Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Biomed Pharmacother ; 176: 116876, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850657

RESUMO

Necrotizing enterocolitis (NEC) is one of the most common and serious intestinal illnesses in newborns and seriously affects their long-term prognosis and survival. Butyrate is a short-chain fatty acid that can relieve intestinal inflammation, but its mechanism of action is unclear. Results from an in vivo neonatal rat model has shown that butyrate caused an improved recovery from NEC. These protective effects were associated with the metabolite of hesperetin, as determined by metabolomics and molecular biological analysis. Furthermore, transcriptomics combined with inhibitor assays were used to investigate the mechanism of action of hesperetin in an in vitro NEC model (IEC-6 cells exposed to LPS) to further investigate the mechanism by which butyrate attenuates NEC. The transcriptomics analysis showed that the PI3K-Akt signaling pathway was involved in the anti-NEC effect of hesperitin. Subsequently, the results using an inhibitor of PI3K (LY294002) indicated that the suppression could be explained by the hesperetin-induced expression of tight junction (TJ) proteins by potentially blocking the PI3K-Akt signaling pathway. In summary, the present study demonstrated that butyrate could improve recovery from NEC with a hesperetin metabolite, causing potential inhibition of the phosphorylation of the PI3K-Akt signaling pathway, resulting in the increased expression of TJ proteins. These findings reveal a potential new therapeutic pathway for the treatment of NEC.


Assuntos
Enterocolite Necrosante , Hesperidina , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/patologia , Hesperidina/farmacologia , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Animais Recém-Nascidos , Modelos Animais de Doenças , Butiratos/farmacologia , Linhagem Celular
2.
Transplantation ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773837

RESUMO

BACKGROUND: Stimulation of myeloid-derived suppressor cell (MDSC) formation represents a potential curative therapeutic approach for graft-versus-host disease (GVHD), which significantly impacts the prognosis of allogeneic hematopoietic stem cell transplantation. However, the lack of an effective strategy for inducing MDSC production in vivo has hindered their clinical application. In our previous study, MDSC expansion was observed in interleukin (IL)-27-treated mice. METHODS: In this study, we overexpressed exogenous IL-27 in mice using a recombinant adeno-associated virus vector to investigate its therapeutic and exacerbating effects in murine GVHD models. RESULTS: In our study, we demonstrated that exogenous administration of IL-27 significantly suppressed GVHD development in a mouse model. We found that IL-27 treatment indirectly inhibited the proliferation and activation of donor T cells by rapidly expanding recipient and donor myeloid cells, which act as MDSCs after irradiation or under inflammatory conditions, rather than through regulatory T-cell expansion. Additionally, IL-27 stimulated MDSC expansion by enhancing granulocyte-monocyte progenitor generation. Notably, we verified that IL-27 signaling in donor T cells exerted an antagonistic effect on GVHD prevention and treatment. Further investigation revealed that combination therapy involving IL-27 and T-cell depletion exhibited remarkable preventive effects on GVHD in both mouse and xenogeneic GVHD models. CONCLUSIONS: Collectively, these findings suggest that IL-27 promotes MDSC generation to reduce the incidence of GVHD, whereas targeted activation of IL-27 signaling in myeloid progenitors or its combination with T-cell depletion represents a potential strategy for GVHD therapy.

3.
Bioconjug Chem ; 35(5): 604-615, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38661725

RESUMO

Chimeric antigen receptor T-cell (CAR-T cell) therapy has become a promising treatment option for B-cell hematological tumors. However, few optional target antigens and disease relapse due to loss of target antigens limit the broad clinical applicability of CAR-T cells. Here, we conjugated an antibody (Ab) fusion protein, consisting of an Ab domain and a SpyCatcher domain, with the FITC-SpyTag (FITC-ST) peptide to form a bispecific safety switch module using a site-specific conjugation system. We applied the safety switch module to target CD19, PDL1, or Her2-expressing tumor cells by constructing FMC63 (anti-CD19), antiPDL1, or ZHER (anti-Her2)-FITC-ST, respectively. Those switch modules significantly improved the cytotoxic effects of anti-FITC CAR-T cells on tumor cells. Additionally, we obtained the purified CD8+ T cells by optimizing a shorter version of the CD8-binding aptamer to generate anti-FITC CD8-CAR-T cells, which combined with the CD4-FITC-ST switch module (anti-CD4) to eliminate the CD4-positive tumor cells in vitro and in vivo. Overall, we established a novel safety switch module by site-specific conjugation to enhance the antitumor function of universal CAR-T cells, thereby expanding the application scope of CAR-T therapy and improving its safety and efficacy.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Animais , Imunoterapia Adotiva/métodos , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Antígenos CD19/imunologia , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Receptor ErbB-2/imunologia
4.
Protein Sci ; 33(4): e4944, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501479

RESUMO

Antibody (Ab)-based drugs have been widely used in targeted therapies and immunotherapies, leading to significant improvements in tumor therapy. However, the failure of Ab therapy due to the loss of target antigens or Ab modifications that affect its function limits its application. In this study, we expanded the application of antibodies (Abs) by constructing a fusion protein as a versatile tool for Ab-based target cell detection, delivery, and therapy. We first constructed a SpaC Catcher (SpaCC for short) fusion protein that included the C domains of Staphylococcal protein A (SpaC) and the SpyCatcher. SpaCC conjugated with SpyTag-X (S-X) to form the SpaCC-S-X complex, which binds non-covalently to an Ab to form the Ab-SpaCC-S-X protein complex. The "X" can be a variety of small molecules such as fluoresceins, cell-penetrating peptide TAT, Monomethyl auristatin E (MMAE), and DNA. We found that Ab-SpaCC-S-FITC(-TAT) could be used for target cell detection and delivery. Besides, we synthesized the Ab-SpaCC-SN3-MMAE complex by linking Ab with MMAE by SpaCC, which improved the cytotoxicity of small molecule toxins. Moreover, we constructed an Ab-DNA complex by conjugating SpaCC with the aptamer (Ap) and found that Ab-SpaCC-SN3-Ap boosted the tumor-killing function of T-cells by retargeting tumor cells. Thus, we developed a multifunctional tool that could be used for targeted therapies and immunotherapies, providing a cheap and convenient novel drug development strategy.


Assuntos
Peptídeos Penetradores de Células , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Imunoterapia , Anticorpos , DNA , Linhagem Celular Tumoral
5.
CNS Neurosci Ther ; 30(4): e14489, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37850692

RESUMO

AIMS: The dysregulation of TGF-ß signaling is a crucial pathophysiological process in tumorigenesis and progression. LncRNAs have diverse biological functions and are significant participants in the regulation of tumor signaling pathways. However, the clinical value of lncRNAs related to TGF-ß signaling in glioma is currently unclear. METHODS: Data on glioma's RNA-seq transcriptome, somatic mutation, DNA methylation data, and clinicopathological information were derived from the CGGA and TCGA databases. A prognostic lncRNA signature was constructed by Cox and LASSO regression analyses. TIMER2.0 database was utilized to deduce immune infiltration characteristics. "ELMER v.2" was used to reconstruct TF-methylation-gene regulatory network. Immunotherapy and chemotherapy response predictions were implemented by the TIDE algorithm and GDSC database, respectively. In vitro and in vivo experiments were conducted to verify the results and clarify the regulatory mechanism of lncRNA. RESULTS: In glioma, a TGF-ß signaling-related 15-lncRNA signature was constructed, including AC010173.1, HOXA-AS2, AC074286.1, AL592424.1, DRAIC, HOXC13-AS, AC007938.1, AC010729.1, AC013472.3, AC093895.1, AC131097.4, AL606970.4, HOXC-AS1, AGAP2-AS1, and AC002456.1. This signature proved to be a reliable prognostic tool, with high risk indicating an unfavorable prognosis and being linked to malignant clinicopathological and genomic mutation traits. Risk levels were associated with different immune infiltration landscapes, where high risk was indicative of high levels of macrophage infiltration. In addition, high risk also suggested better immunotherapy and chemotherapy response. cg05987823 was an important methylation site in glioma progression, and AP-1 transcription factor family participated in the regulation of signature lncRNA expression. AGAP2-AS1 knockdown in in vitro and in vivo experiments inhibited the proliferation, migration, and invasion of glioma cells, as well as the growth of glioma, by downregulating the expression levels of NF-κB and ERK 1/2 in the TGF-ß signaling pathway. CONCLUSIONS: A prognostic lncRNA signature of TGF-ß signaling was established in glioma, which can be used for prognostic judgment, immune infiltration status inference, and immunotherapy response prediction. AGAP2-AS1 plays an important role in glioma progression.


Assuntos
Glioma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Glioma/genética , Glioma/terapia , Prognóstico , NF-kappa B , Fator de Crescimento Transformador beta , Microambiente Tumoral/genética
6.
Adv Sci (Weinh) ; 11(10): e2305566, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38148412

RESUMO

Chimeric antigen receptor (CAR)-positive cell therapy, specifically with anti-CD19 CAR-T (CAR19-T) cells, achieves a high complete response during tumor treatment for hematological malignancies. Large-scale production and application of CAR-T therapy can be achieved by developing efficient and low-cost enrichment methods for CAR-T cells, expansion monitoring in vivo, and overcoming tumor escape. Here, novel CAR-specific binding aptamers (CAR-ap) to traceless sort CAR-positive cells and obtain a high positive rate of CAR19-T cells is identified. Additionally, CAR-ap-enriched CAR19-T cells exhibit similar antitumor capacity as CAR-ab (anti-CAR antibody)-enriched CAR-T cells. Moreover, CAR-ap accurately monitors the expansion of CAR19-T cells in vivo and predicts the prognosis of CAR-T treatment. Essentially, a novel class of stable CAR-ap-based bispecific circular aptamers (CAR-bc-ap) is constructed by linking CAR-ap with a tumor surface antigen (TSA): protein tyrosine kinase 7 (PTK7) binding aptamer Sgc8. These CAR-bc-aps significantly enhance antitumor cytotoxicity with a loss of target antigens by retargeting CAR-T cells to the tumor in vitro and in vivo. Overall, novel CAR-aptamers are screened for traceless enrichment, monitoring of CAR-positive cells, and overcoming tumor cell immune escape. This provides a low-cost and high-throughput approach for CAR-positive cell-based immunotherapy.


Assuntos
Receptores de Antígenos Quiméricos , Evasão Tumoral , Linfócitos T , Imunoterapia Adotiva/métodos , Imunoterapia
7.
Stem Cell Res Ther ; 14(1): 370, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111045

RESUMO

BACKGROUND: Autoimmune hepatitis is a chronic inflammatory hepatic disorder with no effective treatment. Mesenchymal stromal cells (MSCs) have emerged as a promising treatment owing to their unique advantages. However, their heterogeneity is hampering use in clinical applications. METHODS: Wharton's jelly derived MSCs (WJ-MSCs) were isolated from 58 human donors using current good manufacturing practice conditions. Gene expression profiles of the WJ-MSCs were analyzed by transcriptome and single-cell RNA-sequencing (scRNA-seq), and subsequent functional differences were assessed. Expression levels of programmed death-ligand 1 (PD-L1) were used as an indicator to screen WJ-MSCs with varied immunomodulation activities and assessed their corresponding therapeutic effects in a mouse model of concanavalin A-induced autoimmune hepatitis. RESULTS: The 58 different donor-derived WJ-MSCs were grouped into six gene expression profile clusters. The gene in different clusters displayed obvious variations in cell proliferation, differentiation bias, trophic factor secretion, and immunoregulation. Data of scRNA-seq revealed four distinct WJ-MSCs subpopulations. Notably, the different immunosuppression capacities of WJ-MSCs were positively correlated with PD-L1 expression. WJ-MSCs with high expression of PD-L1 were therapeutically superior to WJ-MSCs with low PD-L1 expression in treating autoimmune hepatitis. CONCLUSION: PD-L1 expression levels of WJ-MSCs could be regarded as an indicator to choose optimal MSCs for treating autoimmune disease. These findings provided novel insights into the quality control of MSCs and will inform improvements in the therapeutic benefits of MSCs.


Assuntos
Hepatite Autoimune , Hepatopatias , Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Camundongos , Humanos , Cordão Umbilical , Hepatite Autoimune/genética , Hepatite Autoimune/terapia , Hepatite Autoimune/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas
8.
Cancer Immunol Immunother ; 72(11): 3739-3753, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37707586

RESUMO

CD19 CAR-T (chimeric antigen receptor-T) cell immunotherapy achieves a remission rate of approximately 70% in recurrent and refractory lymphoma treatment. However, the loss or reduction of CD19 antigen on the surface of lymphoma cells results in the escape of tumor cells from the immune killing of CD19 CAR-T cells (CAR19-T). Therefore, novel therapeutic strategies are urgently required. In this study, an anti-CD79b/CD3 bispecific antibody (BV28-OKT3) was constructed and combined with CAR19-T cells for B-cell lymphoma treatment. When the CD19 antigen was lost or reduced, BV28-OKT3 redirected CAR19-T cells to CD79b+ CD19- lymphoma cells; therefore, BV28-OKT3 overcomes the escape of CD79b+ CD19- lymphoma cells by the killing action of CAR19-T cells in vitro and in vivo. Furthermore, BV28-OKT3 triggered the antitumor function of CAR- T cells in the infusion product and boosted the antitumor immune response of bystander T cells, markedly improving the cytotoxicity of CAR19-T cells to lymphoma cells in vitro and in vivo. In addition, BV28-OKT3 elicited the cytotoxicity of donor-derived T cells toward lymphoma cells in vitro, which depended on the presence of tumor cells. Therefore, our findings provide a new clinical treatment strategy for recurrent and refractory B-cell lymphoma by combining CD79b/CD3 BsAb with CAR19-T cells.


Assuntos
Anticorpos Biespecíficos , Linfoma de Células B , Linfoma , Humanos , Linfócitos T , Antígenos CD19 , Muromonab-CD3 , Linfoma/tratamento farmacológico , Imunoterapia Adotiva/métodos
9.
J Inflamm Res ; 16: 3185-3196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529768

RESUMO

Background: Malignant ventricular arrhythmia (MVA) can seriously affect the hemodynamic changes of the body. In this study, we developed and validated a nomogram to predict the in-hospital MVA risk in patients with STEMI after emergency PCI. Methods: The multivariable logistic regression analysis included variables with a P<0.05 in the univariate logistic regression analysis and investigated the independent predictors affecting in-hospital MVA after PCI in patients with STEMI in the training cohort. The construction of a nomogram model used independent predictors to predict the risk of in-hospital MVA, and C-index, Hosmer-Lemeshow (HL) test, calibration curves, decision curve analysis (DCA), and receiver operating characteristic (ROC) were used to validate the nomogram. Results: Killip class [OR=5.034 (95% CI: 1.596-15.809), P=0.005], CK-MB [OR=1.002 (95% CI: 1.001-1.004), P=0.022], serum potassium [OR=0.618 (95% CI: 0.406-0.918), P=0.020], NLR [OR=1.073 (95% CI: 1.034-1.115), P<0.001], and monocyte [OR=1.974 (95% CI: 1.376-2.925), P<0.001] were the independent predictors of in-hospital MVA after PCI in patients with STEMI. A nomogram including the 5 independent predictors was developed to predict the risk of in-hospital MVA. The C-index, equivalent to the area under the ROC curve (AUC), was 0.803 (95% confidence interval [CI]: 0.738-0.868) in the training cohort, and 0.801 (95% CI:0.692-0.911) in the validation cohort, showing that the nomogram had a good discrimination. The HL test (χ2=8.439, P=0.392 in the training cohort; χ2=9.730, P=0.285 in the validation cohort) revealed a good calibration. The DCA suggested an obvious clinical net benefit. Conclusion: Killip class, CK-MB, serum potassium, NLR, and monocyte were independent factors for in-hospital MVA after PCI in patients with STEMI. The nomogram model constructed based on the above factors to predict the risk of in-hospital MVA had satisfactory discrimination, calibration, and clinical effectiveness, and was an excellent tool for early prediction of the risk of in-hospital MVA after PCI in patients with STEMI.

10.
Cancer Lett ; 567: 216277, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37336288

RESUMO

Glioma is a fatal primary brain tumor. Improved glioma treatment effectiveness depends on a better understanding of its underlying mechanisms. Glioblastoma (GBM), was classified as high-grade glioma with the most lethality and therapeutic resistance. Herein, we reported LINC00978 overexpressed in high-grade gliomas. Down-regulation of LINC00978 in glioblastoma cells inhibited cell proliferation, invasion, migration, and induced apoptosis. In vivo experiments confirmed that the CamK-A siRNA of LINC00978 could effectively inhibit the proliferation of glioblastoma cells. The main pathway and genes regulated by LINC00978 were detected using RNA sequencing to elucidate the molecular mechanism. The results suggest that LINC00978 regulates the expression of genes related to metabolic pathways, including aldo-keto reductase family 1 member B (AKR1B1), which mediates the cytotoxicity of 2-deoxyglucose. LINC00978 positively regulated AKR1B1 expression, and 2-deoxyglucose induced AKR1B1 expression via a LINC00978-dependent mechanism. This research has revealed that LINC00978 promotes the sensitivity of glioblastoma cells to 2DG. LINC00978 is highly expressed in most high-grade glioma patients. Thus, understanding the anticancer mechanism identified in this study may contribute to treating the majority of glioma patients. This study clarified the function and molecular mechanism of LINC00978 in glioblastoma and provided a study basis for LINC00978 to guide the clinical treatment of glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Glioma/genética , Proliferação de Células/genética , Regulação para Baixo , Desoxiglucose , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Aldeído Redutase/genética , Aldeído Redutase/metabolismo
11.
Talanta ; 263: 124722, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247456

RESUMO

Screening novel aptamers for recombinant protein detection is of great significance in industrial mass production of antibody drugs. In addition, construction of structurally stable bispecific circular aptamers (bc-apts) may provide a tumor-targeted treatment strategy by simultaneously binding two different cell types. In this study, we obtained a high-affinity hexahistidine tag (His-tag)-binding aptamer 20S and explored its application in recombinant protein detection and T cell-based immunotherapy. We developed a new molecular beacon (MB) 20S-MB to detect His-tagged proteins in vitro and in vivo with high sensitivity and specificity, and the results showed high consistency with the enzyme-linked immunosorbent assay (ELISA). Moreover, we constructed two kinds of bc-apts by cyclizing 20S or another His-tag-binding aptamer, 6H5-MU, with Sgc8, which specifically recognizes protein tyrosine kinase 7 (PTK7) on tumor cells. After forming a complex with His-tagged OKT3, an anti-CD3 antibody for T cell activation, we utilized these aptamer-antibody complexes (ap-ab complex) to enhance cytotoxicity of T cells by linking T cells and target cells together, and 20S-sgc8 exhibited antitumor efficacy superior to that of 6H5-sgc8. In conclusion, we screened a novel His-tag-binding aptamer and used it to construct a new type of MB for rapid detection of recombinant proteins, as well as establish a feasible approach for T cell-based immunotherapy.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Linfócitos T , Proteínas Recombinantes , Imunoterapia
12.
Mater Today Bio ; 19: 100606, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37063247

RESUMO

Neural stem cell (NSC) has gained considerable attention in traumatic brain injury (TBI) treatment because of their ability to replenish dysfunctional neurons and stimulate endogenous neurorestorative processes. However, their therapeutic effects are hindered by the low cell retention rate after transplantation into the dynamic brain. In this study, we found cerebrospinal fluid (CSF) flow after TBI is an important factor associated with cell loss following NSC transplantation. Recently, several studies have shown that hydrogels could serve as a beneficial carrier for stem cell transplantation, which provides a solution to prevent CSF flow-induced cell loss after TBI. For this purpose, we evaluated three different hydrogel scaffolds and found the gelatin methacrylate (GelMA)/sodium alginate (Alg) (GelMA/Alg) hydrogel scaffold showed the best capabilities for NSC adherence, growth, and differentiation. Additionally, we detected that pre-differentiated NSCs, which were loaded on the GelMA/Alg hydrogel and cultured for 7 days in neuronal differentiation medium (NSC [7d]), had the highest cell retention rate after CSF impact. Next, the neuroprotective effects of the NSC-loaded GelMA/Alg hydrogel scaffold were evaluated in a rat model of TBI. NSC [7d]-loaded GelMA/Alg markedly decreased microglial activation and neuronal death in the acute phase, reduced tissue loss, alleviated astrogliosis, promoted neurogenesis, and improved neurological recovery in the chronic phase. In summary, we demonstrated that the integration with the GelMA/Alg and modification of NSC differentiation could inhibit the influence of CSF flow on transplanted NSCs, leading to increased number of retained NSCs and improved neuroprotective effects, providing a promising alternative for TBI treatment.

13.
Appl Microbiol Biotechnol ; 107(2-3): 553-567, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36517545

RESUMO

Recombinant protein drugs, which are typically produced by mammalian host cells, have been approved for the treatment of a range of diseases. Accordingly, systems for selecting recombinant cell lines with efficient protein expression and for testing the content of recombinant proteins in vivo are crucial to the large-scale production and application of protein-based therapeutic drugs. In this study, we designed three aptamer beacons to detect His-tag, a common label of recombinant proteins. We found that all three beacons could specifically and quantitatively measure the His-tagged recombinant proteins with a short reaction time. Among these three beacons, the 6H5-MU beacon had the highest sensitivity for His polypeptides with a detection limit of 250 ng/mL and the shortest detection time within 1 min. Furthermore, we established a rapid and highly effective recombinant cell line construction system, which could obtain monoclonal cell lines with high yields of target proteins within 21 days, by combining 6H5-MU with pSB, a novel plasmid composed of a Sleeping Beauty transposase and a transposon. Finally, 6H5-MU also discriminately tested the serum concentration of His-tagged recombinant proteins in vivo, with consistent results compared to enzyme-linked immunosorbent assay (ELISA). We thus established a rapid and high-throughput method for generating recombinant cell lines and in vivo monitoring of recombinant protein levels, thereby providing a new platform for the development and preparation of recombinant protein drugs. KEY POINTS: • The 6H5-MU aptamer beacon rapidly and accurately binds to His-tagged recombinant proteins. • A system for rapid and high-throughput generation of recombinant cell lines is established using 6H5-MU and pSB. • 6H5-MU allows in vivo monitoring of recombinant protein levels.


Assuntos
Mamíferos , Oligonucleotídeos , Animais , Proteínas Recombinantes/genética , Linhagem Celular
14.
CNS Neurosci Ther ; 28(12): 2148-2162, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36070228

RESUMO

INTRODUCTION: Glioma stem cells (GSCs) play an important role in glioma recurrence and chemo-radiotherapy (CRT) resistance. Currently, there is a lack of efficient treatment approaches targeting GSCs. This study aimed to explore the potential personalized treatment of patients with GSC-enriched gliomas. METHODS: Single-cell RNA sequencing (scRNA-seq) was used to identify the GSC-related genes. Then, machine learning methods were applied for clustering and validation. The least absolute shrinkage and selection operator (LASSO) and COX regression were used to construct the risk scores. Survival analysis was performed. Additionally, the incidence of chemo-radiotherapy resistance, immunotherapy status, and tumor treating field (TTF) therapy response were evaluated in high- and low-risk scores groups. RESULTS: Two GSC clusters exhibited significantly different stemness indices, immune microenvironments, and genomic alterations. Based on GSC clusters, 11-gene GSC risk scores were constructed, which exhibited a high predictive value for prognosis. In terms of therapy, patients with high GSC risk scores had a higher risk of resistance to chemotherapy. TTF therapy can comprehensively inhibit the malignant biological characteristics of the high GSC-risk-score gliomas. CONCLUSION: Our study constructed a GSC signature consisting of 11 GSC-specific genes and identified its prognostic value in gliomas. TTF is a promising therapeutic approach for patients with GSC-enriched glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Células-Tronco Neoplásicas/patologia , Glioma/genética , Prognóstico , Análise de Sobrevida , Microambiente Tumoral
15.
Front Genet ; 13: 949552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938030

RESUMO

Glioma is the most malignant cancer of the central nervous system. There are various therapies for treating gliomas, but their outcomes are not satisfactory. Therefore, new targets for glioma treatment are needed. This study examined the cadherin-6 (CDH6) expression in gliomas using The Cancer Genome Atlas and Chinese Glioma Genome Atlas datasets. CDH6 expression positively correlated with the World Health Organization (WHO) tumor grade and negatively correlated with patient prognosis. A significant decrease in CDH6 promoter methylation was identified with an increase in the WHO grade severity. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that CDH6 might be involved in cell-cell interactions and immune processes in the glioma microenvironment. Weighted gene co-expression network analysis revealed a correlation between CDH6 and cell adhesion molecules, focal adhesions, phosphatidylinositol 3-kinase-protein kinase B signaling pathways, nuclear division, chromosome segregation, mitotic nuclear division, and immune-related pathways. CDH6 strongly correlated with immunosuppressive cells, including regulatory T cells, monocytes, macrophages, tumor-associated macrophages, and myeloid-derived suppressor cells. It also showed correlations with immune-active cells such as B cells, CD8+ T cells, and dendritic cells. Single-cell analysis showed that CDH6 was expressed mainly in astrocyte (AC)-like malignant cells. Differentially expressed genes of AC-like malignant cells were found to be associated with stress response, membranous processes, viral infections, and several types of cancers. Potential drugs associated with high CDH6 expression were also predicted, including AMG-22, rutin, CCT128930, deforolimus, bis(maltolato)oxovanadium, anagrelide, vemurafenib, CHIR-98014, and AZD5582. Thus, this study showed that CDH6 correlates with glioma immune infiltration, it is expressed mainly in AC-like malignant cells, and it may act as a new target for glioma therapy.

16.
Front Oncol ; 12: 978006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033490

RESUMO

Background: Metastasis is the leading cause of lung adenocarcinoma (LUAD) patient death. However, the mechanism of metastasis is unclear. We performed bioinformatic analyses for HMOX1 (Heme oxygenase-1), aiming to explore its role in LUAD metastasis. Methods: Pan-cancer analysis was first used to identify the metastasis-associated role of HMOX1 in LUAD. HMOX1-related genomic alterations were then investigated. Based on functional enrichment, we systematically correlated HMOX1 with immunological characteristics and mitochondrial activities. Furthermore, weighted gene co-expression network analysis (WGCNA) was applied to construct the HMOX1-mediated metastasis regulatory network, which was then validated at the proteomic level. Finally, we conducted the survival analysis and predicted the potential drugs to target the HMOX1 network. Results: HMOX1 expression was significantly associated with epithelial-mesenchymal transition (EMT) and lymph and distant metastasis in LUAD. High HMOX1 levels exhibited higher macrophage infiltration and lower mitochondrial complex expression. WGCNA showed a group of module genes co-regulating the traits mentioned above. Subsequently, we constructed an HMOX1-mediated macrophage-mitochondrion-EMT metastasis regulatory network in LUAD. The network had a high inner correlation at the proteomic level and efficiently predicted prognosis. Finally, we predicted 9 potential drugs targeting HMOX1-mediated metastasis in LUAD, like chloroxine and isoliquiritigenin. Conclusions: Our analysis elaborates on the role of HMOX1 in LUAD metastasis and identified a highly prognostic HMOX1-mediated metastasis regulatory network. Novel potential drugs targeting the HMOX1 network were also proposed, which should be tested for their activity against LUAD metastasis in future studies.

17.
Comput Biol Med ; 148: 105924, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35964468

RESUMO

Gliomas are malignant tumors in the central nervous system. Cuproptosis is a newly discovered cell death mechanism targeting lipoylated tricarboxylic acid cycle proteins. Previous studies have found that cuproptosis participates in tumor progression, but its role in gliomas is still elusive. Here, we systematically explored the bulk-tumor and single-cell transcriptome data to reveal its role in gliomas. The cuproptosis activity score (CuAS) was constructed based on cuproptosis-related genes, and machine learning techniques validated the score stability. High CuAS gliomas were more likely to have a poor prognosis and an aggressive mesenchymal (MES) subtype. Subsequently, the SCENIC algorithm predicted 20 CuAS-related transcription factors (TFs) in gliomas. Function enrichment and microenvironment analyses found that CuAS was associated with tumor immune infiltration. Accordingly, intercellular communications between neoplasm and immunity were explored by the R package "Cellchat". Five signaling pathways and 8 ligand-receptor pairs including ICAM1, ITGAX, ITGB2, ANXA1-FRR1, and the like, were identified to suggest how cuproptosis activity connected neoplastic and immune cells. Critically, 13 potential drugs targeting high CuAs gliomas were predicted according to the CTRP and PRISM databases, including oligomycin A, dihydroartemisinin, and others. Taken together, cuproptosis is involved in glioma aggressiveness, neoplasm-immune interactions, and may be used to assist in drug selection.


Assuntos
Apoptose , Neoplasias Encefálicas , Glioma , Humanos , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Microambiente Tumoral , Cobre
18.
Front Oncol ; 12: 814742, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372082

RESUMO

Glioma is the most lethal primary brain tumor with a poor prognosis and high recurrence rate. Enormous efforts have been made to find therapeutic targets for gliomas. In the current study, we identified m5C-related lncRNAs through Pearson correlation analysis by the criteria |R|>0.5 and p<0.001 in TCGA LGG and CGGA325 datasets. We then established an eight-lncRNA m5C-related prognostic signature (m5C LPS) through lasso cox regression analysis and multivariate analysis. The performance of the signature was confirmed in the CGGA325 dataset and evaluated in differential subgroups divided by relevant clinicopathological characteristics. Patients were then divided into high and low risk groups using risk scores calculated with the signature. Next, we performed GO, KEGG and gene set enrichment analysis (GSEA) and identified the m5C LPS to be related with glioma microenvironment, immune response, EMT, cell cycle, and hypoxia. Correlation of the risk groups with immune cell infiltration, somatic mutation, and CNVs was then explored. Responses to immuno- and chemotherapies in different risk groups were evaluated using submap and pRRophetic R packages respectively. The high-risk group was more sensitive to anti-CTLA4 therapy and to compounds including Temozolomide, Bleomycin, Cisplatin, Cyclopamine, A.443654 (Akt inhibitor), AZD6482 (PI3K inhibitor), GDC0941(PI3K inhibitor), and metformin. We present for the first time a m5C-related lncRNA signature for lower grade glioma patient prognosis and therapy response prediction with validated performance, providing a promising target for future research.

19.
Cell Mol Neurobiol ; 42(6): 1949-1964, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33709284

RESUMO

Glioma is a highly fatal malignant tumor with a high recurrence rate, poor clinical treatment effect, and prognosis. We aimed to determine the association between single nucleotide polymorphisms (SNPs) of NDRG1 and glioma risk and prognosis in the Chinese Han population. 5 candidate SNPs were genotyped by Agena MassARRAY in 558 cases and 503 controls; logistic regression was used to analyze the relationship between SNPs and glioma risk. We used multi-factor dimensionality reduction to analyze the interaction of 'SNP-SNP'; the prognosis analysis was performed by log-rank test, Kaplan-Meier analysis, and Cox regression model. Our results showed that the polymorphisms of rs3808599 was associated with the reduction of glioma risk in all participants (OR 0.41, p = 0.024) and the participants ≤ 40 years old (OR 0.30, p = 0.020). rs3802251 may reduce glioma risk in all participants (OR 0.79, p = 0.008), the male participants (OR 0.68, p = 0.033), and astrocytoma patients (OR 0.81, p = 0.023). rs3779941 was associated with poor glioma prognosis in all participants (HR = 2.59, p = 0.039) or astrocytoma patients (HR = 2.63, p = 0.038). We also found that the key factors for glioma prognosis may include surgical operation, radiotherapy, and chemotherapy. This study is the first to find that NDRG1 gene polymorphisms may have a certain association with glioma risk or prognosis in the Chinese Han population.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Proteínas de Ciclo Celular , Glioma , Peptídeos e Proteínas de Sinalização Intracelular , Adulto , Astrocitoma/diagnóstico , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , China , Predisposição Genética para Doença , Genótipo , Glioma/diagnóstico , Glioma/genética , Glioma/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Polimorfismo de Nucleotídeo Único , Fatores de Risco
20.
Br J Cancer ; 126(8): 1113-1124, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34750493

RESUMO

Alternative splicing (AS) is a key process in which precursor RNAs produce different mature RNAs, and the disorder of AS is a key factor in promoting cancer development. Compared with coding RNA, studies on the functions of long non-coding RNAs (lncRNAs) are far from enough. In fact, lncRNA is an important participant and regulator in the process of AS. On the one hand, lncRNAs regulate cancer progression as AS products of precursor messenger RNA (mRNA), but on the other hand, precursor lncRNA generates cancer-related abnormal splicing variants through AS. In addition, lncRNAs directly or indirectly regulate the AS events of downstream target genes, thus affecting the occurrence and development of cancer. Here, we reviewed how lncRNAs regulate AS and influence oncogenesis in different ways.


Assuntos
Neoplasias , RNA Longo não Codificante , Processamento Alternativo/genética , Transformação Celular Neoplásica , Humanos , Neoplasias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA