Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Cancer ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848494

RESUMO

Extracellular vesicles (EVs) function as natural mediators of intercellular communication, secreted by cells to facilitate cell-cell signaling. Due to their low toxicity, immunogenicity, biodegradability, and potential to encapsulate therapeutic drugs, EVs hold significant therapeutic promise. Nevertheless, their limited targeting ability often diminishes their therapeutic impact. Therefore, enhancing EVs by incorporating targeting units onto their membranes could bolster their targeting capabilities, enabling them to accumulate in specific cells and tissues. In this study, we engineered EVs to fuse ephrin-B2 with the EV membrane protein LAMP2b. This modification aimed to direct the engineered EVs toward the ephrin-B4 receptor expressed on the surface of ovarian cancer cells. The engineered EVs retained their inherent properties, including size, expression of EV membrane proteins, and morphology, upon isolation. In vitro experiments using real-time imaging revealed that EVs engineered with the ephrin-B2 ligand exhibited substantial internalization and uptake by ovarian cancer cells, in stark contrast to native EVs. In vivo, the engineered EVs carrying the ephrin-B2 ligand effectively targeted ovarian cancer cells, surpassing the targeting efficiency of control EVs. This innovative approach establishes a novel targeting system, enhancing the uptake of EVs by ovarian cancer cells. Our findings underscore the potential of using EVs to target cancer cells, thereby enhancing the effectiveness of anti-cancer therapies while minimizing off-target effects and toxicity in normal cells and organs.

2.
Inflammation ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602607

RESUMO

Immune cell-mediated chronic inflammation is one of the causes of type 2 diabetes mellitus (T2DM). Therefore, identifying inflammatory markers in circulating immune cells is highly important for predicting insulin resistance (IR) and the occurrence of T2DM. In this study, we discovered that differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) from T2DM patients were associated with innate immunity and chronic inflammatory responses through bulk transcriptome sequencing (bulk RNA-seq). Gene integration analysis revealed that nine DEGs were upregulated, and receiver operating characteristic (ROC) curve analysis revealed that V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB), a candidate biomarker, has a certain predictive value for T2DM. In population-based cohort studies, we found that MAFB expression was significantly upregulated in the PBMCs of T2DM patients and was significantly correlated with homeostasis model assessment of IR (HOMA-IR), tumor necrosis factor-α (TNF-α), adiponectin (Adipoq), etc. We further evaluated the sensitivity and specificity of MAFB and other clinical parameters for predicting and diagnosing T2DM and found that MAFB expression in PBMCs had a positive effect on the prediction and diagnosis of T2DM. Finally, single-cell RNA sequencing (scRNA-seq) analysis revealed that the increase in MAFB expression was mainly in nonclassical monocytes. Our results suggest that increased MAFB expression in circulating monocytes may mediate chronic inflammatory status in patients with T2DM. Therefore, MAFB gene expression in circulating monocytes has certain clinical significance for predicting and assisting in the diagnosis of T2DM.

3.
Mol Cell Endocrinol ; 556: 111740, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932980

RESUMO

Dysregulation of adipose tissue involves increased cellular hypoxia, ER stress, and inflammation and altered adipokine production, contributing to the aetiology of obesity-related diseases including type 2 diabetes and cardiovascular disease. This study aimed to investigate the effects of Vitamin C supplementation on these processes in primary human preadipocytes and adipocytes. Treatment of preadipocytes and adipocytes with the proinflammatory cytokine TNFα and palmitic acid (PA), to mimic the obesogenic milieu, significantly increased markers of hypoxia, ER stress and inflammation and reduced secretion of high molecular weight (HMW) adiponectin. Importantly, Vitamin C abolished TNFα+PA induced hypoxia and significantly reduced the increases in ER stress and inflammation in both cell types. Vitamin C also significantly increased the secretion of HMW adiponectin from adipocytes. These findings indicate that Vitamin C can reduce obesity-associated cellular stress and thus provide a rationale for future investigations.


Assuntos
Diabetes Mellitus Tipo 2 , Fator de Necrose Tumoral alfa , Adipócitos/metabolismo , Adiponectina/metabolismo , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipóxia/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
4.
Cell Death Dis ; 13(3): 260, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322009

RESUMO

G-protein gamma subunit 2 (GNG2) is involved in several cell signaling pathways, and is essential for cell proliferation and angiogenesis. However, the role of GNG2 in tumorigenesis and development remains unclear. In this study, 1321 differentially expressed genes (DEGs) in breast cancer (BC) tissues were screened using the GEO and TCGA databases. KEGG enrichment analysis showed that most of the enriched genes were part of the PI3K-Akt signaling pathway. We identified GNG2 from the first five DEGs, its expression was markedly reduced in all BC subtype tissues. Cox regression analysis showed that GNG2 was independently associated with overall survival in patients with luminal A and triple-negative breast cancers (TNBC). GNG2 over-expression could significantly block the cell cycle, inhibit proliferation, and promote apoptosis in BC cells in vitro. In animal studies, GNG2 over-expression inhibited the growth of BC cells. Further, we found that GNG2 significantly inhibited the activity of ERK and Akt in an MRAS-dependent manner. Importantly, GNG2 and muscle RAS oncogene homolog (MRAS) were co-localized in the cell membrane, and the fluorescence resonance energy transfer (FRET) experiment revealed that they had direct interaction. In conclusion, the interaction between GNG2 and MRAS likely inhibits Akt and ERK activity, promoting apoptosis and suppressing proliferation in BC cells. Increasing GNG2 expression or disrupting the GNG2-MRAS interaction in vivo could therefore be a potential therapeutic strategy to treat BC.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/genética , Feminino , Proteínas de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Proteínas ras/metabolismo
5.
Front Endocrinol (Lausanne) ; 12: 774309, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867822

RESUMO

Background: Previous animal studies have revealed that CTRP7 is related to energy metabolism. However, little is known regarding the relationship between CTRP7 and metabolic diseases in humans. Hence, this study was designed to explore the association between CTRP7 and MetS through a cross-sectional study and multiple intervention studies. Methods: A total of 624 individuals were enrolled in this study. The levels of CTRP7 and APN were determined by ELISA kit. HEC, OGTT and lipid infusion were performed in heathy individuals to investigate the association of CTRP7 and glucose, insulin and FFA. Bioinformatics analysis was then undertaken to identify genes and signaling pathways associated with CTRP7. The relationship between CTRP7 with MetS components was also evaluated. Results: In MetS patients, serum CTRP7 concentrations were significantly higher than in healthy controls, and was positively correlated with WC, BP, FBG, 2h-BG and TG, but negatively correlated with HDL-C and APN. Multivariate logistic regression analysis uncovered that CTRP7 was strongly correlated with the occurrence of MetS. In addition, circulating levels of CTRP7 in patients with two or more MetS components were higher than those with one MetS component. In the intervention studies, OGTTs resulted in a significant reduction in serum CTRP7 concentration. However, the increase in insulin levels caused by EHC and the increase of FFA caused by lipid-infusion led to the significant increase of serum CTRP7 concentration. Meanwhile, bioinformatics analysis revealed that CTRP7 was strongly associated with metabolism-related genes and signal pathways, which further illustrate the association of CTRP7 with whole-body metabolism. Conclusions: Serum CTRP7 is increased in MetS patients, which may be a biomarker related to metabolic diseases. Clinical Trial Registration Number: ChiCTR2000032878.


Assuntos
Adipocinas/sangue , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Síndrome Metabólica/sangue , Adiponectina/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Proteínas Sanguíneas , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Resistência à Insulina/fisiologia , Masculino , Síndrome Metabólica/etiologia , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco , Fatores de Necrose Tumoral/sangue , Adulto Jovem
6.
J Endocrinol ; 248(2): 221-235, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33337347

RESUMO

Bone morphogenetic proteins (BMPs) are secreted ligands that belong to the transforming growth factor-ß (TGF-ß) superfamily. BMP7 has been reported to play a role in reversing obesity and regulating appetite in the hypothalamus. Whether BMP9 plays a central role in regulating glucose metabolism and insulin sensitivity remains unclear. Here, we investigated the impact of central BMP9 signaling and possible route of transmission. We performed intracerebroventricular (ICV) surgery and injected adenovirus expressing BMP9 (Ad-BMP9) into the cerebral ventricle of mice. Metabolic analysis, hyperinsulinemic-euglycemic clamp test, and analysis of phosphatidylinositol 3,4,5-trisphosphate (PIP3) formation were then performed. Real-time PCR and Western blotting were performed to detect gene expression and potential pathways involved. We found that hypothalamic BMP9 expression was downregulated in obese and insulin-resistant mice. Overexpression of BMP9 in the mediobasal hypothalamus reduced food intake, body weight, and blood glucose level, and elevated the energy expenditure in high-fat diet (HFD)-fed mice. Importantly, central treatment with BMP9 improved hepatic insulin resistance (IR) and inhibited hepatic glucose production in HFD-fed mice. ICV BMP9-induced increase in hepatic insulin sensitivity and related metabolic effects were blocked by ICV injection of rapamycin, an inhibitor of mammalian target of rapamycin (mTOR) signaling. In addition, ICV BMP9 promoted the ability of insulin to activate the insulin receptor/phosphoinositide 3-kinase (PI3K)/Akt pathway in the hypothalamus. Thus, this study provides insights into the potential mechanism by which central BMP9 ameliorates hepatic glucose metabolism and IR via activating the mTOR/PI3K/Akt pathway in the hypothalamus.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Hipotálamo/metabolismo , Resistência à Insulina , Obesidade/metabolismo , Animais , Injeções Intraventriculares , Fígado/metabolismo , Masculino , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
7.
Diabetes Metab Res Rev ; 37(2): e3373, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32592413

RESUMO

AIM: Follistatin-like-1 (FSTL-1) is considered to be a novel cytokine, and it is associated with metabolic diseases. However, it is necessary to investigate further the association of FSTL-1 with metabolic syndrome (MetS) and insulin resistance (IR). We performed a cross-sectional study to investigate the associated of circulating FSTL-1 with the MetS. MATERIALS AND METHODS: A cross-sectional study was performed in 487 Chinese people, including 231 control subjects and 256 patients with MetS. Bioinformatics analysis was used to determine the protein and pathways associated with FSTL-1. The protein and protein interaction (PPI) network was constructed and analysed. Serum FSTL-1 concentrations were determined by an ELISA assay. The association of FSTL-1 with MetS components and IR was assessed. RESULTS: Serum FSTL-1 levels were markedly higher in patients with newly diagnosed MetS than in controls (7.5 [5.6-9.2] vs 5.8 [5.0-7.7] µg/L, P < .01). According to bioinformatics analysis, the top high-degree genes were identified as the core genes, including SPARCL1, CYR61, LTBP1, IL-6, BMP2, BMP4, FBN1, FN1 CHRDL1 and FSTL-3. These genes are mainly enriched in pathways including TGF-ß, AGE-RAGE signalling pathway in diabetic complications, and Hippo signalling pathways; in basal cell carcinoma, cytokine-cytokine receptor interaction and in amoebic and Yersinia infections. Furthermore, serum FSTL-1 levels were positively associated with fasting plasma glucose (FPG), waist circumference (WC), blood pressure, triglyceride levels and visceral adiposity index (VAI). We found that serum FSTL-1 levels were markedly associated with MetS and IR by binary logistic regression analysis. CONCLUSIONS: We conclude that FSTL-1 may be a novel cytokine related to MetS and IR.


Assuntos
Folistatina , Síndrome Metabólica , Idoso , Estudos Transversais , Folistatina/sangue , Humanos , Resistência à Insulina , Síndrome Metabólica/sangue , Síndrome Metabólica/epidemiologia , Pessoa de Meia-Idade
8.
Oxid Med Cell Longev ; 2020: 1871984, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204392

RESUMO

METHODS AND RESULTS: Circulating CILP2 levels (measured by ELISA) were compared to various insulin resistance- and atherosclerosis-related parameters in normal subjects and newly diagnosed CHD patients. THP-1 cells were cultured and treated with indicated stimulators. Western blots and RT-PCR were performed to examine protein and mRNA expressions. The results showed that there were significantly higher circulating CILP2 levels in CHD patients relative to healthy controls. Circulating CILP2 correlated positively with waist-hip ratio (WHR), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), HbA1c, homeostasis model assessment of insulin resistance (HOMA-IR), and Gensini scores. In an in vitro study, we found that CILP2 increased oxidatively modified LDL-stimulated lipid accumulation in THP-1 macrophages via the upregulation of CD36 expression. Inhibition of PPARγ signaling eliminated the CILP2 regulation of CD36 expression in THP-1 macrophages. CILP2 positively regulated CD36 transcription through PPARγ-mediated action on two peroxisome-proliferator-responsive elements (PPREs) binding sites of CD36 promoter, PPRE-G, and PPRE-J. CONCLUSIONS: Our findings have uncovered a novel role for CILP2 in lipid uptake and foam cell formation. This role is mediated by CD36 through the activation of PPARγ pathway.


Assuntos
Aterosclerose/sangue , Aterosclerose/patologia , Doença das Coronárias/sangue , Doença das Coronárias/patologia , Proteínas Associadas aos Microtúbulos/sangue , Animais , Antígenos CD36/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Colesterol/metabolismo , Estudos Transversais , Feminino , Humanos , Metabolismo dos Lipídeos , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , PPAR gama/metabolismo , Transdução de Sinais
9.
Mediators Inflamm ; 2020: 2483435, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061822

RESUMO

BACKGROUND: Previous studies have suggested that Fetuin-B seems to be a secreted adipokine related to metabolic diseases. However, the results have been inconsistent. Here, our objective is to investigate the changes in circulating Fetuin-B levels in women with polycystic ovary syndrome (PCOS) and analyze the association of Fetuin-B and insulin resistance (IR). METHODS: The current study is comprised of a cross-sectional study and a series of interventional studies. Oral glucose tolerance test (OGTT) and euglycemic-hyperinsulinemic clamp (EHC) were engaged to assess glucose tolerance and insulin sensitivity. Serum Fetuin-B levels were determined by ELISA. RESULTS: Serum Fetuin-B and TNF-α levels were markedly increased in women with PCOS compared to healthy women. Circulating Fetuin-B was positively associated with body mass index, waist-to-hip ratio, the percentage of body fat (FAT%), systolic blood pressure, triglyceride, low-density lipoprotein cholesterol, fasting blood glucose, 2 h blood glucose after glucose overload, fasting insulin, 2 h insulin after glucose overload, HOMA-insulin resistance index (HOMA-IR), the area under the curve for insulin (AUCi), AUCg, and TNF-α, while negatively associated with M value and follicular stimulating hormone (FSH). During the EHC, Fetuin-B levels were found to be significantly increased in PCOS women. After a glucose challenge, serum Fetuin-B levels in healthy women were significantly increased. Lipid infusion reduced serum Fetuin-B levels in 30 healthy subjects. After six months of glucagon-like peptide-1 receptor agonist (GLP-1RA) intervention, serum Fetuin-B concentrations in PCOS women markedly decreased following ameliorated IR. CONCLUSION: Our results indicate that Fetuin-B may be a biomarker of IR in individuals with PCOS. This trial is registered with ChiCTR-IIR-16007901.


Assuntos
Biomarcadores/sangue , Fetuína-B/metabolismo , Resistência à Insulina/fisiologia , Síndrome do Ovário Policístico/sangue , Fator de Necrose Tumoral alfa/sangue , Adulto , Glicemia/metabolismo , LDL-Colesterol/sangue , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Estradiol/sangue , Feminino , Teste de Tolerância a Glucose , Humanos , Hormônio Luteinizante/sangue , Progesterona/sangue , Prolactina/sangue , Triglicerídeos/sangue
10.
FASEB J ; 34(5): 7058-7074, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32275331

RESUMO

The role of central juxtaposed with another zinc finger gene 1 (JAZF1) in glucose regulation remains unclear. Here, we activated mediobasal hypothalamus (MBH) JAZF1 in high-fat diet (HFD)-fed rats by an adenovirus expressing JAZF1 (Ad-JAZF1). We evaluated the changes in the hypothalamic insulin receptor (InsR)-PI3K-Akt-AMPK pathway and hepatic glucose production (HGP). To investigate the impact of MBH Ad-JAZF1 on HGP, we activated MBH JAZF1 in the presence or absence of ATP-dependent potassium (KATP ) channel inhibition, hepatic branch vagotomy (HVG), or an AMPK activator (AICAR). In HFD-fed rats, MBH Ad-JAZF1 decreased body weight and food intake, and inhibited HGP by increasing hepatic insulin signaling. Under insulin stimulation, MBH Ad-JAZF1 increased InsR and Akt phosphorylation, and phosphatidylinositol 3, 4, 5-trisphosphate (PIP3) formation; however, AMPK phosphorylation was decreased in the hypothalamus. The positive effect of MBH JAZF1 on hepatic insulin signaling and HGP was prevented by treatment with a KATP channel inhibitor or HVG. The metabolic impact of hypothalamic JAZF1 was also blocked by MBH AICAR. Ad-JAZF1 treatment in SH-SY5Y cells resulted in an elevation of InsR and Akt phosphorylation following insulin stimulation. Our findings show that hypothalamic JAZF1 regulates HGP via the InsR-PI3K-Akt-AMPK pathway and KATP channels.


Assuntos
Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glucose/biossíntese , Hipotálamo Médio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas Correpressoras/genética , Proteínas de Ligação a DNA/genética , Dieta Hiperlipídica , Gluconeogênese , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Resistência à Insulina , Fígado/inervação , Fígado/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Nervo Vago/metabolismo
11.
J Diabetes Investig ; 11(1): 88-95, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31070007

RESUMO

AIMS/INTRODUCTION: As a member of the tumor necrosis factor-α-related protein family, complement-1q tumor necrosis factor-α-related protein isoform 5 (CTRP5) has been found to be associated with obesity and insulin resistance (IR). Previous studies in humans and animals have reported contradictory results related to the association between CTRP5 and IR. The purpose of the present study was to explore the relationship between CTRP5 and IR through a cross-sectional study and drug intervention study of type 2 diabetes patients. MATERIALS AND METHODS: A cross-sectional study was carried out with 118 newly diagnosed patients with type 2 diabetes and 116 healthy adults. In an interventional study, 78 individuals with newly diagnosed type 2 diabetes received sodium-glucose cotransporter 2 inhibitor (dapagliflozin) treatment for 3 months. Circulating CTRP5 concentrations were measured by enzyme-linked immunosorbent assay. RESULTS: Serum CTRP5 concentrations were markedly reduced in patients with type 2 diabetes when compared with those of healthy individuals (P < 0.01). When considering the study population as a whole, individuals with IR (homeostasis model of assessment of IR ≥2.78) had lower CTRP5 concentrations than the individuals without IR (homeostasis model of assessment of IR <2.78; P < 0.01). Serum CTRP5 negatively correlated with age, body mass index, waist-to-hip ratio, Systolic blood pressure, triglyceride, total cholesterol, glycated hemoglobin, fasting blood glucose, 2-h blood glucose, fasting insulin and homeostasis model of assessment of IR. After 12 weeks of sodium-glucose cotransporter 2 inhibitor treatment, serum CTRP5 levels in type 2 diabetes patients were significantly reduced accompanied with ameliorated glycometabolism and IR compared with before treatment (P < 0.01). CONCLUSIONS: CTRP5 is likely a marker for type 2 diabetes in humans.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Biomarcadores/sangue , Colágeno/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos/uso terapêutico , Resistência à Insulina , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Estudos de Casos e Controles , Estudos Transversais , Diabetes Mellitus Tipo 2/patologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
12.
EMBO Rep ; 21(2): e49473, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31885214

RESUMO

The dedicator of cytokinesis 5 (DOCK5) is associated with obesity. However, the mechanism by which DOCK5 contributes to obesity remains completely unknown. Here, we show that hepatic DOCK5 expression significantly decreases at a state of insulin resistance (IR). Deletion of DOCK5 in mice reduces energy expenditure, promotes obesity, augments IR, dysregulates glucose metabolism, and activates the mTOR (Raptor)/S6K1 pathway under a high-fat diet (HFD). The overexpression of DOCK5 in hepatocytes inhibits gluconeogenic gene expression and increases the level of insulin receptor (InsR) and Akt phosphorylation. DOCK5 overexpression also inhibits mTOR/S6K1 phosphorylation and decreases the level of raptor protein expression. The opposite effects were observed in DOCK5-deficient hepatocytes. Importantly, in liver-specific Raptor knockout mice and associated hepatocytes, the effects of an adeno-associated virus (AAV8)- or adenovirus-mediated DOCK5 knockdown on glucose metabolism and insulin signaling are largely eliminated. Additionally, DOCK5-Raptor interaction is indispensable for the DOCK5-mediated regulation of hepatic glucose production (HGP). Therefore, DOCK5 acts as a regulator of Raptor to control hepatic insulin activity and glucose homeostasis.


Assuntos
Resistência à Insulina , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
13.
Diabetes ; 68(10): 1902-1914, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292134

RESUMO

Previous cross-sectional studies have established that circulating osteoprotegerin (OPG) levels are associated with nonalcoholic fatty liver disease (NAFLD). However, the role of OPG in metabolic diseases, such as diabetes and NAFLD, is still unclear. In the current study, we demonstrated that hepatic OPG expression was downregulated in NAFLD individuals and in obese mice. OPG deficiency decreased lipid accumulation and expression of CD36 and peroxisome proliferator-activated receptor-γ (PPAR-γ) in the livers of OPG-/- mice and cultured cells, respectively, whereas OPG overexpression elicited the opposite effects. The stimulatory role of OPG in lipid accumulation was blocked by CD36 inactivation in hepatocytes isolated from CD36-/- mice. The overexpression of OPG led to a decrease in extracellular signal-regulated kinase (ERK) phosphorylation in the livers of OPG-/- mice and in cultured cells, while OPG deficiency resulted in the opposite effect. The inhibition of PPAR-γ or the activation of ERK blocked the induction of CD36 expression by OPG in cultured cells. Mechanistically, OPG facilitated CD36 expression by acting on PPAR response element (PPRE) present on the CD36 promoter. Taken together, our study revealed that OPG signaling promotes liver steatosis through the ERK-PPAR-γ-CD36 pathway. The downregulation of OPG in NAFLD might be a compensatory response of the body to dampen excess hepatic fat accumulation in obesity.


Assuntos
Antígenos CD36/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fígado Gorduroso/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Osteoprotegerina/metabolismo , PPAR gama/metabolismo , Transdução de Sinais/fisiologia , Animais , Fígado Gorduroso/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/metabolismo , Obesidade/patologia , Osteoprotegerina/genética , Fosforilação
14.
FASEB J ; 33(9): 10077-10088, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31237775

RESUMO

Bone morphogenetic protein (BMP)-9 has been reported to regulate energy balance in vivo. However, the mechanisms underlying BMP9-mediated regulation of energy balance remain incompletely understood. Here, we investigated the role of BMP9 in energy metabolism. In the current study, we found that hepatic BMP9 expression was down-regulated in insulin resistance (IR) mice and in patients who are diabetic. In mice fed a high-fat diet (HFD), the overexpression of hepatic BMP9 improved glucose tolerance and IR. The expression of gluconeogenic genes was down-regulated, whereas the level of insulin signaling molecule phosphorylation was increased in the livers of Adenovirus-BMP9-treated mice and glucosamine-treated hepatocytes. Furthermore, BMP9 overexpression ameliorated triglyceride accumulation and inhibited the expression of lipogenic genes in both human hepatocellular carcinoma HepG2 cells treated with a fatty acid mixture as well as the livers of HFD-fed mice. In hepatocytes isolated from sterol regulatory element-binding protein (SREBP)-1c knockout mice, the effects of BMP9 were ablated. Mechanistically, BMP9 inhibited SREBP-1c expression through the inhibition of liver X receptor response element 1 activity in the SREBP-1c promoter. Taken together, our results show that BMP9 is an important regulator of hepatic glucose and lipid metabolism.-Yang, M., Liang, Z., Yang, M., Jia, Y., Yang, G., He, Y., Li, X., Gu, H. F., Zheng, H., Zhu, Z., Li, L. Role of bone morphogenetic protein-9 in the regulation of glucose and lipid metabolism.


Assuntos
Glucose/metabolismo , Fator 2 de Diferenciação de Crescimento/fisiologia , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas/fisiologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/farmacologia , Regulação da Expressão Gênica , Fator 2 de Diferenciação de Crescimento/biossíntese , Fator 2 de Diferenciação de Crescimento/genética , Hepatócitos/metabolismo , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos/genética , Lipogênese/genética , Fígado/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Receptores X do Fígado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , RNA Mensageiro/biossíntese , Receptores para Leptina/deficiência , Proteínas Recombinantes/metabolismo , Elementos de Resposta/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo
15.
Cell Commun Signal ; 17(1): 8, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683114

RESUMO

BACKGROUND: Ghrelin modulates many physiological processes. However, the effects of intestinal ghrelin on hepatic glucose production (HGP) are still unclear. The current study was to explore the roles of intestinal ghrelin on glucose homeostasis and insulin signaling in the liver. METHODS: The system of intraduodenal infusion and intracerebral microinfusion into the nucleus of the solitary tract (NTS) in the normal chow-diet rats and pancreatic-euglycemic clamp procedure (PEC) combined with [3-3H] glucose as a tracer were used to analyze the effect of intestinal ghrelin. Intraduodenal co-infusion of ghrelin, tetracaine and Activated Protein Kinase (AMPK) activator (AICAR), or pharmacologic and molecular inhibitor of N-methyl-D-aspartate receptors within the dorsal vagal complex, or hepatic vagotomy in rats were used to explore the possible mechanism of the effect of intestinal ghrelin on HGP. RESULTS: Our results demonstrated that gut infusion of ghrelin inhibited duodenal AMP-dependent protein kinase (AMPK) signal pathways, increased HGP and expression of gluconeogenic enzymes, and decreased insulin signaling in the liver of the rat. Intraduodenal co-infusion of ghrelin receptor antagonist [D-Lys3]-GHRP-6 and AMPK agonist with ghrelin diminished gut ghrelin-induced increase in HGP and decrease in glucose infusion rate (GIR) and hepatic insulin signaling. The effects of gut ghrelin were also negated by co-infusion with tetracaine, or MK801, an N-methyl-D-aspartate (NMDA) receptor inhibitor, and adenovirus expressing the shRNA of NR1 subunit of NMDA receptors (Ad-shNR1) within the dorsal vagal complex, and hepatic vagotomy in rats. When ghrelin and lipids were co-infused into the duodenum, the roles of gut lipids in increasing the rate of glucose infusion (GIR) and lowering HGP were reversed. CONCLUSIONS: The current study provided evidence that intestinal ghrelin has an effect on HGP and identified a neural glucoregulatory function of gut ghrelin signaling.


Assuntos
Encéfalo/metabolismo , Trato Gastrointestinal/metabolismo , Grelina/farmacologia , Glucose/biossíntese , Insulina/metabolismo , Fígado/metabolismo , Transdução de Sinais , Adenilato Quinase/antagonistas & inibidores , Adenilato Quinase/metabolismo , Animais , Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Jejum , Trato Gastrointestinal/efeitos dos fármacos , Homeostase , Mucosa Intestinal/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
17.
Clin Sci (Lond) ; 131(3): 239-246, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27940998

RESUMO

Bone morphogenetic protein 9 (BMP-9) has been demonstrated to improve glucose homoeostasis in diabetic mice. However, no report has demonstrated the relationship of circulating BMP-9 levels with insulin resistance (IR) or Type 2 diabetes mellitus (T2DM) in humans. The objective of the present study was to investigate the relationship between BMP-9 and IR in cross-sectional and interventional studies. Circulating BMP-9 levels were analysed by ELISA in 280 well-characterized individuals. Two-hour oral glucose tolerance test (OGTT) and euglycaemic-hyperinsulinaemic clamp (EHC) were performed in 20 healthy subjects. Acute IR was induced by lipid infusion for 4 h in 20 healthy volunteers. Real-time (RT)-PCR and Western blotting were used to assess mRNA and protein expression of BMP-9. The effect of a glucagon-like peptide-1 (GLP-1) receptor agonist (PEX168) on circulating BMP-9 was investigated in a 24-week treatment trial. Circulating BMP-9 levels were significantly higher in healthy subjects than in newly diagnosed patients with T2DM. Circulating BMP-9 negatively correlated with HbA1c, fasting blood glucose (FBG), OGTT, the area under the curve for glucose (AUCglucose) and homoeostasis model assessment of insulin resistance (HOMA-IR). Multivariate regression analyses showed that BMP-9 levels were independently associated with non-esterified fatty acid (NEFA) and AUCglucose Both hyperinsulinaemia and lipid infusion decreased circulating BMP-9 levels. BMP-9 mRNA and protein expressions were significantly decreased in muscle and adipose tissues of T2DM patients. In the placebo treated group, BMP-9 levels continued to decline over time, whereas in the PEX 168 treated groups BMP-9 levels remained stable. Our data suggest that BMP-9 is likely to play an important role in IR in humans.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Fatores de Diferenciação de Crescimento/sangue , Resistência à Insulina , Tecido Adiposo/metabolismo , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos Transversais , Ácidos Graxos não Esterificados , Feminino , Teste de Tolerância a Glucose , Fator 2 de Diferenciação de Crescimento , Humanos , Hiperinsulinismo/sangue , Masculino , Pessoa de Meia-Idade , Músculos/metabolismo , Peptídeos , Polietilenoglicóis
18.
Medicine (Baltimore) ; 95(49): e5524, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27930544

RESUMO

The euglycemic-hyperinsulinemic clamp is not available in most clinical settings. An accessible and inexpensive measurement for identifying insulin resistance (IR) is necessary. Our aim is to assess whether the adiponectin (ADI) index (ADI/[FBG × FIns]) is a better surrogate index for the assessment of IR or metabolic syndrome (MetS).A population-based cross-sectional study was conducted including 100 healthy women and 99 polycystic ovary syndrome patients. The euglycemic-hyperinsulinemic clamp was performed. Circulating ADI levels were determined by ELISA.Polycystic ovary syndrome and polycystic ovary syndrome plus MetS subjects had higher products of fasting triglycerides and glucose (TyG), Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), increased ratios of the area under the curve for insulin/the area under the curve for glucose (AUCi/AUCg), but lower ADI index as compared with healthy subjects. Partial correlation analysis in all populations showed that the M-value was significantly negatively correlated with HOMA-IR, TyG, TG/HDL, and AUCi/AUCg, and correlated positively with the ADI index. The r value of Pearson correlation between the ADI index and M-value was greater than that of the correlation between HOMA-IR, TyG, TG/HDL-C, and AUCi/AUCg. The optimal cut-off value of the ADI index for detection of IR was 0.67, with a sensitivity of 89.4% and a specificity of 88.1%, whereas for detection of MetS, it was 0.32, with a sensitivity of 88.7% and a specificity of 71.0%.The ADI index may be a surrogate marker in detecting IR and MetS.


Assuntos
Adiponectina/sangue , Síndrome Metabólica/diagnóstico , Síndrome do Ovário Policístico/complicações , Adulto , Área Sob a Curva , Biomarcadores/sangue , Glicemia , Estudos Transversais , Feminino , Humanos , Resistência à Insulina , Síndrome Metabólica/sangue , Síndrome Metabólica/complicações , Síndrome do Ovário Policístico/sangue , Valor Preditivo dos Testes , Triglicerídeos/sangue , Adulto Jovem
19.
Sci Rep ; 6: 25934, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27180914

RESUMO

The aim of study was to assess the relationship between zinc-α2-glycoprotein (ZAG) and androgen excess with insulin resistance in polycystic ovary syndrome (PCOS) women. 99 PCOS women and 100 healthy controls were recruited. Euglycemic-hyperinsulinemic clamp (EHC) was preformed to assess their insulin sensitivity. Circulating ZAG was determined with an ELISA kit. In healthy subjects, circulating ZAG levels exhibited a characteristic diurnal rhythm in humans, with a major nocturnal rise occurring between midnight and early morning. Circulating ZAG and M-value were much lower in PCOS women than in the controls. In all population, overweight/obese subjects had significantly lower circulating ZAG levels than lean individuals. Multiple linear regression analysis revealed that only M-value and the area under the curve for glucose were independently related factors to circulating ZAG in PCOS women. Multivariate logistic regression analysis showed that circulating ZAG was significantly associated with PCOS even after controlling for anthropometric variables, blood pressure, lipid profile and hormone levels. The PCOS women with high ZAG had fewer MetS, IGT and polycystic ovaries as compared with the low ZAG PCOS women. Taken together, circulating ZAG levels are reduced in women with PCOS and ZAG may be a cytokine associated with insulin resistance in PCOS women.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico/sangue , Proteínas de Plasma Seminal/sangue , Adulto , Área Sob a Curva , Glicemia/análise , Estudos de Casos e Controles , Ritmo Circadiano , Estudos Transversais , Feminino , Humanos , Obesidade/sangue , Sobrepeso/sangue , Adulto Jovem , Glicoproteína Zn-alfa-2
20.
Eur J Endocrinol ; 174(2): 147-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26546612

RESUMO

OBJECTIVE: Zinc-α2-glycoprotein (ZAG) has recently been characterized as a potent metabolic regulator. However, the effects of anti-diabetic agents on circulating ZAG levels in humans remain largely unknown. To explore the possible mechanisms by which the dipeptidyl peptidase-IV (DPP-IV) inhibitor improves insulin resistance, we investigated the effect of sitagliptin, a DPP-IV inhibitor, on circulating cytokine levels in newly diagnosed type 2 diabetes (nT2DM) patients. DESIGN AND METHODS: A subset of 141 subjects with nT2DM were assigned to receive placebo (n=47) or sitagliptin (n=94) for 3 months. Before and after treatment, subjects received a 75 g oral glucose tolerance test, euglycemic-hyperinsulinemic clamp (EHC), and measurement of ZAG and adiponectin (ADI) concentrations. RESULTS: Circulating ZAG levels were lower in nT2DM than in control individuals (P<0.01). After 3 months of sitagliptin treatment, HbA1c, fasting plasma glucose, postprandial glucose, 2-h insulin after glucose overload, triglycerides, and homeostasis model assessment of insulin resistance (HOMA-IR) were decreased significantly compared with pre-treatment (P<0.05 or P<0.01), whereas the glucose infusion rate during the stable period of the clamp (M values) during EHC were significantly increased (P<0.01). In addition, circulating ZAG and ADI concentrations were significantly increased along with improved glucose metabolism and insulin sensitivity compared with pre-treatment (both P<0.01) and the change of ZAG (ΔZAG) was positively associated with ΔADI, ΔHOMA-IR, ΔBMI, Δfasting insulin and negatively associated with Δ tumor necrosis factor-α (TNF-α). Furthermore, sitagliptin treatment resulted in significantly lowered plasma TNF-α level (P<0.05). CONCLUSION: A low level of circulating ZAG is associated with insulin resistance and sitagliptin treatment significantly increases circulating ZAG levels. These observations have implications in relation to the mode of action of the DPP-IV inhibitor as an insulin sensitizing agent.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Resistência à Insulina/fisiologia , Avaliação de Resultados em Cuidados de Saúde , Proteínas de Plasma Seminal/sangue , Fosfato de Sitagliptina/farmacologia , Fator de Necrose Tumoral alfa/sangue , Adulto , Idoso , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosfato de Sitagliptina/administração & dosagem , Glicoproteína Zn-alfa-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA