Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuromolecular Med ; 22(1): 56-67, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31401719

RESUMO

Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by the progressive loss of dopaminergic neurons in substantia nigra. The underlying mechanisms of PD pathogenesis have not been fully illustrated and currently PD remains incurable. Accumulating evidences suggest that mitochondrial dysfunction plays pivotal role in the dopaminergic neuronal death. Therefore, discovery of novel and safe agent for rescuing mitochondrial dysfunction would benefit PD treatment. Here we demonstrated for the first time that α-Arbutin (Arb), a natural polyphenol extracted from Ericaceae species, displayed significant protective effect on the rotenone (Rot)-induced mitochondrial dysfunction and apoptosis of human neuroblastoma cell (SH-SY5Y). We further found that the neuroprotective effect of Arb was associated with ameliorating oxidative stress, stabilizing of mitochondrial membrane potential, and enhancing adenosine triphosphate production. To investigate the underlying mechanism, we checked the AMP-activated protein kinase and autophagy pathway and we found that both were involved in the neuroprotection of Arb. Moreover, we explored the protective effect of Arb in drosophila PD model and found that Arb rescued parkin deficiency-induced motor function disability and mitochondrial abnormality of drosophila. Taken together, our study demonstrated that Arb got excellent neuroprotective effect on PD models both in vitro and in vivo and Arb might serve as a potent therapeutic agent for the treatment of PD.


Assuntos
Antioxidantes/uso terapêutico , Arbutina/uso terapêutico , Ericaceae/química , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Fitoterapia , Extratos Vegetais/química , Trifosfato de Adenosina/biossíntese , Adenilato Quinase/metabolismo , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Arbutina/isolamento & purificação , Arbutina/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/fisiologia , Neuroblastoma/patologia , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Rotenona/toxicidade , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
2.
Med Res Rev ; 39(6): 2172-2193, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30972803

RESUMO

Artemisinin and its derivatives, with their outstanding clinical efficacy and safety, represent the most effective and impactful antimalarial drugs. Apart from its antimalarial effect, artemisinin has also been shown to exhibit selective anticancer properties against multiple cancer types both in vitro and in vivo. Specifically, our previous studies highlighted the therapeutic effects of artemisinin on autophagy regulation. Autophagy is a well-conserved degradative process that recycles cytoplasmic contents and organelles in lysosomes to maintain cellular homeostasis. The deregulation of autophagy is often observed in cancer cells, where it contributes to tumor adaptation to nutrient-deficient tumor microenvironments. This review discusses recent advances in the anticancer properties of artemisinin and its derivatives via their regulation of autophagy, mitophagy, and ferritinophagy. In particular, we will discuss the mechanisms of artemisinin activation in cancer and novel findings regarding the role of artemisinin in regulating autophagy, which involves changes in multiple signaling pathways. More importantly, with increasing failure rates and the high cost of the development of novel anticancer drugs, the strategy of repurposing traditional therapeutic Chinese medicinal agents such as artemisinin to treat cancer provides a more attractive alternative. We believe that the topics covered here will be important in demonstrating the potential of artemisinin and its derivatives as safe and potent anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Artemisininas/farmacologia , Autofagia/efeitos dos fármacos , Animais , Artemisininas/química , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Mitofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
3.
J Biol Chem ; 289(48): 33425-41, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25305013

RESUMO

Artesunate (ART) is an anti-malaria drug that has been shown to exhibit anti-tumor activity, and functional lysosomes are reported to be required for ART-induced cancer cell death, whereas the underlying molecular mechanisms remain largely elusive. In this study, we aimed to elucidate the molecular mechanisms underlying ART-induced cell death. We first confirmed that ART induces apoptotic cell death in cancer cells. Interestingly, we found that ART preferably accumulates in the lysosomes and is able to activate lysosomal function via promotion of lysosomal V-ATPase assembly. Furthermore, we found that lysosomes function upstream of mitochondria in reactive oxygen species production. Importantly, we provided evidence showing that lysosomal iron is required for the lysosomal activation and mitochondrial reactive oxygen species production induced by ART. Finally, we showed that ART-induced cell death is mediated by the release of iron in the lysosomes, which results from the lysosomal degradation of ferritin, an iron storage protein. Meanwhile, overexpression of ferritin heavy chain significantly protected cells from ART-induced cell death. In addition, knockdown of nuclear receptor coactivator 4, the adaptor protein for ferritin degradation, was able to block ART-mediated ferritin degradation and rescue the ART-induced cell death. In summary, our study demonstrates that ART treatment activates lysosomal function and then promotes ferritin degradation, subsequently leading to the increase of lysosomal iron that is utilized by ART for its cytotoxic effect on cancer cells. Thus, our data reveal a new mechanistic action underlying ART-induced cell death in cancer cells.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Ferritinas/metabolismo , Lisossomos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Proteólise/efeitos dos fármacos , Artesunato , Morte Celular/efeitos dos fármacos , Células HeLa , Células Hep G2 , Humanos , Ferro/metabolismo , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Coativadores de Receptor Nuclear/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
4.
PLoS One ; 7(10): e46749, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056433

RESUMO

(-)-Epigallocatechin-3-gallate (EGCG) is the most extensive studied tea polyphenol for its anti-cancer function. In this study, we report a novel mechanism of action for EGCG-mediated cell death by identifying the critical role of lysosomal membrane permeabilization (LMP). First, EGCG-induced cell death in human cancer cells (both HepG2 and HeLa) was found to be caspase-independent and accompanied by evident cytosolic vacuolization, only observable when cells were treated in serum-free medium. The cytosolic vacuolization observed in EGCG-treated cells was most probably caused by lysosomal dilation. Interestingly, EGCG was able to disrupt autophagic flux at the degradation stage by impairment of lysosomal function, and EGCG-induced cell death was independent of Atg5 or autophagy. The key finding of this study is that EGCG is able to trigger LMP, as evidenced by Lyso-Tracker Red staining, cathepsin D cytosolic translocation and cytosolic acidification. Consistently, a lysosomotropic agent, chloroquine, effectively rescues the cell death via suppressing LMP-caused cytosolic acidification. Lastly, we found that EGCG promotes production of intracellular ROS upstream of LMP and cell death, as evidenced by increased level of ROS in cells treated with EGCG and the protective effects of antioxidant N-acetylcysteine (NAC) against EGCG-mediated LMP and cell death. Taken together, data from our study reveal a novel mechanism underlying EGCG-induced cell death involving ROS and LMP. Therefore, understanding this lysosome-associated cell death pathway shed new lights on the anti-cancer effects of EGCG.


Assuntos
Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Western Blotting , Catequina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA