Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 391(7): 719-728, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29671020

RESUMO

Myocardial ischemia/reperfusion (I/R) injury in hypercholesterolemia is associated with oxidative stress, while luteolin is known to reduce oxidative stress by activating Akt/nuclear factor erythroid-2-related factor 2 (Nrf2) signaling and alleviate cardiac I/R injury. Here, we investigated whether luteolin pretreatment diminishes myocardial I/R injury in hypercholesterolemic rats by activating Akt/Nrf2 signaling. Hypercholesterolemic rats were produced by 2% cholesterol diet for 8 weeks. Luteolin (100 mg/kg/day, i.g.) or LY294002 was administered for the last 2 weeks. The hearts were then isolated and subjected to 30 min of global ischemia followed by 120 min of reperfusion. Pretreatment with luteolin significantly improved left ventricular function throughout reperfusion, increased cardiac tissue viability, reduced coronary lactate dehydrogenase release and the myocardial malondialdehyde level, upregulated p-Akt and p-GSK3ß expressions, inhibited nuclear translocation of Fyn, and activated Nrf2 function in hypercholesterolemic I/R rat hearts. All these improving effects of luteolin were significantly attenuated by LY294002. Ca2+-induced mitochondrial permeability transition pore (mPTP) opening and mitochondrial inner membrane potential reduction were significantly inhibited in ventricular myocytes isolated from luteolin-treated hypercholesterolemic rats, which were attenuated by LY294002. These results indicate that luteolin protects the hypercholesterolemic heart against I/R injury due to upregulation of Akt-mediated Nrf2 antioxidative function and inhibition of mPTP.


Assuntos
Cardiotônicos/farmacologia , Hipercolesterolemia/metabolismo , Luteolina/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Cardiotônicos/uso terapêutico , Hipercolesterolemia/tratamento farmacológico , Luteolina/uso terapêutico , Masculino , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
2.
Sci Rep ; 7(1): 7995, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801583

RESUMO

The broad clinical acceptance of intraoperative blood salvage and its applications in cancer surgery remain controversial. Until now, a method that can safely eliminate cancer cells while preserving erythrocytes does not exist. Here, we investigated whether X-ray generated from linear accelerator irradiation at a certain dose can kill hepatocarcinoma cells while preserving erythrocytes. HepG2, SK-Hep1 or Huh7 cells were mixed into the aliquots of erythrocytes obtained from healthy volunteers. After the mixed cells were exposed to 30 Gy and 50 Gy X-rays irradiation, the viability, clonogenicity, DNA synthesis and tumorigenicity of the tumor cells were determined by the MTT assay, plate colony formation, 5-ethynyl-2'-deoxyuridine incorporation, and subcutaneous xenograft implantation into immunocompromised mice. The ATP, 2,3-DPG, free Hb, osmotic fragility, blood gas variables in erythrocytes and morphology of erythrocytes at 0 h, 12 h, 24 h, 48 h, 72 h after irradiation were analyzed. X-ray irradiation at 30 Gy effectively inhibited the viability, proliferation, and tumorigenicity of HepG2, SK-Hep1 and Huh7 cells without noticeably damaging the ability of oxygen-carrying, membrane integrity and morphology of erythrocytes. Theses results suggest that X-ray at 30 Gy irradiation might be safe to eliminate hepatocarcinoma cells while preserving erythrocytes in salvaged blood.


Assuntos
Carcinogênese/efeitos da radiação , Carcinoma Hepatocelular/patologia , Eritrócitos/efeitos da radiação , Neoplasias Hepáticas/patologia , Raios X , Adulto , Animais , Carcinoma Hepatocelular/metabolismo , Membrana Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Respiração Celular/efeitos da radiação , Células Cultivadas , Eritrócitos/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
3.
PLoS One ; 10(5): e0127181, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26018651

RESUMO

An understanding of how to safely apply intraoperative blood salvage (IBS) in cancer surgery has not yet been obtained. Here, we investigated the optimal dose of 137Cs gamma-ray irradiation for killing human hepatocarcinoma (HepG2), gastrocarcinoma (SGC7901), and colonic carcinoma (SW620) tumor cells while preserving co-cultured erythrocytes obtained from 14 healthy adult volunteers. HepG2, SGC7901, or SW620 cells were mixed into the aliquots of erythrocytes. After the mixed cells were treated with 137Cs gamma-ray irradiation (30, 50, and 100 Gy), tumor cells and erythrocytes were separated by density gradient centrifugation in Percoll with a density of 1.063 g/ml. The viability, clonogenicity, DNA synthesis, tumorigenicity, and apoptosis of the tumor cells were determined by MTT assay, plate colony formation, 5-ethynyl-2'-deoxyuridine (EdU) incorporation, subcutaneous xenograft implantation into immunocompromised mice, and annexin V/7-AAD staining, respectively. The ATP concentration, 2,3-DPG level, free Hb concentration, osmotic fragility, membrane phosphatidylserine externalization, blood gas variables, reactive oxygen species levels, and superoxide dismutase levels in erythrocytes were analyzed. We found that 137Cs gamma-ray irradiation at 50 Gy effectively inhibited the viability, proliferation, and tumorigenicity of HepG2, SGC7901, and SW620 cells without markedly damaging the oxygen-carrying ability or membrane integrity or increasing the oxidative stress of erythrocytes in vitro. These results demonstrated that 50 Gy irradiation in a standard 137Cs blood irradiator might be a safe and effective method of inactivating HepG2, SGC7901, and SW620 cells mixed with erythrocytes, which might help to safely allow IBS in cancer surgery.


Assuntos
Eritrócitos/citologia , Eritrócitos/efeitos da radiação , Recuperação de Sangue Operatório/efeitos adversos , Segurança , Adulto , Animais , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Transformação Celular Neoplásica , Radioisótopos de Césio/efeitos adversos , Radioisótopos de Césio/uso terapêutico , Técnicas de Cocultura , Eritrócitos/metabolismo , Raios gama/efeitos adversos , Raios gama/uso terapêutico , Humanos , Hospedeiro Imunocomprometido/efeitos da radiação , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
4.
J Zhejiang Univ Sci B ; 16(5): 395-403, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25990057

RESUMO

The safe use of intraoperative blood salvage (IBS) in cancer surgery remains controversial. Here, we investigated the killing effect of cisplatin combined with hyperthermia on human hepatocarcinoma (HepG2) cells and erythrocytes from IBS in vitro. HepG2 cells were mixed with concentrated erythrocytes and pretreated with cisplatin (50, 100, and 200 µg/ml) alone at 37 °C for 60 min and cisplatin (25, 50, 100, and 200 µg/ml) combined with hyperthermia at 42 °C for 60 min. After pretreatment, the cell viability, colony formation and DNA metabolism in HepG2 and the Na(+)-K(+)-ATPase activity, 2,3-diphosphoglycerate (2,3-DPG) concentration, free hemoglobin (Hb) level, osmotic fragility, membrane phosphatidylserine externalization, and blood gas variables in erythrocytes were determined. Pretreatment with cisplatin (50, 100, and 200 µg/ml) combined with hyperthermia (42 °C) for 60 min significantly decreased HepG2 cell viability, and completely inhibited colony formation and DNA metabolism when the HepG2 cell concentration was 5×10(4) ml(-1) in the erythrocyte (P<0.01). Erythrocytic Na(+)-K(+)-ATPase activity, 2,3-DPG level, phosphatidylserine externalization, and extra-erythrocytic free Hb were significantly altered by hyperthermia plus high concentrations of cisplatin (100 and 200 µg/ml) (P<0.05), but not by hyperthermia plus 50 µg/ml cisplatin (P>0.05). In conclusion, pretreatment with cisplatin (50 µg/ml) combined with hyperthermia (42 °C) for 60 min effectively eliminated HepG2 cells from IBS but did not significantly affect erythrocytes in vitro.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Eritrócitos/efeitos dos fármacos , Recuperação de Sangue Operatório , 2,3-Difosfoglicerato/química , Adulto , Idoso , Sobrevivência Celular , Terapia Combinada , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Hemoglobinas/química , Células Hep G2 , Humanos , Hipertermia Induzida , Masculino , Pessoa de Meia-Idade , Osmose , Fosfatidilserinas/química , Fosfolipídeos/química , ATPase Trocadora de Sódio-Potássio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA