Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plast Reconstr Surg ; 151(2): 331-342, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696316

RESUMO

BACKGROUND: Currently, there is a lack in therapy that promotes the reepithelialization of diabetic wounds as an alternative to skin grafting. Here, the authors hypothesized that extracellular vesicles from adipose-derived stem cells (ADSC-EVs) could accelerate wound closure through rescuing the function of keratinocytes in diabetic mice. METHODS: The effect of ADSC-EVs on the biological function of human keratinocyte cells was assayed in vitro. In vivo, 81 male severe combined immune deficiency mice aged 8 weeks were divided randomly into the extracellular vesicle-treated diabetes group (n = 27), the phosphate-buffered saline-treated diabetes group (n = 27), and the phosphate-buffered saline-treated normal group (n = 27). A round, 8-mm-diameter, full-skin defect was performed on the back skin of each mouse. The wound closure kinetics, average healing time, reepithelialization rate, and neovascularization were evaluated by histological staining. RESULTS: In vitro, ADSC-EVs improved proliferation, migration, and proangiogenic potential, and inhibited the apoptosis of human keratinocyte cells by suppressing Fasl expression with the optimal dose of 40 µg/mL. In vivo, postoperative dripping of ADSC-EVs at the dose of 40 µg/mL accelerated diabetic wound healing, with a 15.8% increase in closure rate and a 3.3-day decrease in average healing time. ADSC-EVs improved reepithelialization (18.2%) with enhanced epithelial proliferation and filaggrin expression, and suppressed epithelial apoptosis and Fasl expression. A 2.7-fold increase in the number of CD31-positive cells was also observed. CONCLUSION: ADSC-EVs improve diabetic wound closure and angiogenesis by enhancing keratinocyte-mediated reepithelialization and vascularization. CLINICAL RELEVANCE STATEMENT: ADSC-EVs could be developed as a regenerative medicine for diabetic wound care.


Assuntos
Diabetes Mellitus Experimental , Vesículas Extracelulares , Camundongos , Masculino , Humanos , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/terapia , Adipócitos , Células-Tronco/patologia , Fosfatos
2.
Ann Plast Surg ; 89(2): 225-229, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35943229

RESUMO

BACKGROUND: Random flaps are widely used for wound repair. However, flap necrosis is a serious complication leading to the failure of operation. Our previous study demonstrated a great proangiogenic potential of hypoxia-treated adipose-derived stem cells-extracellular vesicles (HT-ASC-EVs). Thus, we aim to evaluate the effect of HT-ASC-EVs in the survival and angiogenesis of random skin flap in rats. METHODS: Adipose-derived stem cells-extracellular vesicles were respectively isolated from adipose-derived stem cell culture medium of 3 donors via ultracentrifugation. The expression of hypoxia-inducible factor 1α (HIF-1α) and proangiogenic potential of HT-ASC-EVs and ASC-EVs were compared by co-culturing with human umbilical vein endothelial cells. Forty male Sprague-Dawley rats were randomly divided into 3 group (n = 10/group). A 9 × 3-cm random skin flap was separated from the underlying fascia with both sacral arteries sectioned on each rat. The survival and angiogenesis of flaps treated by ASC-EVs or HT-ASC-EVs were also compared. Laser Doppler flowmetry and immunohistochemistry were used to evaluate skin perfusion and angiogenesis of skin flaps on postoperative day 7. RESULTS: Hypoxia-treated adipose-derived stem cells-extracellular vesicles further improve the proliferation, migration, tube formation with upregulated HIF-1α, and VEGF expression of human umbilical vein endothelial cells in vitro, compared with ASC-EVs. In vivo, postoperatively injecting HT-ASC-EVs suppressed necrosis rate (29.1 ± 2.8% vs 59.2 ± 2.1%) and promoted the angiogenesis of skin flap including improved skin perfusion (803.2 ± 24.3 vs 556.3 ± 26.7 perfusion unit), increased number of CD31-positive cells, and upregulated expression of HIF-1α in vascular endothelium on postoperative day 7, compared with ASC-EVs. CONCLUSIONS: Intradermal injecting HT-ASC-EVs improve the survival of random skin flap by promoting HIF-1α-mediated angiogenesis in rat model.


Assuntos
Vesículas Extracelulares , Hipóxia , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Necrose/metabolismo , Neovascularização Fisiológica , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA