Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Water Environ Res ; 96(7): e11076, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38965745

RESUMO

Knowledge on natural background levels (NBLs) of aluminum (Al) in groundwater can accurately assess groundwater Al contamination at a regional scale. However, it has received little attention. This study used a combination of preselection and statistic methods consisting of the oxidation capacity and the boxplot iteration methods to evaluate the NBL of shallow groundwater Al in four groundwater units of the Pearl River Delta (PRD) via eliminating anthropogenic-impacted groundwaters and to discuss driving factors controlling high NBLs of Al in groundwater in this area. A total of 280 water samples were collected, and 18 physico-chemical parameters including Redox potential, dissolved oxygen, pH, total dissolved solids, HCO3 -, NH4 +, NO3 -, SO4 2-, Cl-, NO2 -, F-, K+, Na+, Ca2+, Mg2+, Fe, Mn, and Al were analyzed. Results showed that groundwater Al NBLs in groundwater units A-D were 0.11, 0.16, 0.15, and 0.08 mg/L, respectively. The used method in this study is acceptable for the assessment of groundwater Al NBLs in the PRD, because groundwater Al concentrations in various groundwater units in residual datasets were independent of land-use types, but they were opposite in the original datasets. The dissolution of Al-rich minerals in sediments/rocks was the major source for groundwater Al NBLs in the PRD, and the interaction with Al-rich river water was secondary one. The high groundwater Al NBL in groundwater unit B was mainly attributed to the acid precipitation and the organic matter mineralization inducing the release of Al in Quaternary sediments. By contrast, the high groundwater Al NBL in groundwater unit C mainly was ascribed to the release of Al complexes such as fluoroaluminate from rocks/soils into groundwater induced by acid precipitation, but it was limited by the dissolution of Mg minerals (e.g., dolomite) in aquifers. This study provides not only useful groundwater Al NBLs for the evaluation of groundwater Al contamination but also a reference for understanding the natural geochemical factors controlling groundwater Al in urbanized deltas such as the PRD. PRACTITIONER POINTS: The natural background level (NBL) of groundwater aluminum in the Pearl River Delta (PRD) was evaluated. The dissolution of aluminum-rich minerals in sediments/rocks was the major source for groundwater aluminum NBLs in the PRD. The acid precipitation and organic matter mineralization contribute to high groundwater Al NBL in the groundwater unit B. The acid precipitation contributes to high groundwater Al NBL in the groundwater unit C, while dissolution of magnesium minerals limits it.


Assuntos
Alumínio , Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Água Subterrânea/análise , Alumínio/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Rios/química , China , Urbanização
2.
Anim Biotechnol ; 35(1): 2344210, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38785376

RESUMO

The PPARGC1A gene plays a fundamental role in regulating cellular energy metabolism, including adaptive thermogenesis, mitochondrial biogenesis, adipogenesis, gluconeogenesis, and glucose/fatty acid metabolism. In a previous study, our group investigated seven SNPs in Mediterranean buffalo associated with milk production traits, and the current study builds on this research by exploring the regulatory influences of the PPARGC1A gene in buffalo mammary epithelial cells (BuMECs). Our findings revealed that knockdown of PPARGC1A gene expression significantly affected the growth of BuMECs, including proliferation, cell cycle, and apoptosis. Additionally, we observed downregulated triglyceride secretion after PPARGC1A knockdown. Furthermore, the critical genes related to milk production, including the STATS, BAD, P53, SREBF1, and XDH genes were upregulated after RNAi, while the FABP3 gene, was downregulated. Moreover, Silencing the PPARGC1A gene led to a significant downregulation of ß-casein synthesis in BuMECs. Our study provides evidence of the importance of the PPARGC1A gene in regulating cell growth, lipid, and protein metabolism in the buffalo mammary gland. In light of our previous research, the current study underscores the potential of this gene for improving milk production efficiency and overall dairy productivity in buffalo populations.


Assuntos
Búfalos , Células Epiteliais , Glândulas Mamárias Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Animais , Búfalos/genética , Células Epiteliais/metabolismo , Feminino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Leite , Regulação da Expressão Gênica , Lactação/genética , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Apoptose/genética
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731898

RESUMO

The decline in female fecundity is linked to advancing chronological age. The ovarian reserve diminishes in quantity and quality as women age, impacting reproductive efficiency and the aging process in the rest of the body. NAD+ is an essential coenzyme in cellular energy production, metabolism, cell signaling, and survival. It is involved in aging and is linked to various age-related conditions. Hallmarks associated with aging, diseases, and metabolic dysfunctions can significantly affect fertility by disturbing the delicate relationship between energy metabolism and female reproduction. Enzymes such as sirtuins, PARPs, and CD38 play essential roles in NAD+ biology, which actively consume NAD+ in their enzymatic activities. In recent years, NAD+ has gained much attention for its role in aging and age-related diseases like cancer, Alzheimer's, cardiovascular diseases, and neurodegenerative disorders, highlighting its involvement in various pathophysiological processes. However, its impact on female reproduction is not well understood. This review aims to bridge this knowledge gap by comprehensively exploring the complex interplay between NAD+ biology and female reproductive aging and providing valuable information that could help develop plans to improve women's reproductive health and prevent fertility issues.


Assuntos
Envelhecimento , NAD , Ovário , Humanos , Feminino , NAD/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Ovário/metabolismo , Animais , Sirtuínas/metabolismo , Metabolismo Energético , Fertilidade/fisiologia , Reprodução/fisiologia
4.
Sci Rep ; 14(1): 6971, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521855

RESUMO

Doxorubicin has been used extensively as a potent anticancer agent, but its clinical use is limited by its cardiotoxicity. However, the underlying mechanisms remain to be fully elucidated. In this study, we tested whether NADPH oxidase 2 (Nox2) mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, resulting in cardiac atrophy and dysfunction in doxorubicin-induced heart failure. Nox2 knockout (KO) and wild-type (WT) mice were randomly assigned to receive a single injection of doxorubicin (15 mg/kg, i.p.) or saline. WT doxorubicin mice exhibited the decreases in survival rate, left ventricular (LV) wall thickness and LV fractional shortening and the increase in the lung wet-to-dry weight ratio 1 week after the injections. These alterations were attenuated in Nox2 KO doxorubicin mice. In WT doxorubicin mice, myocardial oxidative stress was increased, myocardial noradrenergic nerve fibers were reduced, myocardial expression of PGP9.5, GAP43, tyrosine hydroxylase and norepinephrine transporter was decreased, and these changes were prevented in Nox2 KO doxorubicin mice. Myocyte autophagy was increased and myocyte size was decreased in WT doxorubicin mice, but not in Nox2 KO doxorubicin mice. Nox2 mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy-both of which contribute to cardiac atrophy and failure after doxorubicin treatment.


Assuntos
Cardiomiopatias , Miócitos Cardíacos , NADPH Oxidase 2 , Animais , Camundongos , Autofagia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Doxorrubicina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Estresse Oxidativo , Simpatectomia
5.
Cell Metab ; 36(4): 822-838.e8, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38350448

RESUMO

Immunomodulatory effects of long-chain fatty acids (LCFAs) and their activating enzyme, acyl-coenzyme A (CoA) synthetase long-chain family (ACSL), in the tumor microenvironment remain largely unknown. Here, we find that ACSL5 functions as an immune-dependent tumor suppressor. ACSL5 expression sensitizes tumors to PD-1 blockade therapy in vivo and the cytotoxicity mediated by CD8+ T cells in vitro via regulation of major histocompatibility complex class I (MHC-I)-mediated antigen presentation. Through screening potential substrates for ACSL5, we further identify that elaidic acid (EA), a trans LCFA that has long been considered harmful to human health, phenocopies to enhance MHC-I expression. EA supplementation can suppress tumor growth and sensitize PD-1 blockade therapy. Clinically, ACSL5 expression is positively associated with improved survival in patients with lung cancer, and plasma EA level is also predictive for immunotherapy efficiency. Our findings provide a foundation for enhancing immunotherapy through either targeting ACSL5 or metabolic reprogramming of antigen presentation via dietary EA supplementation.


Assuntos
Apresentação de Antígeno , Neoplasias , Ácidos Oleicos , Humanos , Linfócitos T CD8-Positivos/metabolismo , Receptor de Morte Celular Programada 1 , Suplementos Nutricionais , Microambiente Tumoral , Coenzima A Ligases/metabolismo
6.
Eur J Pharmacol ; 967: 176351, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290568

RESUMO

Doxorubicin is widely used for the treatment of human cancer, but its clinical use is limited by a cumulative dose-dependent cardiotoxicity. However, the mechanism of doxorubicin-induced cardiac atrophy and failure remains to be fully understood. In this study, we tested whether the specific NADPH oxidase 2 (Nox2) inhibitor GSK2795039 attenuates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, leading to the amelioration of cardiac atrophy and dysfunction in chronic doxorubicin-induced cardiomyopathy. Mice were randomized to receive saline, doxorubicin (2.5 mg/kg, every other day, 6 times) or doxorubicin plus GSK2795039 (2.5 mg/kg, twice a day, 9 weeks). Left ventricular (LV) total wall thickness and LV ejection fraction were decreased in doxorubicin-treated mice compared with saline-treated mice and the decreases were prevented by the treatment of the specific Nox2 inhibitor GSK2795039. The ratio of total heart weight to tibia length and myocyte cross-sectional area were decreased in doxorubicin-treated mice, and the decreases were attenuated by the GSK2795039 treatment. In doxorubicin-treated mice, myocardial Nox2 and 4-hydroxynonenal levels were increased, myocardial expression of GAP43, tyrosine hydroxylase and norepinephrine transporter, markers of sympathetic nerve terminals, was decreased, and these changes were prevented by the GSK2795039 treatment. The ratio of LC3 II/I, a marker of autophagy, and Atg5, Atg12 and Atg12-Atg5 conjugate proteins were increased in doxorubicin-treated mice, and the increases were attenuated by the GSK2795039 treatment. These findings suggest that inhibition of Nox2 by GSK2795039 attenuates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, thereby ameliorating cardiac atrophy and dysfunction after chronic doxorubicin treatment.


Assuntos
Aminopiridinas , Doxorrubicina , Células Musculares , Sulfonamidas , Animais , Camundongos , Atrofia/induzido quimicamente , Autofagia , Doxorrubicina/efeitos adversos , NADPH Oxidase 2
7.
Drug Dev Res ; 85(1): e22124, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37859299

RESUMO

AS602801 has been reported as a potential drug candidate against brain metastasis by suppressing the gap-junction communication between lung cancer stem cells and astrocytes. In this study, we aimed to study the molecular mechanism underlying the role of AS602801 in the treatment of brain metastasis in breast cancer. We utilized female athymic BALB/c nude mice and MDA-MB-231/BT-474BR cells to establish experimental models. Polymerase chain reaction assays were performed to observe changes in the connexin 43 (Cx43) messenger RNA (mRNA) and c-Jun N-terminal kinase (JNK) mRNA levels. Dye transfer assay was used to observe the effect of AS602801 on cell-cell communication. An organotypic blood-brain barrier (BBB) model was utilized to observe the effect of AS602801 on transmigration through the BBB barrier. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay and flow cytometry were performed to evaluate the proliferation and apoptosis of breast cancer cells co-cultivated with astrocytes. AS602801 inhibited the upregulation of Cx43 and JNK in brain metastasized breast cancer cells in a dose-dependent manner. Also, AS602801 significantly decreased the dye transfer rate from astrocytes to breast cancer cells, indicating the inhibitory effect of AS602801 on cell-cell communication. The transmigration ability of breast cancer cells co-cultured with astrocytes was decreased by AS602801. Furthermore, AS602801 reduced the elevated Cx43/JNK mRNA expression in the co-astrocyte group while suppressing the increased proliferation and promoting the decreased apoptosis of breast cancer cells co-cultivated with astrocytes. AS602801 also suppressed the brain metastasis of breast cancer cells and increased mouse survival. AS602801 downregulates the expressions of JNK and Cx43 to suppress the gap-junction activity. AS602801 also inhibits the communication between breast cancer cells and astrocytes, thus contributing to the treatment of brain metastasis in breast cancer.


Assuntos
Benzotiazóis , Neoplasias Encefálicas , Conexina 43 , Pirimidinas , Animais , Camundongos , Feminino , Conexina 43/genética , Conexina 43/metabolismo , Camundongos Nus , Neoplasias Encefálicas/tratamento farmacológico , Encéfalo/metabolismo , RNA Mensageiro/metabolismo
8.
Cell Death Dis ; 14(4): 239, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37015904

RESUMO

Female subfertility is an increasing reproductive issue worldwide, which is partially related to abnormal ovarian follicular development. Granulosa cells (GCs), by providing the necessary physical support and microenvironment for follicular development, play critical roles in maintaining female fertility. We previously showed that ectopic expression of four and a half LIM domains 2 (FHL2) promoted ovarian granulosa cell tumor progression. However, its function in follicular development and fertility remains unknown. Here, we confirmed that FHL2 is highly expressed in human and mouse ovaries. FHL2 immunosignals were predominantly expressed in ovarian GCs. A Fhl2 knockout (KO) mouse model was generated to examine its roles in follicular development and fertility. Compared with wildtype, knockout of Fhl2 significantly decreased female litter size and offspring number. Furthermore, Fhl2 deficiency reduced ovarian size and impaired follicular development. RNA-sequencing analysis of GCs isolated from either KO or WT mice revealed that, Fhl2 deletion impaired multiple biological functions and signaling pathways, such as Ovarian Putative Early Atresia Granulosa Cell, ErbB, Hippo/YAP, etc. In vitro studies confirmed that FHL2 silencing suppressed GCs growth and EGF-induced GCs proliferation, while its overexpression promoted GC proliferation and decreased apoptosis. Mechanistic studies indicated that FHL2, via forming complexes with transcriptional factors AP-1 or NF-κB, regulated Egf and Egfr expression, respectively. Besides, FHL2 depletion decreased YAP1 expression, especially the active form of YAP1 (nuclear YAP1) in GCs of growing follicles. EGF, serving as an autocrine/paracrine factor, not only induced FHL2 expression and nuclear accumulation, but also stimulated YAP1 expression and activation. Collectively, our study suggests that FHL2 interacts with EGFR and Hippo/YAP signaling to regulate follicular development and maintain fertility. This study illuminates a novel mechanism for follicular development and a potential therapeutic target to address subfertility.


Assuntos
Fator de Crescimento Epidérmico , Células da Granulosa , Feminino , Humanos , Camundongos , Animais , Fator de Crescimento Epidérmico/metabolismo , Células da Granulosa/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fator de Transcrição AP-1/metabolismo , Fertilidade , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo
9.
Anim Reprod Sci ; 251: 107224, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37003063

RESUMO

Optimized reproduction management enhances fertility of dairy cows, and thus improves their milk production efficiency. Comparing different synchronization protocols under variable ambient conditions would be conducive to protocol selection and production efficiency improvement. Here, 9538 primiparous Holstein lactating cows were enrolled to either Double-Ovsynch (DO) or Presynch-Ovsynch (PO) to determine the outcomes under different ambiences. We found that averaged THI of 21-days before the first service (THI-b) was the best indicators in a total of 12 environmental indexes to explain changes in conception rate. And the conception rate decreased linearly in DO treated cows when THI-b was over 73, whereas the threshold was 64 in cows subjected to PO. Compared with PO treated cows, DO increased conception rate by 6%, 13% and 19%, when THI-b was lower than 64, from 64 to 73, and over 73, respectively. Furthermore, employing treatment of PO would lead greater risk for cows staying open compared with DO when THI-b below 64 (hazard ratio, 1.3) and over 73 (hazard ratio, 1.4). Most importantly, calving intervals were 15 days shorter in DO treated cows compared PO when THI-b over 73, while no difference was detected when THI-b below 64. In conclusion, our results supported that, fertility of primiparous Holstein cows could be improved by employing DO, especially in hot weather (THI-b ≥ 73), and the benefits of DO protocol were abated under cool conditions (THI-b < 64). Considering the impacts of environmental heat load is necessary to determine reproductive protocols for commercial dairy farm.


Assuntos
Sincronização do Estro , Lactação , Feminino , Bovinos , Animais , Sincronização do Estro/métodos , Temperatura Alta , Inseminação Artificial/veterinária , Inseminação Artificial/métodos , Reprodução , Dinoprosta , Hormônio Liberador de Gonadotropina , Progesterona
10.
Cells ; 12(4)2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36831340

RESUMO

Granulosa cells (GCs) are essential for follicular growth, oocyte maturation, and steroidogenesis in the ovaries. Interleukin (IL)-11 is known to play a crucial role in the decidualization of the uterus, however, the expression of the IL-11 system (IL-11, IL-11Rα, and gp130) in the bovine ovary and its exact role in GCs have not been extensively studied. In this study, we identified the IL-11 signaling receptor complex in the bovine ovary and investigated the regulatory effects and underlying mechanism of IL-11Rα on the proliferation and steroidogenesis of GCs. We observed that the IL-11 complex was highly expressed in the GCs of large follicles. IL-11Rα knockdown significantly inhibited GC proliferation by inducing cell cycle arrest at the G1 phase, along with a significant downregulation of proliferating cell nuclear antigen (PCNA) and Cyclin D1 (CCND1) protein, and induced GC apoptosis by significantly upregulating the ratio of BCL-2-associated X protein (BAX) and B-cell lymphoma-2 (BCL-2). In addition, IL-11Rα knockdown attenuated the Janus kinase (JAK) 1-signal transducer and activator of transcription 3 (STAT3) signaling, which is related to cell proliferation and apoptosis. Furthermore, the enzyme-linked immunosorbent assay (ELISA) indicated that IL-11Rα silencing decreased the basal and forskolin (FSK)-stimulated secretions of estradiol and progesterone in GC culture medium concomitantly with a remarkable decrease in cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and steroidogenic acute regulatory protein (StAR). We subsequently determined that this reduction in steroidogenesis was in parallel with the decrease in phosphorylations of protein kinase A (PKA) substrates, cAMP-response element binding protein (CREB), extracellular regulated protein kinase (ERK) 1/2, and p38 mitogen-activated protein kinase (MAPK). Taken together, these data indicate that the effects of IL-11/IL-11Rα on the proliferation and steroidogenesis in bovine GCs is mediated by the JAK1-STAT3, PKA-CREB, p38MAPK, and ERK1/2 signaling pathways. Our findings provide important insights into the local action of the IL-11 system in regulating ovarian function.


Assuntos
Células da Granulosa , Interleucina-11 , Feminino , Bovinos , Animais , Células da Granulosa/metabolismo , Progesterona/farmacologia , Proliferação de Células/fisiologia , Receptores de Interleucina-11/metabolismo
11.
Toxicol Appl Pharmacol ; 463: 116412, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764612

RESUMO

Doxorubicin (DOX), which is widely used for the treatment of cancer, induces cardiomyopathy associated with NADPH oxidase-derived reactive oxygen species. GSK2795039 is a novel small molecular NADPH oxidase 2 (Nox2) inhibitor. In this study, we investigated whether GSK2795039 prevents receptor-interacting protein kinase 1 (RIP1)-RIP3-mixed lineage kinase domain-like protein (MLKL)-mediated cardiomyocyte necroptosis in DOX-induced heart failure through NADPH oxidase inhibition. Eight-week old mice were randomly divided into 4 groups: control, GSK2795039, DOX and DOX plus GSK2795039. H9C2 cardiomyocytes were treated with DOX and GSK2795039. In DOX-treated mice, the survival rate was reduced, left ventricular (LV) end-systolic dimension was increased and LV fractional shortening was decreased, and these alterations were attenuated by the GSK2795039 treatment. GSK2795039 inhibited not only myocardial NADPH oxidase subunit gp91phox (Nox2) protein, but also p22phox, p47phox and p67phox proteins and prevented oxidative stress 8-hydroxy-2'-deoxyguanosine levels in DOX-treated mice. RIP3 protein and phosphorylated RIP1 (p-RIP1), p-RIP3 and p-MLKL proteins, reflective of their respective kinase activities, markers of necroptosis, were markedly increased in DOX-treated mice, and the increases were prevented by GSK2795039. GSK2795039 prevented the increases in serum lactate dehydrogenase and myocardial fibrosis in DOX-treated mice. Similarly, in DOX-treated cardiomyocytes, GSK2795039 improved cell viability, attenuated apoptosis and necrosis and prevented the increases in p-RIP1, p-RIP3 and p-MLKL expression. In conclusion, GSK2795039 prevents RIP1-RIP3-MLKL-mediated cardiomyocyte necroptosis through inhibition of NADPH oxidase-derived oxidative stress, leading to the improvement of myocardial remodeling and function in DOX-induced heart failure. These findings suggest that GSK2795039 may have implications for the treatment of DOX-induced cardiomyopathy.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Necroptose , Necrose/metabolismo , Apoptose/fisiologia , Estresse Oxidativo , Doxorrubicina/metabolismo , NADPH Oxidases/metabolismo , Proteínas Quinases/metabolismo
12.
Nat Prod Res ; 37(21): 3663-3667, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35879815

RESUMO

Five abietane diterpenes compounds were separated from petroleum ether extraction sites of ethanol extract of Caryopteris Mongholica, and Compound 1 was identified as a new abietane diterpenes compound by NMR and mass spectrometry, named as Tuurgan A of Caryopteris Mongholica; and Compounds 2-5 separated from Caryopteris Mongholica for the first time were identified as Ferruginol (2), Taxodione (3), Caryopterisoid Q (4), and Huperphlegmarin B (5). The anti-lung cancer activity of the Compounds 1-5 were determined, which results showed that they all had high A549 cytotoxicity.

13.
Front Microbiol ; 13: 1005818, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225375

RESUMO

This study aimed to determine the effect of capsicum oleoresin (CAP) on rumen fermentation and microbial abundance under different temperature and dietary conditions in vitro. The experimental design was arranged in a 2 × 2 × 3 factorial format together with two temperatures (normal: 39°C; hyperthermal: 42°C), two forage/concentrate ratios (30:70; 70:30), and two CAP concentrations in the incubation fluid at 20 and 200 mg/L with a control group. Regarding the fermentation characteristics, high temperature reduced short-chain fatty acids (SCFA) production except for molar percentages of butyrate while increasing acetate-to-propionate ratio and ammonia concentration. The diets increased total SCFA, propionate, and ammonia concentrations while decreasing acetate percentage and acetate-to-propionate ratio. CAP reduced acetate percentage and acetate-to-propionate ratio. Under hyperthermal condition, CAP could reduce acetate percentage and increase acetate-to-propionate ratio, lessening the negative effect of high heat on SCFA. Hyperthermal condition and diet altered the relative abundance of microbial abundance in cellulose-degrading bacteria. CAP showed little effect on the microbial abundance which only increased Butyrivibrio fibrisolvens. Thus, CAP could improve rumen fermentation under different conditions, with plasticity in response to the ramp of different temperature and dietary conditions, although hardly affecting rumen microbial abundance.

14.
Front Vet Sci ; 9: 935634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268048

RESUMO

The present study aims to evaluate the effects of prepartum maternal supplementation of Capsicum oleoresin (CAP) on colostrum quality and growth performance in newborn buffalo calves. Twelve multiparous buffaloes were randomly assigned to two groups starting from 4 weeks prepartum: the control group with a basal diet (CON) and the treatment group with a basal diet supplemented with 20 mg CAP/kg dry matter (CAP20). After birth, all calves were weighed and received colostrum from their respective dam directly within 2 h. After that, calves received pasteurized milk and starter feed till 56 days of age. The results showed that CAP increased lactose (P < 0.05) in colostrum, and it tended to increase monounsaturated fatty acids; however, it decreased colostrum urea nitrogen (P < 0.10). CAP did not affect colostrum yield and immunoglobulin G and M concentrations. The weekly starter intake was not affected by maternal CAP supplementation during the first 6 weeks of life. There was an increasing tendency in weekly starter intake from weeks 7 and 8 (P < 0.10) in CAP20 compared with CON. At 7 days of age, calves in CAP20 had higher immunoglobulin G (P < 0.05) and a decreased tendency in calves' serum glucose compared with CON. Additionally, maternal CAP supplementation increased calves' serum ß-hydroxybutyric acid (P < 0.05) and tended to increase total protein (P < 0.10), while decreased non-esterified fatty acids (P < 0.05) at 56 days of age. Calves in CAP20 had higher final withers height, final heart girth, average withers height, and average heart girth than the CON (P < 0.05). These results suggest that maternal CAP supplementation could improve colostrum quality and positively affect the performance of buffalo calves.

15.
Front Immunol ; 13: 974006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159852

RESUMO

Mycoplasma bovis (M. bovis) is an important pathogen of the bovine respiratory disease complex, invading lower respiratory tracts and causing severe pneumonia. However, its molecular mechanism largely remains unknown. Host annexin A2 (ANXA2) is a calcium-dependent phospholipid-binding protein. The current study sought to determine whether ANXA2 could mediate M. bovis adhesion and invasion thereby affecting its induction of inflammatory response. ANXA2 expression was upregulated in M. bovis-infected bovine lung epithelial cells (EBL), and blocking ANXA2 with an anti-ANXA2 antibody reduced M. bovis adhesion to EBL. Compared with uninfected cells, more ANXA2 was translocated from the cytoplasm to the cell surface after M. bovis infection. Furthermore, RNA interference knockdown of ANXA2 expression in EBL cells resulted in a significant decrease in M. bovis invasion and F-actin polymerization. Next, the transcriptomic study of M. bovis-infected EBL cells with and without ANXA2 knockdown were performed. The data exhibited that ANXA2 knockdown EBL cells had 2487 differentially expressed genes (DEGs), with 1175 upregulated and 1312 downregulated compared to control. According to GO and KEGG analyses, 50 genes potentially linked to inflammatory responses, 23 involved in extracellular matrix (ECM) receptor interaction, and 48 associated with PI3K-AKT signal pathways were upregulated, while 38 mRNA binding genes, 16 mRNA 3'-UTR binding genes, and 34 RNA transport genes were downregulated. Furthermore, 19 genes with various change-folds were selected for qPCR verification, and the results agreed with the RNA-seq findings. Above all, the transcription of two chemokines (IL-8 and CXCL5) and a key bovine ß-defensin TAP in IL-17 signaling pathway were significantly increased in ANXA2 knockdown cells. Moreover, ANXA2 knockdown or knockout could increase NF-κB and MAPK phosphorylation activity in response to M. bovis infection. Additionally, ANXA2 knockdown also significantly decreased the CD44 transcripts via exon V3 and V7 skipping after M. bovis infection. We concluded that M. bovis borrowed host ANXA2 to mediate its adhesion and invasion thereby negatively regulating molecular expression essential to IL-17 signal pathway. Furthermore, CD44 V3 and V7 isoforms might contribute to this ANXA2 meditated processes in M. bovis infected EBL cells. These findings revealed a new understanding of pathogenesis for M. bovis infection.


Assuntos
Anexina A2 , Infecções por Mycoplasma , Mycoplasma bovis , beta-Defensinas , Actinas/metabolismo , Animais , Anexina A2/genética , Anexina A2/metabolismo , Cálcio/metabolismo , Bovinos , Interleucina-17/metabolismo , Interleucina-8/metabolismo , Pulmão/metabolismo , Mycoplasma bovis/genética , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipídeos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro , beta-Defensinas/metabolismo
16.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080362

RESUMO

Inhibin is a molecule that belongs to peptide hormones and is excreted through pituitary gonadotropins stimulation action on the granulosa cells of the ovaries. However, the differential regulation of inhibin and follicle-stimulating hormone (FSH) on granulosa cell tumor growth in mice inhibin-deficient females is not yet well understood. The objective of this study was to evaluate the role of inhibin and FSH on the granulosa cells of ovarian follicles at the premature antral stage. This study stimulated immature wild-type (WT) and Inhibin-α knockout (Inha-/-) female mice with human chorionic gonadotropin (hCG) and examined hCG-induced gene expression changes in granulosa cells. Also, screening of differentially expressed genes (DEGs) was performed in the two groups under study. In addition, related modules to external traits and key gene drivers were determined through Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm. The results identified a number of 1074 and 931 DEGs and 343 overlapping DEGs (ODEGs) were shared in the two groups. Some 341 ODEGs had high relevance and consistent expression direction, with a significant correlation coefficient (r2 = 0.9145). Additionally, the gene co-expression network of selected 153 genes showed 122 nodes enriched to 21 GO biological processes (BP) and reproduction and 3 genes related to genomic pathways. By using principal component analysis (PCA), the 14 genes in the regulatory network were fixed and the cumulative proportion of fitted top three principal components was 94.64%. In conclusion, this study revealed the novelty of using ODEGs for investigating the inhibin and FSH hormone pathways that might open the way toward gene therapy for granulosa cell tumors. Also, these genes could be used as biomarkers for tracking the changes in inhibin and FSH hormone from the changes in the nutrition pattern.


Assuntos
Células da Granulosa , Inibinas , Animais , Feminino , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/farmacologia , Expressão Gênica , Genômica , Células da Granulosa/metabolismo , Humanos , Inibinas/genética , Camundongos , Camundongos Knockout
17.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142129

RESUMO

Icariin (ICA) is a naturally occurring phytochemical agent primarily extracted from Epimedium Brevicornum Maxim (Family Berberidaceae) with a broad spectrum of bioactivities. Endometritis is a uterine disease that causes enormous losses in the dairy industry worldwide. In this study, anti-inflammatory and anti-oxidant properties of ICA were investigated against lipopolysaccharide (LPS)-induced endometritis in mice to investigate possible underlying molecular mechanisms. Sixty heathy female Kunming mice were randomly assigned to four groups (n = 15), namely control, LPS, LPS + ICA, and ICA groups. The endometritis was induced by intrauterine infusion of 50 µL of LPS (1 mg/mL). After 24 h of onset of LPS-induced endometritis, ICA groups were injected thrice by ICA intraperitoneally six hours apart. Histopathological examination, enzyme linked immunosorbent assay (ELISA), real time quantitative polymerase chain reaction (RT-qPCR), western blotting, and immunohistochemistry were used in this study. Histological alterations revealed that ICA markedly mitigated uterine tissue injury caused by LPS. The results showed that the ICA inhibited the production of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) and boosted the production of anti-inflammatory cytokines (IL-10). Additionally, ICA modulated the expression of malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase 1 (SOD1), catalase (CAT), and glutathione peroxidase 1 (Gpx1) induced by LPS. The administration of ICA significantly (p < 0.05) improved the mRNA and protein expression of Toll-like receptor (TLR) 4. The western blotting and ELISA finding revealed that the ICA repressed LPS-triggered NF-κB pathway activation. Moreover, ICA improved the antioxidant defense system via activation of the Nrf2 pathway. The results revealed that ICA up-regulated the mRNA and protein expression of Nuclear erythroid-2-related factor (Nrf2), NAD(P)H: quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), and glutamate-cysteine ligase catalytic subunit (GCLC) under LPS exposure. Conclusively, our findings strongly suggested that ICA protects endometritis caused by LPS by suppressing TLR4-associated NF-κB and Nrf2 pathways. Altogether, these innovative findings may pave the way for future studies into the therapeutic application of ICA to protect humans and animals against endometritis.


Assuntos
Endometrite , Lipopolissacarídeos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Catalase/metabolismo , Citocinas/metabolismo , Endometrite/induzido quimicamente , Endometrite/tratamento farmacológico , Escherichia coli/metabolismo , Feminino , Flavonoides , Glutamato-Cisteína Ligase/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Inflamação/tratamento farmacológico , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/efeitos adversos , Malondialdeído , Camundongos , NAD/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Quinonas/farmacologia , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Biomed Res Int ; 2022: 3896068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35978642

RESUMO

The objective of current study was to assess the trend in various luteal characteristics viz luteal size (LS), plasma progesterone (P4) concentration, and luteal blood flow (LBF) using color Doppler imaging (CDI) and power Doppler imaging (PDI) modes in pregnant and nonpregnant Nili-Ravi buffaloes. Lactating, cyclic, and healthy Nili-Ravi buffaloes (n = 09) without any reproductive abnormality were selected in present study. Buffaloes were synchronized using Ov-Synch, and fixed-time artificially insemination was performed (day = 0). Pregnancy was diagnosed on 30-day post-AI using B-mode ultrasonography based on presence or absence of embryonic heartbeat. Ovaries of all animals were scanned from day 5 till 21 post-AI using both B-mode and Doppler ultrasonography to measure LS and LBF. After each ovarian ultrasound examination, blood samples were collected via jugular venipuncture to determine plasma P4 concentration. According to results, LBF using CDI and PDI was significantly higher (P ≤ 0.05) in pregnant buffaloes on days 13 and 15 post-AI, respectively. The mean LS and plasma P4 concentration did not differ (P ≥ 0.05) between pregnant and nonpregnant animals until day 15 post-AI. However, a significant difference (P ≤ 0.05) was noticed for both on day 17 and onwards. It is concluded that LBF is a more sensitive luteal character as compared to LS and P4 for earlier pregnancy diagnosis in Nili-Ravi buffaloes when ascertained through CDI.


Assuntos
Búfalos , Inseminação Artificial , Animais , Feminino , Inseminação Artificial/veterinária , Lactação , Gravidez , Progesterona , Ultrassonografia , Ultrassonografia Doppler
19.
Genes (Basel) ; 13(8)2022 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-36011355

RESUMO

(1) Background: Adipogenesis is an important issue in human health and livestock meat quality that has received widespread attention and extensive study. However, alternative splicing events may generate multiple isoforms with different functions. This will lead to known knowledge being far more complex than before. (2) Methods: We studied the effects of two different TUSC5 isoforms (TUSC5A and TUSC5B) in cattle on adipogenesis by constructing over-expression cell models and RNA-sequencing methods. (3) Results: We discovered that over-expression of TUSC5A promotes the process of adipogenesis while over-expression of TUSC5B suppresses it. Eight important genes (PPARG, ACC1, FASN, SCD1, LPL, FABP4, GPDH, and GLUT4) during adipogenesis were significantly promoted (student's t-test, p < 0.05) by TUSC5A and suppressed by TUSC5B both before and after cell differentiation. By performing a comprehensive analysis using a RNA-seq strategy, we found that both up-regulated differentially expressed genes (DEGs, |log2FoldChange| ≥ 1, p ≤ 0.05) of TUSC5A and down-regulated DEGs of TUSC5B were significantly enriched in the adipogenesis related GO terms, and the PPAR signaling pathway may play important role in those differences. (4) Conclusions: Our study proved that over-expression of two TUSC5 isoforms would regulate adipogenesis in the opposite direction. It is important to understand the function of the TUSC5 gene correctly.


Assuntos
Adipócitos , Adipogenia , Proteínas de Membrana/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , Animais , Bovinos/genética , Diferenciação Celular/genética , Humanos , PPAR gama/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
20.
Animals (Basel) ; 12(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35565634

RESUMO

Anti-Müllerian hormone (AMH) is secreted by the ovaries of female animals and exerts its biological effects through the type II receptor (AMHR2). AMH regulates follicular growth by inhibiting the recruitment of primordial follicles and reducing the sensitivity of antral follicles to FSH. Despite the considerable research on the actions of AMH in granulosa cells, the effect of AMH on the in vitro maturation of oocytes remains largely unknown. In the current study, we showed that AMH is only expressed in cumulus cells, while AMHR2 is produced in both cumulus cells and oocytes. AMH had no significant effect on COCs nuclear maturation, whereas it inhibited the stimulatory effects of FSH on COCs maturation and cumulus expansion. Moreover, AMH treatment effectively inhibited the positive effect of FSH on the mRNA expressions of Hyaluronan synthase 2 (Has2), Pentraxin 3 (Ptx3), and TNF-alpha-induced protein 6 (Tnfaip 6) genes in COCs. In addition, AMH significantly decreased the FSH-stimulated progesterone production, but did not change estradiol levels. Taken together, our results suggest that AMH may inhibit the effects of FSH-induced COCs in vitro maturation and cumulus expansion. These findings increase our knowledge of the functional role of AMH in regulating folliculogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA