Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 153: 109793, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39134230

RESUMO

Microplastic pollution poses challenges for ecosystems worldwide, and nanoplastics (NPs, 1-1000 nm) have been identified as persistent pollutants. However, although some studies have described the hazards of NPs to aquatic organisms, the toxicological processes of NPs in the common carp kidney and the biotoxicity of differently sized NPs remain unclear. In this study, we used juvenile common carp as an in vivo model that were constantly exposed to freshwater at 1000 µg/L polystyrene nanoparticle (PSNP) concentrations (50, 100, and 400 nm) for 28 days. Simultaneously, we constructed an in vitro model utilizing grass fish kidney cells (CIK) to study the toxicological effects of PSNPs of various sizes. We performed RT-PCR and Western blot assays on the genes involved in FOXO1, HMGB1, HIF-1α, endoplasmic reticulum stress, autophagy, and immunoreaction. According to these results, exposure to PSNPs increased reactive oxygen species (ROS) levels, and the carp kidneys experienced endoplasmic reticulum stress. Additionally, PSNPs promoted renal autophagy by activating the ROS/ERS/FOXO1 (ERS: endoplasmic reticulum stress) pathway, and it affected immunological function by stimulating the ROS/HMGB1/HIF-1α signaling pathway. This study provides new insights into the contamination hazards of NPs in freshwater environments, as well as the harm they pose to the human living environments. The relationship between particle size and the degree of damage caused by PSNPs to organisms is a potential future research direction.


Assuntos
Autofagia , Carpas , Rim , Nanopartículas , Tamanho da Partícula , Poliestirenos , Espécies Reativas de Oxigênio , Animais , Carpas/imunologia , Nanopartículas/toxicidade , Nanopartículas/química , Autofagia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Poliestirenos/toxicidade , Poliestirenos/química , Rim/efeitos dos fármacos , Rim/imunologia , Poluentes Químicos da Água/toxicidade , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Microplásticos/toxicidade , Microplásticos/química
2.
J Agric Food Chem ; 72(1): 284-299, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109331

RESUMO

microRNA (miRNA) controls the post-transcriptional translation of mRNA to affect the expression of many genes participating in functional interaction pathways. Selenoproteins are characterized by their antioxidant activity, wherein selenoprotein T (SelT) is an essential membrane-bound selenoprotein serving as a guardian of intracellular homeostasis. During muscle development and regeneration, myoblasts enter the cell cycle and rapidly proliferate. However, the role of SelT in muscle development and selenium (Se) deficiency-induced muscle damage remains poorly investigated. This study established Se deficient broiler models, chicken embryos models, and cultured chicken primary myoblasts in vitro. We showed that Se deficiency induced skeletal muscle damage in broilers, promoted miR-365-3p expression, and downregulated the level of SelT, significantly. The absence of SelT led to the accumulation of mitochondrial superoxide and downregulated mitochondrial dynamics gene expression, which, in turn, induced the disruption of mitochondria potential and blocked the oxidative phosphorylation (OXPHOS) process. Limited ATP production rate caused by mitochondrial ROS overproduction went along with cell cycle arrest, cell proliferation slowness, and myocyte apoptosis increase. Using Mito-TEMPO for mitochondrial ROS elimination could effectively mitigate the above adverse reactions and significantly restore the proliferation potential of myoblasts. Moreover, we identified miR-365-3p, a miRNA that targeted SelT mRNA to inhibit myoblast proliferation by disrupting intracellular redox balance. The omics analysis results showed that Se deficiency led to the significant enrichment of "cell cycle", "oxidative stress response", and "oxidative phosphorylation" pathway genes. Finally, we proved that the effect of the miR-365-3p/SelT signaling axis on muscle development did exist in the chicken embryo stage. In summary, our findings revealed that miR-365-3p was involved in broiler skeletal muscle damage in Se deficiency by targeting SelT, and SelT, serving as an intracellular homeostasis guardian, resisted mitochondrial oxidative stress, and protected ATP generation, promoting myoblast proliferation and inhibiting apoptosis. This study provides an attractive target for the cultivated meat industry and regenerative medicine.


Assuntos
MicroRNAs , Selênio , Embrião de Galinha , Animais , Galinhas/genética , Galinhas/metabolismo , Espécies Reativas de Oxigênio , Selênio/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Dieta , Selenoproteínas/genética , Selenoproteínas/metabolismo , RNA Mensageiro , Proliferação de Células , Apoptose , Mioblastos/metabolismo , Trifosfato de Adenosina
3.
Res Vet Sci ; 134: 127-136, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33360573

RESUMO

Layer fatigue syndrome caused by the lack of calcium and phosphorus can cause fracture in laying hens. The effect of phosphorus deficiency on the femur of laying hens with layer fatigue syndrome has not been studied. In this study, sixty 22-week-old Roman white layers were randomly divided into control group (group C) and low phosphorus group (group P), 30 individuals in each group. The available phosphorus content of group P was 0.18%. At the age of 26, 30 and 34 weeks, the production performance, biomechanical index, protein expression, histopathological change of femur and serological index were detected. The results showed that the laying rate, egg quality and body weight of laying hens, bone density, cortical bone thickness, rigidity, flexural modulus, flexural rigidity, the maximum load of femur and expression of osteocalcin (OCN), receptor activator of nuclear factor kappa-Β (RANK) and receptor activator of nuclear factor kappa-Β ligand (RANKL) decreased of group P. The number of osteocytes was decreased, and the voids was increased. However, cell lacunae were not obvious. The levels of phosphorus, calcium and OCN were increased, and the content of estradiol (E2), OPG and calcitonin (CT) were decreased in serum. In conclusion, the low phosphorus diet can induce layer fatigue syndrome and affect the content of OPG and E2 in serum and the expression of OCN, OPG, RANK and RANKL in femur protein, which leads to the imbalance of bone homeostasis, the thinning of femur cortex bone and the decrease of bone density.


Assuntos
Galinhas , Fêmur/patologia , Hipofosfatemia/veterinária , Doenças das Aves Domésticas/patologia , Animais , Peso Corporal , Cálcio , Dieta , Feminino , Fêmur/metabolismo , Hipofosfatemia/metabolismo , Hipofosfatemia/patologia , Fósforo/sangue , Doenças das Aves Domésticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA