Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Front Pharmacol ; 15: 1419881, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221140

RESUMO

Backgroud: Thymic atrophy marks the onset of immune aging, precipitating developmental anomalies in T cells. Numerous clinical and preclinical investigations have underscored the regulatory role of Ganoderma lucidum spores (GLS) in T cell development. However, the precise mechanisms underlying this regulation remain elusive. Methods: In this study, a mice model of estradiol benzoate (EB)-induced thymic atrophy was constructed, and the improvement effect of GLS on thymic atrophy was evaluated. Then, we employs multi-omics techniques to elucidate how GLS modulates T cell development amidst EB-induced thymic atrophy in mice. Results: GLS effectively mitigates EB-induced thymic damage by attenuating apoptotic thymic epithelial cells (TECs) and enhancing the output of CD4+ T cells into peripheral blood. During thymic T cell development, sporoderm-removed GLS (RGLS) promotes T cell receptor (TCR) α rearrangement by augmenting V-J fragment rearrangement frequency and efficiency. Notably, biased Vα14-Jα18 rearrangement fosters double-positive (DP) to invariant natural killer T (iNKT) cell differentiation, partially contingent on RGLS-mediated restriction of peptide-major histocompatibility complex I (pMHCⅠ)-CD8 interaction and augmented CD1d expression in DP thymocytes, thereby promoting DP to CD4+ iNKT cell development. Furthermore, RGLS amplifies interaction between a DP subpopulation, termed DPsel-7, and plasmacytoid dendritic cells (pDCs), likely facilitating the subsequent development of double-negative iNKT1 cells. Lastly, RGLS suppresses EB-induced upregulation of Abpob and Apoa4, curbing the clearance of CD4+Abpob+ and CD4+Apoa4+ T cells by mTECs, resulting in enhanced CD4+ T cell output. Discussion: These findings indicate that the RGLS effectively mitigates EB-induced TEC apoptosis and compromised double-positive thymocyte development. These insights into RGLS's immunoregulatory role pave the way for its potential as a T-cell regeneration inducer.

2.
Mol Ther Methods Clin Dev ; 32(3): 101307, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39229455

RESUMO

Macrophage-based cell therapeutics is an emerging modality to treat cancer and repair tissue damage. A reproducible manufacturing and engineering process is central to fulfilling their therapeutic potential. Here, we establish a robust macrophage-manufacturing platform (Mo-Mac) and demonstrate that macrophage functionality can be enhanced by N1-methylpseudouridine (m1Ψ)-modified mRNA. Using single-cell transcriptomic analysis as an unbiased approach, we found that >90% cells in the final product were macrophages while the rest primarily comprised T cells, B cells, natural killer cells, promyelocytes, promonocytes, and hematopoietic stem cells. This analysis also guided the development of flow-cytometry strategies to assess cell compositions in the manufactured product to meet requirements by the National Medical Products Administration. To modulate macrophage functionality, as an illustrative example we examined whether the engulfment capability of macrophages could be enhanced by mRNA technology. We found that efferocytosis was increased in vitro when macrophages were electroporated with m1Ψ-modified mRNA encoding CD300LF (CD300LF-mRNA-macrophage). Consistently, in a mouse model of acute liver failure, CD300LF-mRNA-macrophages facilitated organ recovery from acetaminophen-induced hepatotoxicity. These results demonstrate a GMP-compliant macrophage-manufacturing process and indicate that macrophages can be engineered by versatile mRNA technology to achieve therapeutic goals.

3.
Front Pharmacol ; 15: 1330732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933667

RESUMO

Ligustrum lucidum W.T. Aiton is an outstanding herb with the homology of medicine and food. Its ripe fruits are traditionally used as an important tonic for kidneys and liver in China. Ligustrum lucidum W.T. Aiton is rich in nutritional components and a variety of bioactive ingredients. A total of 206 compounds have been isolated and identified, they mainly include flavonoids, phenylpropanoids, iridoid glycosides, and triterpenoids. These compounds exert anti-osteoporosis, anti-tumor, liver protective, antioxidant, anti-inflammatory, and immunomodulatory effects. Ligustrum lucidum W.T. Aiton has been traditionally used to treat many complex diseases, including osteoporotic bone pain, rheumatic bone, cancer, related aging symptoms, and so on. In the 2020 Edition of Chinese Pharmacopoeia, there are more than 100 prescriptions containing L. lucidum W.T. Aiton. Among them, some classical preparations including Er Zhi Wan and Zhenqi fuzheng formula, are used in the treatment of various cancers with good therapeutic effects. Additionally, L. lucidum W.T. Aiton has also many excellent applications for functional food, ornamental plants, bioindicator of air pollution, algicidal agents, and feed additives. Ligustrum lucidum W.T. Aiton has rich plant resources. However, the application potential of it has not been fully exploited. We hope that this paper provides a theoretical basis for the high-value and high-connotation development of L. lucidum W.T. Aiton in the future.

5.
J Cell Mol Med ; 28(7): e18221, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38509759

RESUMO

Gliomas are the most common tumours in the central nervous system. In the present study, we aimed to find a promising anti-glioma compound and investigate the underlying molecular mechanism. Glioma cells were subjected to the 50 candidate compounds at a final concentration of 10 µM for 72 h, and CCK-8 was used to evaluate their cytotoxicity. NPS-2143, an antagonist of calcium-sensing receptor (CASR), was selected for further study due to its potent cytotoxicity to glioma cells. Our results showed that NPS-2143 could inhibit the proliferation of glioma cells and induce G1 phase cell cycle arrest. Meanwhile, NPS-2143 could induce glioma cell apoptosis by increasing the caspase-3/6/9 activity. NPS-2143 impaired the immigration and invasion ability of glioma cells by regulating the epithelial-mesenchymal transition process. Mechanically, NPS-2143 could inhibit autophagy by mediating the AKT-mTOR pathway. Bioinformatic analysis showed that the prognosis of glioma patients with low expression of CASR mRNA was better than those with high expression of CASR mRNA. Gene set enrichment analysis showed that CASR was associated with cell adhesion molecules and lysosomes in glioma. The nude mice xenograft model showed NPS-2143 could suppress glioma growth in vivo. In conclusion, NPS-2143 can suppress the glioma progression by inhibiting autophagy.


Assuntos
Glioma , Naftalenos , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Serina-Treonina Quinases TOR/metabolismo , Naftalenos/farmacologia
6.
Biochem Pharmacol ; 223: 116113, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460907

RESUMO

Glioma is one of the most common primary malignant tumors of the central nervous system. Temozolomide (TMZ) is the only effective chemotherapeutic agent, but it easily develops resistance and has unsatisfactory efficacy. Consequently, there is an urgent need to develop safe and effective compounds for glioma treatment. The cytotoxicity of 30 candidate compounds to glioma cells was detected by the CCK-8 assay. Daurisoline (DAS) was selected for further investigation due to its potent anti-glioma effects. Our study revealed that DAS induced glioma cell apoptosis through increasing caspase-3/6/9 activity. DAS significantly inhibited the proliferation of glioma cells by inducing G1-phase cell cycle arrest. Meanwhile, DAS remarkably suppressed the migration and invasion of glioma cells by regulating epithelial-mesenchymal transition. Mechanistically, our results revealed that DAS impaired the autophagic flux of glioma cells at a late stage by mediating the PI3K/AKT/mTOR pathway. DAS could inhibit TMZ-induced autophagy and then significantly promote TMZ chemosensitivity. Nude mice xenograft model revealed that DAS could restrain glioma proliferation and promote TMZ chemosensitivity. Thus, DAS is a potential anti-glioma drug that can improve glioma sensitivity to TMZ and provide a new therapeutic strategy for glioma in chemoresistance.


Assuntos
Benzilisoquinolinas , Neoplasias Encefálicas , Glioma , Camundongos , Animais , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Neoplasias Encefálicas/metabolismo , Glioma/patologia , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Linhagem Celular Tumoral , Apoptose , Resistencia a Medicamentos Antineoplásicos
7.
Arch Gynecol Obstet ; 309(2): 689-697, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38051371

RESUMO

PURPOSE: The proportion of patients with poor ovarian response (POR) is increasing, but effective treatment remains a challenge. To control the hidden peaks of luteinizing hormone (LH) and premature ovulation for poor responders, this study investigated the efficacy of flexible short protocol (FSP) with gonadotropin-releasing hormone antagonist (GnRH-ant) on trigger day. METHODS: The 662 cycles of POR patients were retrospectively analyzed. The cohort was divided into control and intervention groups. The intervention group (group A) with 169 cycles received a GnRH-ant given on trigger day. The control (group B) with 493 cycles received only FSP. The clinical outcomes of the two groups were compared. RESULTS: Compared with group B, with gonadotropin-releasing hormone antagonist (GnRH-ant) on trigger day in group A the incidences of spontaneous premature ovulation decreased significantly (2.37% vs. 8.72%, P < 0.05). The number of fresh embryo-transfer cycles was 45 in group A and 117 in group B. There were no significant differences in clinical outcomes, including implantation rate, clinical pregnancy rate, live birth rate and the cumulative live birth rate (12.0% vs. 9.34%; 22.22% vs. 21.93%; 17.78% vs. 14.91%; 20.51% vs. 20%, respectively; P > 0.05) between the two group. CONCLUSION: FSP with GnRH-ant addition on trigger day had no effect on clinical outcomes, but could effectively inhibit the hidden peaks of luteinizing hormone (LH) and spontaneous premature ovulation in POR. Therefore, it is an advantageous option for POR women.


Assuntos
Hormônio Liberador de Gonadotropina , Nascimento Prematuro , Gravidez , Feminino , Humanos , Fertilização in vitro/métodos , Estudos Retrospectivos , Indução da Ovulação/métodos , Hormônio Luteinizante/farmacologia , Taxa de Gravidez , Ovulação , Nascimento Prematuro/tratamento farmacológico , Antagonistas de Hormônios/uso terapêutico , Antagonistas de Hormônios/farmacologia
8.
Biomed Chromatogr ; 38(2): e5787, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38038157

RESUMO

Previous studies have found that removing the sporoderm significantly enhanced antitumor and immunoregulatory activities of Ganoderma lucidum spore (GLS) compared with breaking the sporoderm. However, the pharmacokinetics of sporoderm-removed GLS (RGLS) and sporoderm-broken GLS (BGLS) remain elusive. To compare the pharmacokinetic differences between the two products, we developed a UPLC-QqQ MS method for determining nine representative triterpenoid concentrations. Chloramphenicol was used as an internal standard. The samples were separated on a reversed-phase column using acetonitrile-0.1% formic acid and water-0.1% formic acid as mobile phases. Nine triterpenoids were analyzed using multiple reaction monitoring mode. The results showed that the area under the concentration-time curve from dosing to time t of all nine components was increased in RGLS compared with BGLS. And the time to the maximum concentration in BGLS was delayed compared with that of RGLS. These indicated that the absorption of RGLS was better than that of BGLS, and the sporoderm might hinder the absorption of the active components. These results increase our understanding of the bioavailability of BGLS and RGLS and indicate that increased bioavailability is one of the main reasons for the enhanced efficacy of RGLS.


Assuntos
Reishi , Triterpenos , Ratos , Animais , Cromatografia Líquida de Alta Pressão , Esporos Fúngicos/química , Formiatos , Triterpenos/análise
9.
Br J Ophthalmol ; 108(4): 607-612, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37055157

RESUMO

AIM: To evaluate the role of papillary vitreous detachment in the pathogenesis of non-arteritic anterior ischaemic optic neuropathy (NAION) by comparing the features of vitreopapillary interface between NAION patients and normal individuals. METHODS: This study included 22 acute NAION patients (25 eyes), 21 non-acute NAION patients (23 eyes) and 23 normal individuals (34 eyes). All study participants underwent swept-source optical coherence tomography to assess the vitreopapillary interface, peripapillary wrinkles and peripapillary superficial vessel protrusion. The statistical correlations between peripapillary superficial vessel protrusion measurements and NAION were analysed. Two NAION patients underwent standard pars plana vitrectomy. RESULTS: Incomplete papillary vitreous detachment was noted in all acute NAION patients. The prevalence of peripapillary wrinkles was 68% (17/25), 30% (7/23) and 0% (0/34), and the prevalence of peripapillary superficial vessel protrusion was 44% (11/25), 91% (21/23) and 0% (0/34) in the acute, non-acute NAION and control groups, respectively. The prevalence of peripapillary superficial vessel protrusion was 88.9% in the eyes without retinal nerve fibre layer thinning. Furthermore, the number of peripapillary superficial vessel protrusions in the superior quadrant was significantly higher than that in the other quadrants in eyes with NAION, consistent with the more damaged visual field defect regions. Peripapillary wrinkles and visual field defects in two patients with NAION were significantly attenuated within 1 week and 1 month after the release of vitreous connections, respectively. CONCLUSION: Peripapillary wrinkles and superficial vessel protrusion may be signs of papillary vitreous detachment-related traction in NAION. Papillary vitreous detachment may play an important role in NAION pathogenesis.


Assuntos
Disco Óptico , Neuropatia Óptica Isquêmica , Descolamento do Vítreo , Humanos , Neuropatia Óptica Isquêmica/diagnóstico , Neuropatia Óptica Isquêmica/etiologia , Disco Óptico/patologia , Descolamento do Vítreo/complicações , Descolamento do Vítreo/diagnóstico , Descolamento do Vítreo/patologia , Testes de Campo Visual , Tomografia de Coerência Óptica/métodos
10.
Eur J Pharmacol ; 965: 176276, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113966

RESUMO

BACKGROUND: Inflammation is a major contributing factor in myocardial ischemia/reperfusion (I/R) injury, and targeting macrophage inflammation is an effective strategy for myocardial I/R therapy. Though remimazolam is approved for sedation, induction, and the maintenance of general anesthesia in cardiac surgery, its effect on cardiac function during the perioperative period has not been reported. Therefore, this research aimed to explore the impact of remimazolam on inflammation during myocardial ischemia/reperfusion (I/R) injury. METHODS: An in vivo myocardial I/R mice model and an in vitro macrophage inflammation model were used to confirm remimazolam's cardiac protective effect. In vivo, we used echocardiography, hematoxylin and eosin (HE), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining to determine remimazolam's therapeutic effects on myocardial I/R injury and inflammation. In vitro, we employed enzyme-linked immunosorbent assay (ELISA), Western blot, Real-time Quantitative PCR (qPCR), flow cytometry, and immunofluorescence staining to assess inflammatory responses, especially remimazolam's effects on macrophage polarization after I/R. Furthermore, molecular docking was used to identify its potential binding targets on the inflammatory pathway to explore the mechanism of remimazolam. RESULTS: Remimazolam exhibited significant anti-myocardial I/R injury activity by inhibiting macrophage-mediated inflammation to reduce myocardial infarction, enhancing cardiac function. In addition, macrophage depletion counteracted improved cardiac function by remimazolam treatment. Mechanistically, the activated NF-ĸB signaling pathway and phosphorylation of p50 and p65 were repressed for anti-inflammatory effect. Consistently, two binding sites on p50 and p65 were identified by molecular docking to affect their phosphorylation of the Ser, Arg, Asp, and His residues, thus regulating NF-κB pathway activity. CONCLUSION: Our results unveil the therapeutic potential of remimazolam against myocardial I/R injury by inhibiting macrophages polarizing into the M1 type, alleviating inflammation.


Assuntos
Benzodiazepinas , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Camundongos , Animais , NF-kappa B/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Simulação de Acoplamento Molecular , Traumatismo por Reperfusão/metabolismo , Macrófagos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Apoptose
11.
Adv Sci (Weinh) ; 10(32): e2301977, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37824217

RESUMO

Gastric cancer stem cells (GCSCs) are self-renewing tumor cells that govern chemoresistance in gastric adenocarcinoma (GAC), whereas their regulatory mechanisms remain elusive. Here, the study aims to elucidate the role of ATOH1 in the maintenance of GCSCs. The preclinical model and GAC sample analysis indicate that ATOH1 deficiency is correlated with poor GAC prognosis and chemoresistance. ScRNA-seq reveals that ATOH1 is downregulated in the pit cells of GAC compared with those in paracarcinoma samples. Lineage tracing reveals that Atoh1 deletion strongly confers pit cell stemness. ATOH1 depletion significantly accelerates cancer stemness and chemoresistance in Tff1-CreERT2; Rosa26Tdtomato and Tff1-CreERT2; Apcfl/fl ; p53fl/fl (TcPP) mouse models and organoids. ATOH1 deficiency downregulates growth arrest-specific protein 1 (GAS1) by suppressing GAS1 promoter transcription. GAS1 forms a complex with RET, which inhibits Tyr1062 phosphorylation, and consequently activates the RET/AKT/mTOR signaling pathway by ATOH1 deficiency. Combining chemotherapy with drugs targeting AKT/mTOR signaling can overcome ATOH1 deficiency-induced chemoresistance. Moreover, it is confirmed that abnormal DNA hypermethylation induces ATOH1 deficiency. Taken together, the results demonstrate that ATOH1 loss promotes cancer stemness through the ATOH1/GAS1/RET/AKT/mTOR signaling pathway in GAC, thus providing a potential therapeutic strategy for AKT/mTOR inhibitors in GAC patients with ATOH1 deficiency.


Assuntos
Adenocarcinoma , Proteína Vermelha Fluorescente , Neoplasias Gástricas , Animais , Humanos , Camundongos , Adenocarcinoma/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
Biochem Biophys Res Commun ; 650: 9-16, 2023 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-36764210

RESUMO

CTBP1 has been demonstrated as a co-repressor in the transcriptional regulation of downstream genes and is involved in various cell process. However, the mechanism of CTBP1 in the progression of prostate cancer is still unclear. Here, we aim to investigate how CTBP1 exerts its role in prostate cancer progression, especially how CTBP1 was regulated by the upstream genes. We found that CTBP1 was highly expressed in prostate cancer and promoted the cell viability, migration, invasion and glycolysis of prostate cancer cells. CDH1 was verified to be the target of CTBP1. We determined that CTBP1 could directly bind with SP1 to inhibit the transcription of CDH1. Moreover, succinylation of CTBP1 was found to be up-regulated in prostate cancer cell. Further studies demonstrated that KAT2A promotes the succinylation of CTBP1 and mediates the transcription suppressing activity of it. In addition, the K46 and K280 was confirmed to be the two sites that regulated by KAT2A. In vivo studies further indicated that CTBP1 could promote the growth of prostate cancer, and this effect of CTBP1 could be partially reversed by KAT2A knockdown. Taken together, we found that succinylation of CTBP1 mediated by KAT2A suppresses the inhibitory activity of CTBP1 on the transcription of CDH1, thus act as an oncogene.


Assuntos
Proteínas de Ligação a DNA , Neoplasias da Próstata , Humanos , Masculino , Oxirredutases do Álcool/metabolismo , Antígenos CD , Caderinas/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Neoplasias da Próstata/genética , Fatores de Transcrição/metabolismo
13.
Eur J Nucl Med Mol Imaging ; 50(2): 287-301, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271158

RESUMO

BACKGROUND: ZED8 is a novel monovalent antibody labeled with zirconium-89 for the molecular imaging of CD8. This work describes nonclinical studies performed in part to provide rationale for and to inform expectations in the early clinical development of ZED8, such as in the studies outlined in clinical trial registry NCT04029181 [1]. METHODS: Surface plasmon resonance, X-ray crystallography, and flow cytometry were used to characterize the ZED8-CD8 binding interaction, its specificity, and its impact on T cell function. Immuno-PET with ZED8 was assessed in huCD8+ tumor-bearing mice and in non-human primates. Plasma antibody levels were measured by ELISA to determine pharmacokinetic parameters, and OLINDA 1.0 was used to estimate radiation dosimetry from image-derived biodistribution data. RESULTS: ZED8 selectively binds to human CD8α at a binding site approximately 9 Å from that of MHCI making mutual interference unlikely. The equilibrium dissociation constant (KD) is 5 nM. ZED8 binds to cynomolgus CD8 with reduced affinity (66 nM) but it has no measurable affinity for rat or mouse CD8. In a series of lymphoma xenografts, ZED8 imaging was able to identify different CD8 levels concordant with flow cytometry. In cynomolgus monkeys with tool compound 89Zr-aCD8v17, lymph nodes were conspicuous by imaging 24 h post-injection, and the pharmacokinetics suggested a flat-fixed first-in-human dose of 4 mg per subject. The whole-body effective dose for an adult human was estimated to be 0.48 mSv/MBq, comparable to existing 89Zr immuno-PET reagents. CONCLUSION: 89Zr immuno-PET with ZED8 appears to be a promising biomarker of tissue CD8 levels suitable for clinical evaluation in cancer patients eligible for immunotherapy.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons , Adulto , Humanos , Camundongos , Ratos , Animais , Tomografia por Emissão de Pósitrons/métodos , Indicadores e Reagentes/uso terapêutico , Distribuição Tecidual , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Zircônio/química , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral
14.
Phytomedicine ; 108: 154545, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423572

RESUMO

BACKGROUND: Xuanfei Baidu Formula (XBF) is an effective traditional Chinese medicine (TCM) remedy for treating coronavirus disease 2019 (COVID-19) in China. This herbal medicine has shown effects in reducing clinical symptoms and shortening the average length of hospital stay for COVID-19 patients. Previous studies have demonstrated that XBF alleviates acute lung injury (ALI) by regulating macrophage-mediated immune inflammation, but the mechanisms of action remain elusive. PURPOSE: This study aimed to evaluate the lung-protective and anti-inflammatory effects of XBF and its underlying mechanisms. METHODS: Here, XBF's effects were investigated in an ALI mouse model induced by inhalation of atomized lipopolysaccharide (LPS). Besides, the LPS-induced inflammation model in RAW264.7 cells was used to clarify the underlying mechanisms of XBF against ALI. RESULTS: Our results showed that XBF treatment alleviated LPS-induced lung injury, as evidenced by reduced histopathological changes, pulmonary alveoli permeability, fibrosis, and apoptosis in the lung tissues. In addition, inflammation was alleviated as shown by decreased levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1ß in serum and bronchoalveolar lavage fluid (BALF), and reduced white blood cell (WBC) count in BALF. Furthermore, consistent with the in vivo assay, XBF inhibited LPS-induced inflammatory cytokines release and pro-inflammatory polarization in RAW264.7 cells. Mechanistically, XBF increased mitochondrial fusion by upregulating Mfn1 and attenuated NLRP3 inflammasome activation by repressing Casp11, respectively, to inhibit NF-κB and MAPK pathways, thus repressing pro-inflammatory macrophage polarization. CONCLUSION: In this study, we demonstrate that XBF exerts anti-ALI and -inflammatory effects by recovering mitochondrial dynamics and reducing inflammasome activation, providing a biological illustration of the clinical efficacy of XBF in treating COVID-19 patients.


Assuntos
Lesão Pulmonar Aguda , Tratamento Farmacológico da COVID-19 , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Inflamassomos , Inflamação/tratamento farmacológico , Interleucina-6 , Lipopolissacarídeos , Dinâmica Mitocondrial , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator de Necrose Tumoral alfa , Sistema de Sinalização das MAP Quinases
16.
Nat Cancer ; 3(10): 1165-1180, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36050483

RESUMO

Increasing evidence shows that cancer cells can disseminate from early evolved primary lesions much earlier than the classical metastasis models predicted. Here, we reveal at a single-cell resolution that mesenchymal-like (M-like) and pluripotency-like programs coordinate dissemination and a long-lived dormancy program of early disseminated cancer cells (DCCs). The transcription factor ZFP281 induces a permissive state for heterogeneous M-like transcriptional programs, which associate with a dormancy signature and phenotype in vivo. Downregulation of ZFP281 leads to a loss of an invasive, M-like dormancy phenotype and a switch to lung metastatic outgrowth. We also show that FGF2 and TWIST1 induce ZFP281 expression to induce the M-like state, which is linked to CDH1 downregulation and upregulation of CDH11. We found that ZFP281 not only controls the early dissemination of cancer cells but also locks early DCCs in a dormant state by preventing the acquisition of an epithelial-like proliferative program and consequent metastases outgrowth.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Neoplasias , Humanos , Fatores de Transcrição/genética , Pulmão
17.
Oxid Med Cell Longev ; 2022: 9102978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35698607

RESUMO

Ischemia-reperfusion injury (IRI) is closely associated the abnormal expression of long noncoding RNAs (lncRNAs), especially for their regulatory roles in IRI-related angiogenesis. This study applied a hypoxia-reoxygenation (HR) cell model to simulate the IRI condition, as well as RNA sequencing and RNA pull-down experiments to reveal roles of the lncRNA and Stem Cell Inhibitory RNA Transcript (SCIRT), in endothelial angiogenesis. We found that SCIRT was increased under the HR condition and exhibited a high expression correlation with angiogenesis marker VEGFA. RNA-seq data analysis further revealed that VEGFA-related angiogenesis was regulated by SCIRT in HUVECs. Gain and loss of function experiments proved that SCIRT posttranscriptionally regulated VEGFA via affecting its mRNA stability. Furthermore, HuR (ELAVL1), an RNA binding protein (RBP), was identified as a SCIRT-binding partner, which bound and stabilized VEGFA. Moreover, SCIRT promoted HuR expression posttranslationally by inhibiting its ubiquitination under the HR condition. These findings reveal that lncRNA SCIRT can mediate endothelial angiogenesis by stabilizing the VEGFA mRNA via modulating RBP HuR stability under the HR condition.


Assuntos
Hipóxia Celular , Neovascularização Patológica , RNA Longo não Codificante , Fator A de Crescimento do Endotélio Vascular , Proliferação de Células/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Hortic Res ; 9: uhac087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694723

RESUMO

Oil tea trees produce high-quality edible oils with desirably high oleic acid (18:1) and low linoleic (18:2) and linolenic (18:3) fatty acid (FA) levels, but limited understanding of tea oil biosynthesis and regulation has become a significant obstacle for the breeding of high-yield and -quality oil tea varieties. By integrating metabolite and transcriptome analyses of developing oil tea seeds, we dissected the critical metabolic pathways, including glycolysis, fatty acid, and triacylglycerol (TAG) biosynthesis, as well as genes essential for tea seed oil production. Two plastidic stearoyl-acyl carrier protein desaturases (CoSAD1 and 2) and two endoplasmic reticulum-localized FA desaturases (CoFAD2 and 3) were functionally characterized as responsible for high 18:1 and low 18:2 and 18:3 proportions in tea oils. Two diacylglycerol O-acyltransferases (CoDGAT1 and 2) that may prefer to synthesize 18:1-TAG were functionally characterized and might be also important for high 18:1-TAG production. The highly expressed CoWRI1a and b were identified and characterized as activators of glycolysis and regulators of directing source carbon flux into FA biosynthesis in developing oil tea seeds. The upregulated CoSADs with downregulated CoFAD2 and CoFAD3 at the late seed developmental stages mainly accounted for high 18:1 levels. Two CoDGATs might be responsible for assembling TAGs with oleoyl acyl chains, whilst two CoWRI1s regulated carbons from parental sources, partitioning into oil production in oil tea embryo sinks. This study provides a deep understanding of the biosynthesis of tea seed oils and information on genes that may be used as molecular markers to breed oil tea varieties with higher oil yield and quality.

19.
Biomed Chromatogr ; 36(6): e5356, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35178731

RESUMO

Untreated invasive fungal infection is one of the important risk factors affecting the prognosis of pediatric patients with hematologic tumors. Voriconazole (VOR) is the first-line antifungal drug for the treatment of Aspergillus infections. In order to reduce the risk of adverse drug reactions while producing an ideal antifungal effect, therapeutic drug monitoring was performed to maintain the VOR plasma concentration in a range of 1,000-5,500 ng/ml. In the present study, a reliable, accurate, sensitive and quick ultra-high performance liquid chromatograph-tandem mass spectrometry (UPLC-MS/MS) method was developed for the determination of the VOR level. Protein precipitation was performed using acetonitrile, and then the chromatographic separation was carried out by UPLC using a C18 column with the gradient mobile phases comprising 0.1% methanoic acid in acetonitrile (A) and 0.1% methanoic acid in water (B). In the selective reaction monitor mode, the mass spectrometric detection was carried out using an TSQ Endura triple quadruple mass spectrometer. The performance of this UPLC-MS/MS method was validated as per the National Medical Products Administration for Bioanalytical Method Validation. Additionally, the plasma concentrations of VOR in pediatric patients with hematologic tumors were detected using this method, and the analyzed results were used for personalized therapy.


Assuntos
Neoplasias Hematológicas , Espectrometria de Massas em Tandem , Acetonitrilas , Antifúngicos/uso terapêutico , Criança , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Voriconazol/uso terapêutico
20.
Math Biosci Eng ; 19(12): 13949-13966, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36654075

RESUMO

Due to the exquisite ability of cancer stemness to facilitate tumor initiation, metastasis, and cancer therapy resistance, targeting cancer stemness is expected to have clinical implications for cancer treatment. Genes are fundamental for forming and maintaining stemness. Considering shared genetic programs and pathways between embryonic stem cells and cancer stem cells, we conducted a study analyzing transcriptomic data of embryonic stem cells for mining potential cancer stemness genes. Firstly, we integrated co-expression and regression models and predicted 820 stemness genes. Results of gene enrichment analysis confirmed the good prediction performance for enriched signatures in cancer stem cells. Secondly, we provided an application case using the predicted stemness genes to construct a breast cancer stemness network. Mining on the network identified CD44, SOX2, TWIST1, and DLG4 as potential regulators of breast cancer stemness. Thirdly, using the signature of 31,028 chemical perturbations and their correlation with stemness marker genes, we predicted 67 stemness inhibitors with reasonable accuracy of 78%. Two drugs, namely Rigosertib and Proscillaridin A, were first identified as potential stemness inhibitors for melanoma and colon cancer, respectively. Overall, mining embryonic stem cell data provides a valuable way to identify cancer stemness regulators.


Assuntos
Neoplasias da Mama , Transcriptoma , Humanos , Feminino , Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Células-Tronco Embrionárias/patologia , Genes Reguladores , Células-Tronco Neoplásicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA