Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Br J Cancer ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951697

RESUMO

BACKGROUND: DNMT3A is a crucial epigenetic regulation enzyme. However, due to its heterogeneous nature and frequent mutation in various cancers, the role of DNMT3A remains controversial. Here, we determine the role of DNMT3A in non-small cell lung cancer (NSCLC) to identify potential treatment strategies. METHODS: To investigate the role of loss-of-function mutations of DNMT3A in NSCLC, CRISPR/Cas9 was used to induce DNMT3A-inactivating mutations. Epigenetic inhibitor library was screened to find the synthetic lethal partner of DNMT3A. Both pharmacological inhibitors and gene manipulation were used to evaluate the synthetic lethal efficacy of DNMT3A/KDM1A in vitro and in vivo. Lastly, MS-PCR, ChIP-qPCR, dual luciferase reporter gene assay and clinical sample analysis were applied to elucidate the regulation mechanism of synthetic lethal interaction. RESULTS: We identified DNMT3A is a tumour suppressor gene in NSCLC and KDM1A as a synthetic lethal partner of DNMT3A deletion. Both chemical KDM1A inhibitors and gene manipulation can selectively reduce the viability of DNMT3A-KO cells through inducing cell apoptosis in vitro and in vivo. We clarified that the synthetic lethality is not only limited to the death mode, but also involved into tumour metastasis. Mechanistically, DNMT3A deficiency induces KDM1A upregulation through reducing the methylation status of the KDM1A promoter and analysis of clinical samples indicated that DNMT3A expression was negatively correlated with KDM1A level. CONCLUSION: Our results provide new insight into the role of DNMT3A in NSCLC and elucidate the mechanism of synthetic lethal interaction between KDM1A and DNMT3A, which might represent a promising approach for treating patients with DNMT3A-deficient tumours.

2.
Biochem Pharmacol ; 226: 116382, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909785

RESUMO

Hypoxic pulmonary hypertension (HPH) is a serious and life-threatening chronic cardiopulmonary disease characterized by progressive elevation of pulmonary artery pressure and pulmonary vascular remodeling. Mesenchymal stem cell- derived exosomes (MSC-Exos) can relieve HPH by reversing pulmonary vascular remodeling. The HPH model was established in healthy male Sprague-Dawley (SD) rats aged 6 to 8 weeks. The rats were placed in a room with oxygen concentration of (10 ± 1) % for 8 hours a day over 28 days, were then injected intravenously with MSC-Exos (100 ug protein/kg) or equal-volume phosphate buffer saline (PBS) once a day over 1 week. Right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI) and pulmonary vascular remodeling were observed after anesthesia. In addition, platelet-derived growth factor BB (PDGF-BB) was used to stimulate rat pulmonary artery smooth muscle cells (PASMCs) to construct HPH pathological cell models. The results showed that MSC-Exos could not only reduce the elevation of RVSP, right ventricular hypertrophy and the degree of pulmonary vascular remodeling in HPH rats, but also reduce the proliferation, migration and apoptosis resistance of PASMCs. Finally, GSE53408 and GSE113439 datasets were analyzed and showed that the expression of Hsp90aa1 and pERK/ERK were significantly increased in HPH, also could be inhibited by MSC-Exos. Meanwhile, inhibition of Hsp90aa1 also reduced PASMCs migration and pERK/ERK protein level. In conclusion, MSC-Exos alleviated HPH by suppressing PASMCs proliferation, migration and apoptosis resistance through inhibiting the Hsp90aa1/ERK/pERK pathway.


Assuntos
Exossomos , Proteínas de Choque Térmico HSP90 , Hipertensão Pulmonar , Sistema de Sinalização das MAP Quinases , Células-Tronco Mesenquimais , Ratos Sprague-Dawley , Animais , Exossomos/metabolismo , Exossomos/transplante , Masculino , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/terapia , Células-Tronco Mesenquimais/metabolismo , Ratos , Proteínas de Choque Térmico HSP90/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Hipóxia/metabolismo , Hipóxia/terapia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia
3.
BMC Health Serv Res ; 24(1): 605, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38720277

RESUMO

BACKGROUND: Distal radius fractures (DRFs) have become a public health problem for all countries, bringing a heavier economic burden of disease globally, with China's disease economic burden being even more acute due to the trend of an aging population. This study aimed to explore the influencing factors of hospitalization cost of patients with DRFs in traditional Chinese medicine (TCMa) hospitals to provide a scientific basis for controlling hospitalization cost. METHODS: With 1306 cases of DRFs patients hospitalized in 15 public TCMa hospitals in two cities of Gansu Province in China from January 2017 to 2022 as the study object, the influencing factors of hospitalization cost were studied in depth gradually through univariate analysis, multiple linear regression, and path model. RESULTS: Hospitalization cost of patients with DRFs is mainly affected by the length of stay, surgery and operation, hospital levels, payment methods of medical insurance, use of TCMa preparations, complications and comorbidities, and clinical pathways. The length of stay is the most critical factor influencing the hospitalization cost, and the longer the length of stay, the higher the hospitalization cost. CONCLUSIONS: TCMa hospitals should actively take advantage of TCMb diagnostic modalities and therapeutic methods to ensure the efficacy of treatment and effectively reduce the length of stay at the same time, to lower hospitalization cost. It is also necessary to further deepen the reform of the medical insurance payment methods and strengthen the construction of the hierarchical diagnosis and treatment system, to make the patients receive reasonable reimbursement for medical expenses, thus effectively alleviating the economic burden of the disease in the patients with DRFs.


Assuntos
Custos Hospitalares , Hospitalização , Tempo de Internação , Medicina Tradicional Chinesa , Fraturas do Rádio , Humanos , China , Masculino , Feminino , Pessoa de Meia-Idade , Medicina Tradicional Chinesa/economia , Idoso , Fraturas do Rádio/economia , Fraturas do Rádio/terapia , Custos Hospitalares/estatística & dados numéricos , Tempo de Internação/economia , Tempo de Internação/estatística & dados numéricos , Hospitalização/economia , Adulto , Hospitais Públicos/economia , Fraturas do Punho
4.
Proc Natl Acad Sci U S A ; 121(23): e2317790121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814866

RESUMO

The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) is a recognized resistance mechanism and a hindrance to therapies using epidermal growth factor receptor tyrosine kinase inhibitors (TKIs). The paucity of pretranslational/posttranslational clinical samples limits the deeper understanding of resistance mechanisms and the exploration of effective therapeutic strategies. Here, we developed preclinical neuroendocrine (NE) transformation models. Next, we identified a transcriptional reprogramming mechanism that drives resistance to erlotinib in NE transformation cell lines and cell-derived xenograft mice. We observed the enhanced expression of genes involved in the EHMT2 and WNT/ß-catenin pathways. In addition, we demonstrated that EHMT2 increases methylation of the SFRP1 promoter region to reduce SFRP1 expression, followed by activation of the WNT/ß-catenin pathway and TKI-mediated NE transformation. Notably, the similar expression alterations of EHMT2 and SFRP1 were observed in transformed SCLC samples obtained from clinical patients. Importantly, suppression of EHMT2 with selective inhibitors restored the sensitivity of NE transformation cell lines to erlotinib and delayed resistance in cell-derived xenograft mice. We identify a transcriptional reprogramming process in NE transformation and provide a potential therapeutic target for overcoming resistance to erlotinib.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Transformação Celular Neoplásica , Cloridrato de Erlotinib , Neoplasias Pulmonares , Humanos , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Camundongos , Cloridrato de Erlotinib/farmacologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Resistencia a Medicamentos Antineoplásicos/genética , Via de Sinalização Wnt/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Transcrição Gênica , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase
5.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725843

RESUMO

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína HMGA1a , Inibidores de MTOR , Proteína Proto-Oncogênica c-ets-1 , Proteína 1A de Ligação a Tacrolimo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Camundongos Nus , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Serina-Treonina Quinases TOR/metabolismo
6.
Biochem Biophys Res Commun ; 722: 150167, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38797154

RESUMO

Iron-sulfur (Fe-S) clusters are ubiquitous and are necessary to sustain basic life processes. The intracellular Fe-S clusters do not form spontaneously and many proteins are required for their biosynthesis and delivery. The bacterial P-loop NTPase family protein ApbC participates in Fe-S cluster assembly and transfers the cluster into apoproteins, with the Walker A motif and CxxC motif being essential for functionality of ApbC in Fe-S protein biogenesis. However, the structural basis underlying the ApbC activity and the motifs' role remains unclear. Here, we report the crystal structure of Escherichia coli ApbC at 2.8 Å resolution. The dimeric structure is in a W shape and the active site is located in the 2-fold center. The function of the motifs can be annotated by structural analyses. ApbC has an additional N-terminal domain that differs from other P-loop NTPases, possibly conferring its inherent specificity in vivo.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas Ferro-Enxofre , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
7.
Cell Death Differ ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816578

RESUMO

There is a lack of effective treatments to overcome resistance to EGFR-TKIs in EGFR mutant tumors. A deeper understanding of resistance mechanisms can provide insights into reducing or eliminating resistance, and can potentially deliver targeted treatment measures to overcome resistance. Here, we identified that the dynamic changes of the tumor immune environment were important extrinsic factors driving tumor resistance to EGFR-TKIs in EGFR mutant cell lines and syngeneic tumor-bearing mice. Our results demonstrate that the acquired resistance to EGFR-TKIs is accompanied by aberrant expression of PD-L2, leading a dynamic shift from an initially favorable tumor immune environment to an immunosuppressive phenotype. PD-L2 expression significantly affected EGFR mutant cell apoptosis that depended on the proportion and function of CD8+ T cells in the tumor immune environment. Combined with single-cell sequencing and experimental results, we demonstrated that PD-L2 specifically inhibited the proliferation of CD8+ T cells and the secretion of granzyme B and perforin, leading to reduced apoptosis mediated by CD8+ T cells and enhanced immune escape of tumor cells, which drives EGFR-TKIs resistance. Importantly, we have identified a potent natural small-molecule inhibitor of PD-L2, zinc undecylenate. In vitro, it selectively and potently blocks the PD-L2/PD-1 interaction. In vivo, it abolishes the suppressive effect of the PD-L2-overexpressing tumor immune microenvironment by blocking PD-L2/PD-1 signaling. Moreover, the combination of zinc undecylenate and EGFR-TKIs can synergistically reverse tumor resistance, which is dependent on CD8+ T cells mediating apoptosis. Our study uncovers the PD-L2/PD-1 signaling pathway as a driving factor to mediate EGFR-TKIs resistance, and identifies a new naturally-derived agent to reverse EGFR-TKIs resistance.

8.
J Nanobiotechnology ; 22(1): 141, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561739

RESUMO

Osteosarcoma (OS) is an aggressive bone tumor with strong invasiveness, rapid metastasis, and dreadful mortality. Chemotherapy is a commonly used approach for OS treatment but is limited by the development of drug resistance and long-term adverse effects. To date, OS still lacks the curative treatment. Herein, we fabricated pyrite-based nanoparticles (FeS2@CP NPs) as synergetic therapeutic platform by integrating photothermal therapy (PTT) and chemo-dynamic therapy (CDT) into one system. The synthetic FeS2@CP NPs showed superior Fenton reaction catalytic activity. FeS2@CP NPs-based CDT efficaciously eradicated the tumor cells by initiating dual-effect of killing of apoptosis and ferroptosis. Furthermore, the generated heat from FeS2@CP under near-infrared region II (NIR-II) laser irradiation could not only inhibit tumor's growth, but also promote tumor cell apoptosis and ferroptosis by accelerating •OH production and GSH depletion. Finally, the photothermal/NIR II-enhanced CDT synergistic therapy showed excellent osteosarcoma treatment effects both in vitro and in vivo with negligible side effects. Overall, this work provided a high-performance and multifunctional Fenton catalyst for osteosarcoma synergistic therapy, which provided a pathway for the clinical application of PTT augmented CDT.


Assuntos
Neoplasias Ósseas , Nanopartículas , Neoplasias , Osteossarcoma , Sulfetos , Humanos , Terapia Fototérmica , Osteossarcoma/tratamento farmacológico , Ferro , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Peróxido de Hidrogênio
9.
EMBO Mol Med ; 16(4): 885-903, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448544

RESUMO

Cancer is a heterogeneous disease. Although both tumor metabolism and tumor immune microenvironment are recognized as driving factors in tumorigenesis, the relationship between them is still not well-known, and potential combined targeting approaches remain to be identified. Here, we demonstrated a negative correlation between the expression of NAMPT, an NAD+ metabolism enzyme, and PD-L1 expression in various cancer cell lines. A clinical study showed that a NAMPTHigh PD-L1Low expression pattern predicts poor prognosis in patients with various cancers. In addition, pharmacological inhibition of NAMPT results in the transcription upregulation of PD-L1 by SIRT-mediated acetylation change of NF-κB p65, and blocking PD-L1 would induce NAMPT expression through a HIF-1-dependent glycolysis pathway. Based on these findings, we designed and synthesized a dual NAMPT/PD-L1 targeting compound, LZFPN-90, which inhibits cell growth in a NAMPT-dependent manner and blocks the cell cycle, subsequently inducing apoptosis. Under co-culture conditions, LZFPN-90 treatment contributes to the proliferation and activation of T cells and blocks the growth of cancer cells. Using mice bearing genetically manipulated tumors, we confirmed that LZFPN-90 exerted target-dependent antitumor activities, affecting metabolic processes and the immune system. In conclusion, our results demonstrate the relevance of NAD+-related metabolic processes in antitumor immunity and suggest that co-targeting NAD+ metabolism and PD-L1 represents a promising therapeutic approach.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Animais , Camundongos , NAD , Neoplasias/patologia , Proliferação de Células , Apoptose , Linhagem Celular Tumoral , Microambiente Tumoral
10.
Cell Rep ; 43(2): 113714, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38306271

RESUMO

Drug resistance is the leading problem in non-small-cell lung cancer (NSCLC) therapy. The contribution of histone methylation in mediating malignant phenotypes of NSCLC is well known. However, the role of histone methylation in NSCLC drug-resistance mechanisms remains unclear. Here, our data show that EZH2 and G9a, two histone methyltransferases, are involved in the drug resistance of NSCLC. Gene manipulation results indicate that the combination of EZH2 and G9a promotes tumor growth and mediates drug resistance in a complementary manner. Importantly, clinical study demonstrates that co-expression of both enzymes predicts a poor outcome in patients with NSCLC. Mechanistically, G9a and EZH2 interact and promote the silencing of the tumor-suppressor gene SMAD4, activating the ERK/c-Myc signaling pathway. Finally, SU08, a compound targeting both EZH2 and G9a, is demonstrated to sensitize resistant cells to therapeutic drugs by regulating the SMAD4/ERK/c-Myc signaling axis. These findings uncover the resistance mechanism and a strategy for reversing NSCLC drug resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Transdução de Sinais , Proteínas Proto-Oncogênicas c-myc/genética , Histonas , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteína Smad4/genética , Proteína Potenciadora do Homólogo 2 de Zeste
11.
Cell Death Dis ; 15(2): 158, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383528

RESUMO

Chemotherapy is a primary treatment for esophageal squamous cell carcinoma (ESCC). Resistance to chemotherapeutic drugs is an important hurdle to effective treatment. Understanding the mechanisms underlying chemotherapy resistance in ESCC is an unmet medical need to improve the survival of ESCC. Herein, we demonstrate that ferroptosis triggered by inhibiting high mobility group AT-hook 1 (HMGA1) may provide a novel opportunity to gain an effective therapeutic strategy against chemoresistance in ESCC. HMGA1 is upregulated in ESCC and works as a key driver for cisplatin (DDP) resistance in ESCC by repressing ferroptosis. Inhibition of HMGA1 enhances the sensitivity of ESCC to ferroptosis. With a transcriptome analysis and following-up assays, we demonstrated that HMGA1 upregulates the expression of solute carrier family 7 member 11 (SLC7A11), a key transporter maintaining intracellular glutathione homeostasis and inhibiting the accumulation of malondialdehyde (MDA), thereby suppressing cell ferroptosis. HMGA1 acts as a chromatin remodeling factor promoting the binding of activating transcription factor 4 (ATF4) to the promoter of SLC7A11, and hence enhancing the transcription of SLC7A11 and maintaining the redox balance. We characterized that the enhanced chemosensitivity of ESCC is primarily attributed to the increased susceptibility of ferroptosis resulting from the depletion of HMGA1. Moreover, we utilized syngeneic allograft tumor models and genetically engineered mice of HMGA1 to induce ESCC and validated that depletion of HMGA1 promotes ferroptosis and restores the sensitivity of ESCC to DDP, and hence enhances the therapeutic efficacy. Our finding uncovers a critical role of HMGA1 in the repression of ferroptosis and thus in the establishment of DDP resistance in ESCC, highlighting HMGA1-based rewiring strategies as potential approaches to overcome ESCC chemotherapy resistance. Schematic depicting that HMGA1 maintains intracellular redox homeostasis against ferroptosis by assisting ATF4 to activate SLC7A11 transcription, resulting in ESCC resistance to chemotherapy.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteína HMGA1a/genética , Resistencia a Medicamentos Antineoplásicos/genética , Ferroptose/genética , Proteína HMGA1b , Linhagem Celular Tumoral
12.
Toxicol Appl Pharmacol ; 483: 116807, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38199493

RESUMO

N6-methyladenosine (m6A) is the most prevalent mRNA modification, and it is verified to be closely correlated with cancer occurrence and progression. The m6A demethylase ALKBH5 (alkB homolog 5) is dysregulated in various cancers. However, the role and underlying mechanism of ALKBH5 in the pathogenesis and especially the chemo-resistance of non-small cell lung cancer (NSCLC) is poorly elucidated. The current study shows that ALKBH5 expression is reduced in paclitaxel (PTX) resistant NSCLC cells and down-regulation of ALKBH5 usually implies poor prognosis of NSCLC patients. Over-expression of ALKBH5 in PTX-resistant cells can suppress cell proliferation and enhance chemo-sensitivity, while knockdown of ALKBH5 exerts the opposite effect, which further supports the tumor suppressive role of ALKBH5. Over-expression of ALKBH5 can also reverse the epithelial-mesenchymal transition (EMT) process in PTX-resistant cancer cells. Mechanistically, data from RNA-seq, real-time PCR and western blotting indicate that CEMIP (cell migration inducing hyaluronidase 1), also known as KIAA1199, may be the downstream target of ALKBH5. Furthermore, ALKBH5 negatively regulates the CEMIP level by reducing the stability of CEMIP mRNA. Collectively, the current data demonstrate that the ALKBH5/CEMIP axis modulates the EMT process in NSCLC, which in turn regulates the chemo-sensitivity of cancer cells to PTX.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Paclitaxel/farmacologia , RNA Mensageiro/metabolismo
13.
Adv Sci (Weinh) ; 11(7): e2303904, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072662

RESUMO

Interactions between oncogenic proteins contribute to the phenotype and drug resistance. Here, EZH2 (enhancer of zest homolog 2) is identified as a crucial factor that mediates HIF-1 (hypoxia-inducible factor) inhibitor resistance. Mechanistically, targeting HIF-1 enhanced the activity of EZH2 through transcription activation of SUZ12 (suppressor of zest 12 protein homolog). Conversely, inhibiting EZH2 increased HIF-1α transcription, but not the transcription of other HIF family members. Additionally, the negative feedback regulation between EZH2 and HIF-1α is confirmed in lung cancer patient tissues and a database of cell lines. Moreover, molecular prediction showed that a newly screened dual-target compound, DYB-03, forms multiple hydrogen bonds with HIF-1α and EZH2 to effectively inhibit the activity of both targets. Subsequent studies revealed that DYB-03 could better inhibit migration, invasion, and angiogenesis of lung cancer cells and HUVECs in vitro and in vivo compared to single agent. DYB-03 showed promising antitumor activity in a xenograft tumor model by promoting apoptosis and inhibiting angiogenesis, which could be almost abolished by the deletion of HIF-1α and EZH2. Notably, DYB-03 could reverse 2-ME2 and GSK126-resistance in lung cancer. These findings clarified the molecular mechanism of cross-regulation of HIF-1α and EZH2, and the potential of DYB-03 for clinical combination target therapy.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/uso terapêutico , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
14.
Cancers (Basel) ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067368

RESUMO

We developed machine and deep learning models to predict chemoradiotherapy in rectal cancer using 18F-FDG PET images and harmonized image features extracted from 18F-FDG PET/CT images. Patients diagnosed with pathologic T-stage III rectal cancer with a tumor size > 2 cm were treated with neoadjuvant chemoradiotherapy. Patients with rectal cancer were divided into an internal dataset (n = 116) and an external dataset obtained from a separate institution (n = 40), which were used in the model. AUC was calculated to select image features associated with radiochemotherapy response. In the external test, the machine-learning signature extracted from 18F-FDG PET image features achieved the highest accuracy and AUC value of 0.875 and 0.896. The harmonized first-order radiomics model had a higher efficiency with accuracy and an AUC of 0.771 than the second-order model in the external test. The deep learning model using the balanced dataset showed an accuracy of 0.867 in the internal test but an accuracy of 0.557 in the external test. Deep-learning models using 18F-FDG PET images must be harmonized to demonstrate reproducibility with external data. Harmonized 18F-FDG PET image features as an element of machine learning could help predict chemoradiotherapy responses in external tests with reproducibility.

15.
Medicine (Baltimore) ; 102(47): e35913, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38013355

RESUMO

The purpose of this study was to construct a competitive endogenous RNA (ceRNA) network related to long non-coding RNA (lncRNAs) via the bioinformatics analysis, reveal the pathogenesis of coronary heart disease (CAD) and develop new biomarkers for CAD. The gene expression datasets of peripheral blood of CAD were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed mRNAs, miRNAs and lncRNAs (DEmRNAs, DEmiRNAs and DElncRNAs) were identified. Subsequently, a ceRNA network involving lncRNAs, miRNAs, and mRNAs was built. Moreover, DElncRNAs in the cytoplasm were screened and a DElncRNA-associated ceRNA network was established. In total, 1860 DEmRNAs, 393 DElncRNAs and 20 DEmiRNAs were filtrated in patients with CAD compared with normal controls. Functional analysis suggested that DEmRNAs significantly enriched in CAD-related pathways, such as PI3K-Akt signaling pathways and MAPK signaling pathway. The ceRNA network contained 12 DEmiRNAs, 30 DElncRNAs and 537 DEmRNAs. Afterwards, the cytoplasm ceRNA network was consisted of 537 DEmRNAs, 12 DEmiRNAs and 12 DElncRNAs. Such as, up-regulated LncRNA-HOX transcript antisense RNA (HOTAIR) was interacted with down-regulated has-miR-326 and has-miR-1. The successful construction of lncRNA-associated ceRNA network is helpful to better clarify the pathogenesis of CAD and provide potential peripheral blood biomarkers for CAD.


Assuntos
Doença da Artéria Coronariana , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Doença da Artéria Coronariana/genética , Fosfatidilinositol 3-Quinases/metabolismo , Redes Reguladoras de Genes , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Stud Health Technol Inform ; 307: 60-68, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37697838

RESUMO

NGS is increasingly used in precision medicine, but an automated sequencing pipeline that can detect different types of variants (single nucleotide - SNV, copy number - CNV, structural - SV) and does not rely on normal samples as germline comparison is needed. To address this, we developed Onkopipe, a Snakemake-based pipeline that integrates quality control, read alignments, BAM pre-processing, and variant calling tools to detect SNV, CNV, and SV in a unified VCF format without matched normal samples. Onkopipe is containerized and provides features such as reproducibility, parallelization, and easy customization, enabling the analysis of genomic data in precision medicine. Our validation and evaluation demonstrate high accuracy and concordance, making Onkopipe a valuable open-source resource for molecular tumor boards. Onkopipe is being shared as an open source project and is available at https://gitlab.gwdg.de/MedBioinf/mtb/onkopipe.


Assuntos
DNA , Medicina de Precisão , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Sequência de Bases
17.
J Mater Chem B ; 11(37): 9027-9034, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37721029

RESUMO

Acyclic cucurbit[n]uril-based nanosponges are prepared based on supramolecular vesicle-templated cross-linking. The nanosponges are capable of encapsulating the clinically approved photodynamic therapeutic (PDT) drug temoporfin. When loaded with nanosponges, the PDT bioactivity of temoporfin is enhanced 7.5-fold for HeLa cancer cells and 20.8 fold for B16-F10 cancer cells, respectively. The reason for the significant improvement in PDT efficacy is confirmed to be an enhanced cell uptake by confocal laser scanning microscopy and flow cytometry. Animal studies show that nanosponges could dramatically increase the tumor suppression effect of temoporfin. In vitro and in vivo experiments demonstrate that nanosponges are nontoxic and biocompatible.


Assuntos
Fotoquimioterapia , Animais , Humanos , Mesoporfirinas , Células HeLa
18.
Sci Total Environ ; 893: 164841, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321489

RESUMO

The persistence of antibiotics and nanoplastics in aquatic environment poses a great threat to aquatic organisms. In our previous study, significant decreases of bacterial richness and changes of bacterial communities in the Oryzias melastigma gut after sulfamethazine (SMZ) and polystyrene nanoplastics (PS) exposure were observed. Here, the O. melastigma dietary exposed to SMZ (0.5 mg/g, LSMZ; 5 mg/g, HSMZ), PS (5 mg/g, PS) or PS + HSMZ were depurated for 21 days to assess the extent of which these effects were reversible. Our results revealed that most diversity indexes of bacterial microbiota in the O. melastigma gut from the treatment groups were insignificantly different from the control, suggesting a large recovery of bacterial richness. Although the sequence abundances of a few genera remained significantly changed, the proportion of dominant genus was recovered. Exposure to SMZ affected the complexity of the bacterial networks, and the cooperation and exchange events of positively associated bacteria were enhanced during this period. After depuration, increases in the complexity of networks and intense competitions among bacteria were observed, which was beneficial for the robustness of networks. However, the gut bacterial microbiota was less stable, and several functional pathways were dysregulated, relative to the control. In addition, higher occurrence of pathogenic bacteria was found in the PS + HSMZ group relative to the signal pollutant group after depuration, indicating a greater hazard for the mixture of PS and SMZ. Taken together, this study contributes to a better understanding of the recovery of bacterial microbiota in fish gut after individual and combined exposure to nanoplastics and antibiotics.


Assuntos
Microbioma Gastrointestinal , Oryzias , Poluentes Químicos da Água , Animais , Sulfametazina/toxicidade , Oryzias/metabolismo , Microplásticos/metabolismo , Poluentes Químicos da Água/análise , Antibacterianos/toxicidade , Antibacterianos/metabolismo
19.
Behav Sci (Basel) ; 13(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37366701

RESUMO

This study aimed to examine the relationship between physical activity and cancer patients' survival beliefs and constructed a mediation model involving the mediating effects of interpersonal competence and quality of life. We conducted 252 questionnaire surveys on multiple chat groups for cancer patients using the WeChat software, and assessed physical activity, survival beliefs, interpersonal competence, and quality of life using standard scales. Data were analyzed using SPSS and AMOS. There were positive correlations between physical activity and quality of life (ß = 0.393, p < 0.001), physical activity and interpersonal competence (ß = 0.385, p < 0.001), interpersonal competence and quality of life (ß = 0.455, p < 0.001), and quality of life and survival beliefs (ß = 0.478, p < 0.001). In addition, a significant mediating effect between physical activity and survival beliefs was observed between interpersonal competence and quality of life (standardized indirect effect = 0.384, p < 0.001). The study revealed that effective physical activity led to higher interpersonal competence, more excellent quality of life, and improved survival beliefs in cancer patients, and that the association of physical activity with improved survival beliefs was fully mediated through interpersonal competence and quality of life. The findings suggest that the relevant government should increase policy support and publicity to improve cancer patients' participation in physical activity.

20.
Sci Adv ; 9(22): eadc9273, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256945

RESUMO

Lung cancer is a lethal malignancy lacking effective therapies. Emerging evidence suggests that epigenetic enzyme mutations are closely related to the malignant phenotype of lung cancer. Here, we identified a series of gain-of-function mutations in the histone methyltransferase DOT1L. The strongest of them is R231Q, located in the catalytic DOT domain. R231Q can enhance the substrate binding ability of DOT1L. Moreover, R231Q promotes cell growth and drug resistance of lung cancer cells in vitro and in vivo. Mechanistic studies also revealed that the R231Q mutant specifically activates the MAPK/ERK signaling pathway by enriching H3K79me2 on the RAF1 promoter and epigenetically regulating the expression of downstream targets. The combination of a DOT1L inhibitor (SGC0946) and a MAPK/ERK axis inhibitor (binimetinib) can effectively reverse the R231Q-induced phenomena. Our results reveal gain-of-function mutations in an epigenetic enzyme and provide promising insights for the precise treatment of lung cancer patients.


Assuntos
Mutação com Ganho de Função , Neoplasias Pulmonares , Humanos , Domínio Catalítico , Transdução de Sinais , Proliferação de Células , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Histona-Lisina N-Metiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA