved glucose-stimulated insulin secretion in rat pancreatic islets. Scoparone also resulted in a significant reduction in IL-1beta and IFN-gamma-induced nitric oxide (NO) production, a finding that correlated well with reduced levels of the inducible form of NO synthase (iNOS) mRNA and protein. The molecular mechanism by which scoparone inhibited iNOS gene expression appeared to involve the inhibition of NF-kappaB activation. These results revealed the possible therapeutic value of scoparone for the prevention of diabetes mellitus progression.


Assuntos
Cumarínicos/farmacologia , Hipoglicemiantes/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Imunossupressores/farmacologia , Insulina/metabolismo , Secreção de Insulina , Insulinoma , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Óxido Nítrico Sintase/genética , Nitritos/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA