Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 39(6): 1181-1195, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35229237

RESUMO

While delivery of chemotherapeutics to cancer cells by nanomedicines can improve therapeutic outcomes, many fail due to the low drug loading (DL), poor cellular uptake and endosomal entrapment. This study investigated the potential to overcome these limitations using pH-sensitive liposomes (PSL) empowered by the use of calcium acetate. An acidic dinitrobenzamide mustard prodrug SN25860 was used as a model drug, with non pH-sensitive liposomes (NPSL) as a reference. Calcium acetate as a remote loading agent allowed to engineer PSL- and NPSL-SN25860 with DL of > 31.1% (w/w). The IC50 of PSL-SN25860 was 21- and 141-fold lower than NPSL and free drug, respectively. At 48 h following injection of PSL-SN25860, NPSL-SN25860 and the free drug, drug concentrations in EMT6-nfsB murine breast tumors were 56.3 µg/g, 6.76 µg/g and undetectable (< 0.015 µg/g), respectively (n = 3). Meanwhile, the ex vivo tumor clonogenic assay showed 9.1%, 19.4% and 42.7% cell survival in the respective tumors. Live-cell imaging and co-localization analysis suggested endosomal escape was accomplished by destabilization of PSL followed by release of Ca2+ in endosomes allowing induction of a proton sponge effect. Subsequent endosomal rupture was observed approximately 30 min following endocytosis of PSL containing Ca2+. Additionally, calcium in liposomes promoted internalization of both PSL and NPSL. Taken together, this study demonstrated multifaceted functions of calcium acetate in promoting drug loading into liposomes, cellular uptake, and endosomal escape of PSL for efficient cytoplasmic drug delivery. The results shed light on designing nano-platforms for cytoplasmic delivery of various therapeutics.


Assuntos
Lipossomos , Neoplasias , Animais , Cálcio , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Endossomos , Concentração de Íons de Hidrogênio , Lipossomos/farmacologia , Camundongos , Prótons
2.
Int J Pharm ; 516(1-2): 323-333, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27871834

RESUMO

This paper aims to develop and evaluate a pH-sensitive PEGylated liposomal (pPSL) system for tumor-targeted intracellular delivery of SN25860, a weakly acidic, poorly water-soluble dinitrobenzamide mustard prodrug which is activated by the E. coli nitroreductase nfB. pPSL and non pH-sensitive liposomes (nPSL), as reference, were formulated by thin-film hydration; an active drug loading method was developed with the aid of solubilizers. Cytotoxicity was evaluated in an nfsB-transfected EMT6 mouse mammary carcinoma cell line. Cellular uptake of liposomes was evaluated by both high performance liquid chromatography and flow cytometry. Intracellular trafficking was visualised by confocal microscopy. High drug loading (7.0±0.2% w/w) was achieved after systematic optimization of drug loading conditions. pPSL-SN25860 demonstrated a 21 and 24- fold increase in antiproliferative potency compared to nPSL-SN25860 and free drug, respectively. Cells treated with pPSL had a 1.6-2.5- fold increase in intracellular drug concentration compared to nPSL. This trend was consistent with flow cytometry results. Cells treated with chlorpromazine demonstrated reduced uptake of both nPSL (40%) and pPSL (46%), indicating clathrin-mediated endocytosis was the major pathway. Confocal microscopy showed that pPSL had not only undergone faster and greater endocytosis than nPSL but was also homogeneously distributed in the cytosol and nuclei suggesting endosome escape, in contrast to nPSL.


Assuntos
Antineoplásicos/administração & dosagem , Benzamidas/administração & dosagem , Sistemas de Liberação de Medicamentos , Neoplasias Mamárias Animais/tratamento farmacológico , Compostos de Mostarda Nitrogenada/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Benzamidas/farmacocinética , Benzamidas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Endossomos/metabolismo , Feminino , Citometria de Fluxo , Concentração de Íons de Hidrogênio , Lipossomos , Neoplasias Mamárias Animais/patologia , Camundongos , Microscopia Confocal , Compostos de Mostarda Nitrogenada/farmacocinética , Compostos de Mostarda Nitrogenada/farmacologia , Polietilenoglicóis/química , Pró-Fármacos , Solubilidade , Transfecção
3.
Biomaterials ; 85: 152-67, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26871891

RESUMO

As the mainstay in the treatment of various cancers, chemotherapy plays a vital role, but still faces many challenges, such as poor tumour selectivity and multidrug resistance (MDR). Targeted drug delivery using nanotechnology has provided a new strategy for addressing the limitations of the conventional chemotherapy. In the last decade, the volume of research published in this area has increased tremendously, especially with functional nano drug delivery systems (nanocarriers). Coupling a specific stimuli-triggered drug release mechanism with these delivery systems is one of the most prevalent approaches for improving therapeutic outcomes. Among the various stimuli, pH triggered delivery is regarded as the most general strategy, targeting the acidic extracellular microenvironment and intracellular organelles of solid tumours. In this review, we discuss recent advances in the development of pH-sensitive nanocarriers for tumour-targeted drug delivery. The review focuses on the chemical design of pH-sensitive biomaterials, which are used to fabricate nanocarriers for extracellular and/or intracellular tumour site-specific drug release. The pH-responsive biomaterials bring forth conformational changes in these nanocarriers through various mechanisms such as protonation, charge reversal or cleavage of a chemical bond, facilitating tumour specific cell uptake or drug release. A greater understanding of these mechanisms will help to design more efficient drug delivery systems to address the challenges encountered in conventional chemotherapy.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Nanoestruturas/química , Nanotecnologia
4.
Toxicol Appl Pharmacol ; 266(1): 143-9, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23142755

RESUMO

There is increasing evidence that oxidative stress is an important risk factor for arsenic-related diseases. Peripheral blood leukocytes constitute an important defense against microorganisms or pathogens, while the research on the impact of chronic arsenic exposure on peripheral blood leukocytes is much more limited, especially at low level arsenic exposure. The purpose of the present study was to explore whether chronic arsenic exposure affects oxidative stress of peripheral blood leukocytes and possible linkages between oxidative stress and arsenic-induced skin lesions. 75 male inhabitants recruited from an As-endemic region of China were investigated in the present study. The classification of arsenicosis was based on the degree of skin lesions. Arsenic levels were measured in drinking water and urine by Atomic Fluorescence Spectroscopy. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) was tested by Enzyme-Linked Immunosorbent Assay. 8-OHdG of peripheral blood leukocytes was evaluated using immunocytochemical staining. 8-OHdG-positive reactions were only present in polymorphonuclear leukocytes (PMNs), but not in monocytes (MNs). The 8-OHdG staining of PMN cytoplasm was observed in all investigated populations, while the 8-OHdG staining of PMN nuclei was frequently found along with the elevated amounts of cell debris in individuals with skin lesion. Urinary arsenic levels were increased in the severe skin lesion group compared with the normal group. No relationship was observed between drinking water arsenic or urine 8-OHdG and the degree of skin lesions. These findings indicated that the target and persistent oxidative stress in peripheral blood PMNs may be employed as a sensitive biomarker directly to assess adverse health effects caused by chronic exposure to lower levels of arsenic.


Assuntos
Arsênio/administração & dosagem , Dano ao DNA/fisiologia , Neutrófilos/metabolismo , Estresse Oxidativo/fisiologia , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/metabolismo , Poluição Química da Água/efeitos adversos , Adulto , Idoso , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Cutâneas/epidemiologia , Abastecimento de Água/análise , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA