Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncolytics ; 24: 160-170, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35024442

RESUMO

Owing to messenger RNA's unique biological advantages, it has received increasing attention to be used as a therapeutic, known as mRNA-based gene therapy. It is critical to have an ideal strategy of mRNA gene therapy for glioma, which grows in a special environment. In the present study, we screened out a safe and efficient transfection reagent for intracranial delivery of synthetic mRNA in mouse brain. First, in order to analyze the effect of different transfection reagents on the intracranial delivery of mRNA, the synthetic luciferase mRNA was wrapped with two different transfection reagents and microinjected into the brain at the fixed point. The expression status of delivered mRNA was monitored by a small animal imaging system. The possible reagent-induced biological toxicity was evaluated by behavioral and blood biochemical measurements. Then, to test the therapeutic effect of our intracranial delivery mRNA model on glioma, synthetic modified tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA was used as an example of therapeutic application. This model demonstrated that synthetic mRNA could be successfully delivered into the brain using commercially available transfection reagents, and TransIT-mRNA showed better results than in vivo-jetPEI kit. This model can be applied in precise targeting and personalized gene therapy of glioma.

2.
Front Bioeng Biotechnol ; 9: 803868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071212

RESUMO

Primary pulmonary angiosarcoma (PPA) is a rare malignant vascular tumor, of which early diagnosis is challenging due to lack of specific clinical manifestations and a low level of suspicion. Here, we report a case of PPA presented with advanced brain metastasis. A 21-year-old patient with 1 week history of headache and mild cough was hospitalized for a head injury. Head MRI showed multiple intracranial lesions with brain edema. Chest CT displayed bilateral pulmonary infiltrates with mediastinal lymph node enlargement. After 2 months of anti-tuberculosis treatment, the patient was readmitted for persistent headache and cough with occasional hemosputum along with worsening pulmonary and intracranial lesions. Despite seizure prophylaxis and control of intracranial pressure and brain edema, his symptoms progressively aggravated, accompanied by cough with bloody sputum, frequent epileptic seizures, and hypotension. He eventually developed coma and died within 3 months of onset of symptoms. An autopsy confirmed PPA with brain metastasis.

3.
J Transl Med ; 12: 148, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24884636

RESUMO

BACKGROUND: Anti-angiogenic therapy inhibits tumor growth and is considered as a potential clinical therapy for malignant glioma. However, inevitable recurrences and unexpected tumor resistance, particularly increased invasion ability of glioma cell, were observed after anti-angiogenic treatment. The underlying mechanism remains undetermined. Focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) are closely associated with cell migration; therefore, we investigated the possible role of these kinases in rat C6 glioma cell invasion induced by bevacizumab, a recombinant monoclonal antibody against vascular endothelial growth factor (VEGF). METHODS: The effects of bevacizumab on migration and invasion of C6 glioma cells were investigated in vitro and in vivo. The cells proliferation, migration, and invasion were determined by MTT assay, wound healing, and transwell assay, respectively. Invasive potential of glioma cells in vivo was assessed by counting vimentin-positive cells crossing the solid tumor rim by immunohistochemical staining. The total and phosphorylated protein levels of FAK and Pyk2 were detected by Western blotting. RESULTS: Bevacizumab exposure increased migration and invasion of cultured C6 cells in a concentration-dependent manner. In addition, the continuous bevacizumab treatment also promoted tumor invasion in rat C6 intracranial glioma models. Bevacizumab treatment enhanced Pyk2 phosphorylation at Tyr402, but no effect on FAK phosphorylation at Tyr397 both in vitro and in vivo. Knockdown of Pyk2 by siRNA or inhibition of Pyk2 phosphorylation by Src kinase specific inhibitor PP1 partially inhibited bevacizumab-induced cell invasion in cultured C6 glioma cells. Furthermore, the combined administration of bevacizumab and PP1 significantly suppressed glioma cell invasion into surrounding brain tissues compared to bevacizumab treatment alone in experimental rats. CONCLUSIONS: These results suggest that anti-VEGF treatment promotes glioma cell invasion via activation of Pyk2. Inhibition of Pyk2 phosphorylation might be a potential target to ameliorate the therapeutic efficiency of anti-VEGF treatment.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias Encefálicas/patologia , Quinase 2 de Adesão Focal/metabolismo , Glioma/patologia , Invasividade Neoplásica , Animais , Bevacizumab , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Ativação Enzimática , Indução Enzimática , Glioma/tratamento farmacológico , Glioma/enzimologia , Metástase Neoplásica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA