Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Commun ; 14(1): 7755, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012235

RESUMO

Enzymatic breakdown of sphingomyelin by sphingomyelinase (SMase) is the main source of the membrane lipids, ceramides, which are involved in many cellular physiological processes. However, the full-length structure of human neutral SMase has not been resolved; therefore, its catalytic mechanism remains unknown. Here, we resolve the structure of human full-length neutral SMase, sphingomyelinase 1 (SMPD2), which reveals that C-terminal transmembrane helices contribute to dimeric architecture of hSMPD2 and that D111 - K116 loop domain is essential for substrate hydrolysis. Coupled with molecular docking, we clarify the binding pose of sphingomyelin, and site-directed mutagenesis further confirms key residues responsible for sphingomyelin binding. Hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamic (MD) simulations are utilized to elaborate the catalysis of hSMPD2 with the reported in vitro substrates, sphingomyelin and lyso-platelet activating fator (lyso-PAF). Our study provides mechanistic details that enhance our knowledge of lipid metabolism and may lead to an improved understanding of ceramide in disease and in cancer treatment.


Assuntos
Esfingomielina Fosfodiesterase , Esfingomielinas , Humanos , Esfingomielinas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Simulação de Acoplamento Molecular , Ceramidas/metabolismo
2.
Nat Plants ; 9(2): 271-279, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36624257

RESUMO

Active DNA demethylation plays a crucial role in eukaryotic gene imprinting and antagonizing DNA methylation. The plant-specific REPRESSOR OF SILENCING 1/DEMETER (ROS1/DME) family of enzymes directly excise 5-methyl-cytosine (5mC), representing an efficient DNA demethylation pathway distinct from that of animals. Here, we report the cryo-electron microscopy structures of an Arabidopsis ROS1 catalytic fragment in complex with substrate DNA, mismatch DNA and reaction intermediate, respectively. The substrate 5mC is flipped-out from the DNA duplex and subsequently recognized by the ROS1 base-binding pocket through hydrophobic and hydrogen-bonding interactions towards the 5-methyl group and Watson-Crick edge respectively, while the different protonation states of the bases determine the substrate preference for 5mC over T:G mismatch. Together with the structure of the reaction intermediate complex, our structural and biochemical studies revealed the molecular basis for substrate specificity, as well as the reaction mechanism underlying 5mC demethylation by the ROS1/DME family of plant-specific DNA demethylases.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , DNA Glicosilases , Animais , Proteínas de Arabidopsis/metabolismo , DNA de Plantas/metabolismo , Proteínas Tirosina Quinases/metabolismo , DNA Glicosilases/química , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Desmetilação do DNA , Microscopia Crioeletrônica , Proteínas Proto-Oncogênicas/metabolismo , Arabidopsis/genética , Plantas/genética , Proteínas Nucleares/metabolismo
3.
Structure ; 30(5): 685-696.e5, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247327

RESUMO

Serine beta-lactamase-like protein (LACTB) is a mammalian mitochondrial serine protease that can specifically hydrolyze peptide bonds adjacent to aspartic acid residues and is structurally related to prokaryotic penicillin-binding proteins. Here, we determined the cryoelectron microscopy structures of human LACTB (hLACTB) filaments from wild-type protein, a middle region deletion mutant, and in complex with the inhibitor Z-AAD-CMK at 3.0-, 3.1-, and 2.8-Å resolution, respectively. Structural analysis and activity assays revealed that three interfaces are required for the assembly of hLACTB filaments and that the formation of higher order helical structures facilitates its cleavage activity. Further structural and enzymatic analyses of middle region deletion constructs indicated that, while this region is necessary for substrate hydrolysis, it is not required for filament formation. Moreover, the inhibitor-bound structure showed that hLACTB may cleave peptide bonds adjacent to aspartic acid residues. These findings provide the structural basis underlying hLACTB catalytic activity.


Assuntos
Serina , beta-Lactamases , Animais , Ácido Aspártico/metabolismo , Microscopia Crioeletrônica , Humanos , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Peptídeos , Serina/química , beta-Lactamases/genética , beta-Lactamases/metabolismo
4.
Cell Discov ; 7(1): 106, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728622

RESUMO

Polyamines are important polycations that play critical roles in mammalian cells. ATP13A2 belongs to the orphan P5B adenosine triphosphatases (ATPase) family and has been established as a lysosomal polyamine exporter to maintain the normal function of lysosomes and mitochondria. Previous studies have reported that several human neurodegenerative disorders are related to mutations in the ATP13A2 gene. However, the transport mechanism of ATP13A2 in the lysosome remains unclear. Here, we report the cryo-electron microscopy (cryo-EM) structures of three distinct intermediates of the human ATP13A2, revealing key insights into the spermine (SPM) transport cycle in the lysosome. The transmembrane domain serves as a substrate binding site and the C-terminal domain is essential for protein stability and may play a regulatory role. These findings advance our understanding of the polyamine transport mechanism, the lipid-associated regulation, and the disease-associated mutants of ATP13A2.

5.
Science ; 364(6445): 1068-1075, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31197009

RESUMO

The mitochondrial adenosine triphosphate (ATP) synthase produces most of the ATP required by mammalian cells. We isolated porcine tetrameric ATP synthase and solved its structure at 6.2-angstrom resolution using a single-particle cryo-electron microscopy method. Two classical V-shaped ATP synthase dimers lie antiparallel to each other to form an H-shaped ATP synthase tetramer, as viewed from the matrix. ATP synthase inhibitory factor subunit 1 (IF1) is a well-known in vivo inhibitor of mammalian ATP synthase at low pH. Two IF1 dimers link two ATP synthase dimers, which is consistent with the ATP synthase tetramer adopting an inhibited state. Within the tetramer, we refined structures of intact ATP synthase in two different rotational conformations at 3.34- and 3.45-Å resolution.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , ATPases Mitocondriais Próton-Translocadoras/química , Proteínas/química , Animais , Microscopia Crioeletrônica , ATPases Mitocondriais Próton-Translocadoras/isolamento & purificação , Conformação Proteica , Multimerização Proteica , Suínos , Proteína Inibidora de ATPase
6.
Oncol Rep ; 37(3): 1347-1358, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28184913

RESUMO

Mutations in epidermal growth factor receptor (EGFR) play critical roles in the pathogenesis of non-small cell lung cancer (NSCLC), and they are highly associated with sensitivity to tyrosine kinase inhibitors (TKIs). While the pathogenic and pharmacological characteristics of common mutations in EGFR have been thoroughly investigated, those of uncommon mutations remain to be elucidated. Traditional approaches to study common mutations by randomized controlled trials are not feasible for uncommon mutations owing to their rarity. Therefore, by systematically reviewing laboratory and clinical studies of the G719X mutation, one of the uncommon mutations, we concluded that the G719X mutation was intermediately sensitive to TKIs, with an average response rate of 35.1% (47/134). Moreover, accordingly, we proposed a comprehensive model to investigate uncommon mutations in EGFR. The model involves both basic and clinical components, composed of structural analyses, functional alterations, cell viabilities and animal models with various types of clinical studies. In this review, we systematically reviewed studies of the G719X mutation and put forward a research model that could be generalized to explore uncommon mutations in diseases associated with gene mutations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Mutação/genética , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/genética , Prognóstico
7.
Phys Chem Chem Phys ; 19(6): 4849-4854, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28134365

RESUMO

Ndi1 is a special type-II complex I nicotinamide-adenine-dinucleotide (NADH):ubiquinone (UQ) oxidoreductase in the yeast respiratory chain, with two bound UQs (UQI and UQII) mediating electron transfer from flavin cofactors to ubiquinone, in the absence of Fe-S chains. Here, we elucidate the underlying mechanism of electron transfer in Ndi1 through temperature-dependent Electron Spin Resonance (ESR) experiments in conjunction with quantum chemical calculations. It is revealed that electron transfer is mediated by antiferromagnetic (AFM) interactions between flavin-adenosine-dinucleotide (FAD) and UQI and between UQI and UQII. The π-stacking interactions among the aromatic complexes also enhance the through-space electron transfer. The FAD/UQI pair works as a rectifier converting double-electron co-transfer into sequential single-electron transfer events. The results not only expand our understanding on the observed AFM interactions among p-orbital aromatic mixed-stack in proteins, but also provide significant insights into the fabrication of materials with special magnetic properties using biological samples.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Complexo I de Transporte de Elétrons/metabolismo , Transporte de Elétrons , Modelos Químicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Complexo I de Transporte de Elétrons/química , Ferro/química , Magnetismo , Proteínas de Saccharomyces cerevisiae/química
8.
Cell ; 165(6): 1454-1466, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27212239

RESUMO

Maintaining homeostasis of Ca(2+) stores in the endoplasmic reticulum (ER) is crucial for proper Ca(2+) signaling and key cellular functions. The Ca(2+)-release-activated Ca(2+) (CRAC) channel is responsible for Ca(2+) influx and refilling after store depletion, but how cells cope with excess Ca(2+) when ER stores are overloaded is unclear. We show that TMCO1 is an ER transmembrane protein that actively prevents Ca(2+) stores from overfilling, acting as what we term a "Ca(2+) load-activated Ca(2+) channel" or "CLAC" channel. TMCO1 undergoes reversible homotetramerization in response to ER Ca(2+) overloading and disassembly upon Ca(2+) depletion and forms a Ca(2+)-selective ion channel on giant liposomes. TMCO1 knockout mice reproduce the main clinical features of human cerebrofaciothoracic (CFT) dysplasia spectrum, a developmental disorder linked to TMCO1 dysfunction, and exhibit severe mishandling of ER Ca(2+) in cells. Our findings indicate that TMCO1 provides a protective mechanism to prevent overfilling of ER stores with Ca(2+) ions.


Assuntos
Canais de Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Sequência de Aminoácidos , Animais , Ataxia/genética , Células COS , Cálcio/metabolismo , Canais de Cálcio/genética , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Deficiência Intelectual/genética , Membranas Intracelulares/metabolismo , Camundongos , Camundongos Knockout , Osteogênese/genética , Alinhamento de Sequência
9.
J Diabetes Res ; 2016: 6973175, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881256

RESUMO

While inflammation is considered a central component in the development in diabetic nephropathy, the mechanism remains unclear. The NLRP3 inflammasome acts as both a sensor and a regulator of the inflammatory response. The NLRP3 inflammasome responds to exogenous and endogenous danger signals, resulting in cleavage of procaspase-1 and activation of cytokines IL-1ß, IL-18, and IL-33, ultimately triggering an inflammatory cascade reaction. This study observed the expression of NLRP3 inflammasome signaling stimulated by high glucose, lipopolysaccharide, and reactive oxygen species (ROS) inhibitor N-acetyl-L-cysteine in glomerular mesangial cells, aiming to elucidate the mechanism by which the NLRP3 inflammasome signaling pathway may contribute to diabetic nephropathy. We found that the expression of thioredoxin-interacting protein (TXNIP), NLRP3, and IL-1ß was observed by immunohistochemistry in vivo. Simultaneously, the mRNA and protein levels of TXNIP, NLRP3, procaspase-1, and IL-1ß were significantly induced by high glucose concentration and lipopolysaccharide in a dose-dependent and time-dependent manner in vitro. This induction by both high glucose and lipopolysaccharide was significantly inhibited by N-acetyl-L-cysteine. Our results firstly reveal that high glucose and lipopolysaccharide activate ROS/TXNIP/ NLRP3/IL-1ß inflammasome signaling in glomerular mesangial cells, suggesting a mechanism by which inflammation may contribute to the development of diabetic nephropathy.


Assuntos
Glicemia/análise , Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Células Mesangiais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/sangue , Acetilcisteína/farmacologia , Animais , Caspase 1/metabolismo , Proteínas de Ciclo Celular , Glucose/metabolismo , Imuno-Histoquímica , Inflamação , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Distribuição Aleatória , Ratos , Espécies Reativas de Oxigênio , Transdução de Sinais
10.
Proc Natl Acad Sci U S A ; 112(16): 5243-8, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25848002

RESUMO

ATP-binding cassette (ABC) transporters are ubiquitous integral membrane proteins that translocate a variety of substrates, ranging from ions to macromolecules, either out of or into the cytosol (hence defined as importers or exporters, respectively). It has been demonstrated that ABC exporters and importers function through a common mechanism involving conformational switches between inward-facing and outward-facing states; however, the mechanism underlying their functions, particularly substrate recognition, remains elusive. Here we report the structures of an amino acid ABC importer Art(QN)2 from Thermoanaerobacter tengcongensis composed of homodimers each of the transmembrane domain ArtQ and the nucleotide-binding domain ArtN, either in its apo form or in complex with substrates (Arg, His) and/or ATPs. The structures reveal that the straddling of the TMDs around the twofold axis forms a substrate translocation pathway across the membrane. Interestingly, each TMD has a negatively charged pocket that together create a negatively charged internal tunnel allowing amino acids carrying positively charged groups to pass through. Our structural and functional studies provide a better understanding of how ABC transporters select and translocate their substrates.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Thermoanaerobacter/enzimologia , Trifosfato de Adenosina/metabolismo , Apoproteínas/metabolismo , Arginina/metabolismo , Sítios de Ligação , Ligantes , Modelos Moleculares , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
11.
Nature ; 505(7482): 229-33, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24402281

RESUMO

The human immunodeficiency virus (HIV)-1 protein Vif has a central role in the neutralization of host innate defences by hijacking cellular proteasomal degradation pathways to subvert the antiviral activity of host restriction factors; however, the underlying mechanism by which Vif achieves this remains unclear. Here we report a crystal structure of the Vif-CBF-ß-CUL5-ELOB-ELOC complex. The structure reveals that Vif, by means of two domains, organizes formation of the pentameric complex by interacting with CBF-ß, CUL5 and ELOC. The larger domain (α/ß domain) of Vif binds to the same side of CBF-ß as RUNX1, indicating that Vif and RUNX1 are exclusive for CBF-ß binding. Interactions of the smaller domain (α-domain) of Vif with ELOC and CUL5 are cooperative and mimic those of SOCS2 with the latter two proteins. A unique zinc-finger motif of Vif, which is located between the two Vif domains, makes no contacts with the other proteins but stabilizes the conformation of the α-domain, which may be important for Vif-CUL5 interaction. Together, our data reveal the structural basis for Vif hijacking of the CBF-ß and CUL5 E3 ligase complex, laying a foundation for rational design of novel anti-HIV drugs.


Assuntos
Subunidade beta de Fator de Ligação ao Core/química , Subunidade beta de Fator de Ligação ao Core/metabolismo , Proteínas Culina/química , Proteínas Culina/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Cristalografia por Raios X , Elonguina , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Supressoras da Sinalização de Citocina , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
12.
Cell Res ; 24(3): 267-77, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24366337

RESUMO

The energy-coupling factor (ECF) transporters are multi-subunit protein complexes that mediate uptake of transition-metal ions and vitamins in about 50% of the prokaryotes, including bacteria and archaea. Biological and structural studies have been focused on ECF transporters for vitamins, but the molecular mechanism by which ECF systems transport metal ions from the environment remains unknown. Here we report the first crystal structure of a NikM, TtNikM2, the substrate-binding component (S component) of an ECF-type nickel transporter from Thermoanaerobacter tengcongensis. In contrast to the structures of the vitamin-specific S proteins with six transmembrane segments (TSs), TtNikM2 possesses an additional TS at its N-terminal region, resulting in an extracellular N-terminus. The highly conserved N-terminal loop inserts into the center of TtNikM2 and occludes a region corresponding to the substrate-binding sites of the vitamin-specific S components. Nickel binds to NikM via its coordination to four nitrogen atoms, which are derived from Met1, His2 and His67 residues. These nitrogen atoms form an approximately square-planar geometry, similar to that of the metal ion-binding sites in the amino-terminal Cu(2+)- and Ni(2+)-binding (ATCUN) motif. Replacements of residues in NikM contributing to nickel coordination compromised the Ni-transport activity. Furthermore, systematic quantum chemical investigation indicated that this geometry enables NikM to also selectively recognize Co(2+). Indeed, the structure of TtNikM2 containing a bound Co(2+) ion has almost no conformational change compared to the structure that contains a nickel ion. Together, our data reveal an evolutionarily conserved mechanism underlying the metal selectivity of EcfS proteins, and provide insights into the ion-translocation process mediated by ECF transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Cobalto/metabolismo , Níquel/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Motivos de Aminoácidos , Sítios de Ligação , Cobalto/química , Cristalografia por Raios X , Íons/química , Simulação de Dinâmica Molecular , Níquel/química , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Teoria Quântica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato , Thermoanaerobacter/metabolismo , Vitaminas/química , Vitaminas/metabolismo
13.
Protein Cell ; 4(10): 793-801, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24104393

RESUMO

The transition metal cobalt, an essential cofactor for many enzymes in prokaryotes, is taken up by several specific transport systems. The CbiMNQO protein complex belongs to type-1 energy-coupling factor (ECF) transporters and is a widespread group of microbial cobalt transporters. CbiO is the ATPase subunit (A-component) of the cobalt transporting system in the gram-negative thermophilic bacterium Thermoanaerobacter tengcongensis. Here we report the crystal structure of a nucleotide-free CbiO at a resolution of 2.3 Å. CbiO contains an N-terminal canonical nucleotide-binding domain (NBD) and C-terminal helical domain. Structural and biochemical data show that CbiO forms a homodimer mediated by the NBD and the C-terminal domain. Interactions mainly via conserved hydrophobic amino acids between the two C-terminal domains result in formation of a four-helix bundle. Structural comparison with other ECF transporters suggests that non-conserved residues outside the T-component binding groove in the A component likely act as a specificity determinant for T components. Together, our data provide information on understanding of the structural organization and interaction of the CbiMNQO system.


Assuntos
Adenosina Trifosfatases/química , Domínio Catalítico , Cobalto/química , Relação Estrutura-Atividade , Aminoácidos/química , Transporte Biológico , Cristalografia por Raios X , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Thermoanaerobacter/enzimologia
14.
Biochem Biophys Res Commun ; 438(3): 568-74, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23911785

RESUMO

The posttranslational modification of proteins by small ubiquitin-like modifiers (SUMOs) has emerged as an important regulatory mechanism for the alteration of protein activity, stability, and cellular localization. The latest research demonstrates that sumoylation is extensively involved in the regulation of the nuclear factor κB (NF-κB) pathway, which plays a critical role in the regulation of inflammation and contributes to fibrosis in diabetic nephropathy (DN). However, the role of sumoylation in the regulation of NF-κB signaling in DN is still unclear. In the present study, we cultured rat glomerular mesangial cells (GMCs) stimulated by high glucose and divided GMCs into six groups: normal glucose group (5.6mmol/L), high glucose groups (10, 20, and 30mmol/L), mannitol group (i.e., osmotic control group), and MG132 intervention group (30mmol/L glucose with MG132, a proteasome inhibitor). The expression of SUMO1, SUMO2/3, IκBα, NF-κBp65, and monocyte chemotactic protein 1 (MCP-1) was measured by Western blot, reverse-transcription polymerase chain reaction, and indirect immunofluorescence laser scanning confocal microscopy. The interaction between SUMO1, SUMO2/3, and IκBα was observed by co-immunoprecipitation. The results showed that the expression of SUMO1 and SUMO2/3 was dose- and time-dependently enhanced by high glucose (p<0.05). However, the expression of IκBα sumoylation in high glucose was significantly decreased compared with the normal glucose group (p<0.05). The expression of IκBα was dose- and time-dependently decreased, and NF-κBp65 and MCP-1 were increased under high glucose conditions, which could be mostly reversed by adding MG132 (p<0.05). The present results support the hypothesis that high glucose may activate NF-κB inflammatory signaling through IκBα sumoylation and ubiquitination.


Assuntos
Glucose/administração & dosagem , Proteínas I-kappa B/metabolismo , Células Mesangiais/metabolismo , NF-kappa B/fisiologia , Animais , Quimiocina CCL2/biossíntese , Nefropatias Diabéticas/etiologia , Glucose/farmacologia , Inibidor de NF-kappaB alfa , Ratos , Proteína SUMO-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sumoilação/efeitos dos fármacos , Fator de Transcrição RelA/biossíntese
15.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 2): 256-65, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23385461

RESUMO

Dipeptide permease (Dpp), which belongs to an ABC transport system, imports peptides consisting of two or three L-amino acids from the matrix to the cytoplasm in microbes. Previous studies have indicated that haem competes with dipeptides to bind DppA in vitro and in vivo and that the Dpp system can also translocate haem. Here, the crystal structure of DppD, the nucleotide-binding domain (NBD) of the ABC-type dipeptide/oligopeptide/nickel-transport system from Thermoanaerobacter tengcongensis, bound with ATP, Mg(2+) and a [4Fe-4S] iron-sulfur cluster is reported. The N-terminal domain of DppD shares a similar structural fold with the NBDs of other ABC transporters. Interestingly, the C-terminal domain of DppD contains a [4Fe-4S] cluster. The UV-visible absorbance spectrum of DppD was consistent with the presence of a [4Fe-4S] cluster. A search with DALI revealed that the [4Fe-4S] cluster-binding domain is a novel structural fold. Structural analysis and comparisons with other ABC transporters revealed that this iron-sulfur cluster may act as a mediator in substrate (dipeptide or haem) binding by electron transfer and may regulate the transport process in Dpp ABC transport systems. The crystal structure provides a basis for understanding the properties of ABC transporters and will be helpful in investigating the functions of NBDs in the regulation of ABC transporter activity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Dipeptídeos/química , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/fisiologia , Proteínas de Membrana Transportadoras/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Dipeptídeos/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Níquel/química , Níquel/metabolismo , Níquel/fisiologia , Ligação Proteica , Dobramento de Proteína , Especificidade por Substrato/fisiologia , Thermoanaerobacter/química , Thermoanaerobacter/metabolismo , Thermoanaerobacter/fisiologia
16.
Protein Cell ; 2(1): 7-12, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21337005

RESUMO

The melanoma antigen (MAGE) family proteins are well known as tumor-specific antigens and comprise more than 60 genes, which share a conserved MAGE homology domain (MHD). Type I MAGEs are highly expressed cancer antigens, and they play an important role in tumorigenesis and cancer cell survival. Recently, several MAGE proteins were identified to interact with RING domain proteins, including a sub-family of E3 ubiquitin ligases. The binding mode between MAGEs and RING proteins was investigated and one important structure of these MAGE-RING complexes was solved: the MAGE-G1-NSE1 complex. Structural and biochemical studies indicated that MAGE proteins could adjust the E3 ubiquitin ligase activity of its cognate RING partner both in vitro and in vivo. However, the underlying mechanism was not fully understood. Here, we review these exciting advances in the studies on MAGE family, suggest potential mechanisms by which MAGEs activate the E3 activity of their binding RING proteins and highlight the anticancer potential of this family proteins.


Assuntos
Antígenos Específicos de Melanoma/metabolismo , Animais , Humanos , Antígenos Específicos de Melanoma/química , Ligação Proteica , Estrutura Terciária de Proteína
17.
Mol Cell ; 39(6): 963-74, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20864041

RESUMO

The melanoma antigen (MAGE) family consists of more than 60 genes, many of which are cancer-testis antigens that are highly expressed in cancer and play a critical role in tumorigenesis. However, the biochemical and cellular functions of this enigmatic family of proteins have remained elusive. Here, we identify really interesting new gene (RING) domain proteins as binding partners for MAGE family proteins. Multiple MAGE family proteins bind E3 RING ubiquitin ligases with specificity. The crystal structure of one of these MAGE-RING complexes, MAGE-G1-NSE1, reveals structural insights into MAGE family proteins and their interaction with E3 RING ubiquitin ligases. Biochemical and cellular assays demonstrate that MAGE proteins enhance the ubiquitin ligase activity of RING domain proteins. For example, MAGE-C2-TRIM28 is shown to target p53 for degradation in a proteasome-dependent manner, consistent with its tumorigenic functions. These findings define a biochemical and cellular function for the MAGE protein family.


Assuntos
Antígenos Específicos de Melanoma/metabolismo , Domínios RING Finger , Ubiquitina-Proteína Ligases/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biocatálise , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cristalografia por Raios X , Citoplasma/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Antígenos Específicos de Melanoma/química , Antígenos Específicos de Melanoma/genética , Modelos Moleculares , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transfecção , Proteína 28 com Motivo Tripartido , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
18.
PLoS Biol ; 6(3): e50, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18318601

RESUMO

In response to misaligned sister chromatids during mitosis, the spindle checkpoint protein Mad2 inhibits the anaphase-promoting complex or cyclosome (APC/C) through binding to its mitotic activator Cdc20, thus delaying anaphase onset. Mad1, an upstream regulator of Mad2, forms a tight core complex with Mad2 and facilitates Mad2 binding to Cdc20. In the absence of its binding proteins, free Mad2 has two natively folded conformers, termed N1-Mad2/open-Mad2 (O-Mad2) and N2-Mad2/closed Mad2 (C-Mad2), with C-Mad2 being more active in APC/C(Cdc20) inhibition. Here, we show that whereas O-Mad2 is monomeric, C-Mad2 forms either symmetric C-Mad2-C-Mad2 (C-C) or asymmetric O-Mad2-C-Mad2 (O-C) dimers. We also report the crystal structure of the symmetric C-C Mad2 dimer, revealing the basis for the ability of unliganded C-Mad2, but not O-Mad2 or liganded C-Mad2, to form symmetric dimers. A Mad2 mutant that predominantly forms the C-C dimer is functional in vitro and in living cells. Finally, the Mad1-Mad2 core complex facilitates the conversion of O-Mad2 to C-Mad2 in vitro. Collectively, our results establish the existence of a symmetric Mad2 dimer and provide insights into Mad1-assisted conformational activation of Mad2 in the spindle checkpoint.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Fuso Acromático/metabolismo , Proteína da Polipose Adenomatosa do Colo/antagonistas & inibidores , Proteína da Polipose Adenomatosa do Colo/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Cristalografia por Raios X , Dimerização , Células HeLa , Humanos , Proteínas Mad2 , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação Proteica , Proteínas Repressoras/genética , Relação Estrutura-Atividade
19.
Biochemistry ; 46(27): 8058-65, 2007 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-17569509

RESUMO

Histone modifications, such as acetylation and methylation, are important epigenetic marks that regulate diverse biological processes that use chromatin as the template, including transcription. Dysregulation of histone acetylation and methylation leads to the silencing of tumor suppressor genes and contributes to cancer progression. Inhibitors of enzymes that catalyze the addition and removal of these epigenetic marks thus have therapeutic potential for treating cancer. Lysine-specific demethylase 1 (LSD1) is the first discovered histone lysine demethylase and, with the help of its cofactor CoREST, specifically demethylates mono- and dimethylated histone H3 lysine 4 (H3-K4), thus repressing transcription. Because LSD1 belongs to the family of flavin adenine dinucleotide (FAD)-dependent amine oxidases, certain inhibitors of monoamine oxidases (MAOs), including the clinically used antidepressant trans-2-phenylcyclopropylamine (PCPA; tranylcypromine; Parnate), are also capable of inhibiting LSD1. In this study, we have further measured the kinetic parameters of the inhibition of LSD1 by PCPA and determined the crystal structure of LSD1-CoREST in the presence of PCPA. Our structural and mass spectrometry analyses are consistent with PCPA forming a covalent adduct with FAD in LSD1 that is distinct from the FAD-PCPA adduct of MAO B. The structure also reveals that the phenyl ring of the FAD-PCPA adduct in LSD1 does not form extensive interactions with active-site residues. This study thus provides the basis for designing more potent inhibitors of LSD1 that contain substitutions on the phenyl ring of PCPA to fully engage neighboring residues.


Assuntos
Antidepressivos/farmacologia , Inibidores Enzimáticos/farmacologia , Oxirredutases N-Desmetilantes/antagonistas & inibidores , Tranilcipromina/farmacologia , Histona Desmetilases , Cinética , Modelos Moleculares , Oxirredutases N-Desmetilantes/química , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta
20.
Biochemistry ; 46(23): 6892-902, 2007 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-17511474

RESUMO

Lysine-specific demethylase 1 (LSD1) is a transcriptional repressor and a flavin-dependent amine oxidase that is responsible for the removal of methyl from lysine 4 of histone H3. In this study, we characterize the mechanism and scope of LSD1 inhibition by a propargylamine-derivatized histone H3 substrate (1). Unlike aziridinyl and cyclopropylamine-derivatized histone H3 peptide substrate analogues, compound 1 appears to covalently modify and irreversibly inactivate LSD1 with high potency. Accompanying this inactivation is a spectroscopic change, which shifts the absorbance maximum to 392 nm. Spectral changes associated with the 1-LSD1 complex and reactivity to decreased pH and sodium borohydride treatment were suggestive of a structure involving a flavin-linked inhibitor conjugate between N5 of the flavin and the terminal carbon of the inhibitor. Using a 13C-labeled inhibitor, NMR analysis of the 1-flavin conjugate was consistent with this structural assignment. Kinetic analysis of the spectroscopic shift induced by 1 showed that the flavin adduct formed in a reaction with kinetic constants similar to those of the LSD1 inactivation process. Taken together, these data support a mechanism of LSD1 inactivation by 1 involving amine oxidation followed by Michael addition to the propargylic imine. We further examined the potential for a biotinylated analogue of 1 (1-Btn) to be used as a tool in affinity pulldown experiments. Using 1-Btn, it was feasible to selectively pull down spiked and endogenous LSD1 from HeLa cell nuclear extracts, setting the stage for activity-based demethylase proteomics.


Assuntos
Inibidores Enzimáticos/farmacologia , Oxirredutases N-Desmetilantes/antagonistas & inibidores , Oxirredutases N-Desmetilantes/química , Sequência de Aminoácidos , Biotinilação , Inibidores Enzimáticos/química , Flavinas/farmacologia , Glutationa/metabolismo , Células HeLa , Histona Desmetilases , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Oxirredução , Oxirredutases N-Desmetilantes/isolamento & purificação , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA