Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
1.
Physiol Mol Biol Plants ; 30(4): 619-631, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38737324

RESUMO

Bletilla striata (Thunb.) Rchb.f., a medicinal plant in the Orchidaceae family, is mainly found in East Asia and has extensive pharmacological activities. Plant's volatile components are important active ingredients with a wide range of physiological activities, and B. striata has a special odor and unique volatile components. Yet it has received little attention, hindering a full understanding of its phytochemical components. Employing the ultrasonic-assisted extraction method, the volatile components of B. striata's fibrous root, bud, aerial part and tuber were extracted, resulting in yields of 0.06%, 0.64%, 3.38% and 4.47%, respectively. A total of 78 compounds were identified from their chemical profiles using gas chromatography-mass spectrometry (GC-MS), including 45 components with the main compounds of linoleic acid (content accounting for 31.23%), n-hexadecanoic acid (13.53%), and octadecanoic acid (9.5%) from the tuber, 34 components with the main compounds of eicosane, 2-methyl- (28.42%), linoelaidic acid (10.43%), linoleic acid (4.53%), and n-hexadecanoic acid (6.91%) from the fibrous root, 38 components with the main compounds of pentadeca-6,9-dien-1-ol (9.29%), n-hexadecanoic acid (11%), eicosane,2-methyl- (23.43%), and linoleic acid (23.53%) from the bud, and 27 components with the main compounds of linoelaidic acid (5.97%), n-hexadecanoic acid (15.99%), and linolenic acid ethyl ester (18.9%) from the aerial part. Additionally, the growth inhibition activity against colon cancer HCT116 cells was evaluated using sulforhodamine B (SRB) assay and the thiazolyl blue tetrazolium bromide (MTT) assay, and the accumulation of reactive oxygen species (ROS) was determined using dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining and fluorescence intensity analysis. The volatile extracts exhibited significant growth inhibitory efficacy against HCT116 cells, with half-maximal inhibitory concentration (IC50) values of 3.65, 2.32, 2.42 and 3.89 mg/mL in the SRB assay, and 3.55, 2.58, 3.12 and 4.80 mg/mL in the MTT assay for the root, bud, aerial part, and tuber, respectively. Notably, treatment with the aerial part extract caused morphological changes in the cells and significantly raised the intracellular ROS level. In summary, the chemical profiles of the volatile components of B. striata were revealed for the first time, demonstrating a certain tissue specificity. Additionally, it demonstrated for the first time that these volatile extracts possess potent anti-colon cancer activity, highlighting the importance of these volatile components in B. striata's medicinal properties.

2.
Front Immunol ; 15: 1361277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711522

RESUMO

In the late stages of the COVID-19 pandemic, there's an increasing trend in opportunistic infections, including bacterial and fungal infections. This study discusses the treatment process of two cases of cryptococcal meningitis during the COVID-19 pandemic. It highlights the importance of laboratory testing for these co-infections and stresses the need for vigilance, early diagnosis, and proactive treatment to improve patient outcomes in the post-pandemic era.


Assuntos
Antifúngicos , COVID-19 , Meningite Criptocócica , SARS-CoV-2 , Humanos , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/diagnóstico , COVID-19/complicações , COVID-19/epidemiologia , Masculino , Antifúngicos/uso terapêutico , Pessoa de Meia-Idade , Feminino , Coinfecção , Adulto , Cryptococcus neoformans/isolamento & purificação , Resultado do Tratamento
3.
BMC Plant Biol ; 24(1): 383, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724888

RESUMO

Taxus chinensis (Taxus cuspidata Sieb. et Zucc.) is a traditional medicinal plant known for its anticancer substance paclitaxel, and its growth age is also an important factor affecting its medicinal value. However, how age affects the physiological and metabolic characteristics and active substances of T. chinensis is still unclear. In this study, carbon and nitrogen accumulation, contents of active substances and changes in primary metabolites in barks and annual leaves of T. chinensis of different diameter classes were investigated by using diameter classes instead of age. The results showed that leaves and barks of small diameter class (D1) had higher content of non-structural carbohydrates and C, which were effective in enhancing defense capacity, while N content was higher in medium (D2) and large diameter classes (D3). Active substances such as paclitaxel, baccatin III and cephalomannine also accumulated significantly in barks of large diameter classes. Moreover, 21 and 25 differential metabolites were identified in leaves and barks of different diameter classes, respectively. The differential metabolites were enhanced the TCA cycle and amino acid biosynthesis, accumulate metabolites such as organic acids, and promote the synthesis and accumulation of active substances such as paclitaxel in the medium and large diameter classes. These results revealed the carbon and nitrogen allocation mechanism of different diameter classes of T. chinensis, and its relationship with medicinal components, providing a guidance for the harvesting and utilization of wild T. chinensis.


Assuntos
Carbono , Metabolômica , Nitrogênio , Folhas de Planta , Taxus , Taxus/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Folhas de Planta/metabolismo , Casca de Planta/metabolismo , Casca de Planta/química
4.
BMC Oral Health ; 24(1): 492, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664749

RESUMO

OBJECTIVES: this study aims to compare the clinical outcomes of traditional and digital crown extension guides in the aesthetic restoration of anterior teeth. Additionally, the study will analyze the differences in the results of various digital crown extension guides in anterior aesthetic restorations. METHODS: Sixty-two patients who required aesthetic restoration of their anterior teeth were selected for this study. The patients had a total of 230 anterior teeth and were randomly divided into three groups: a control group of 22 cases who received diagnostic wax-up with pressure film, an experimental group 1 of 20 cases who received 3D printed digital models with pressure film, and an experimental group 2 of 20 patients who received digital dual-positioning guides. The control group had a total of 84 anterior teeth, experimental group 1 had 72 anterior teeth, and experimental group 2 had 74 anterior teeth. The study compared three methods for fabricating crown extension guides: the control group used the diagnostic wax-up plus compression film method, while experimental group 1 used compression film on 3D printed models and experimental group 2 used 3D printed digital dual-positioning crown extension guides. After the crown lengthening surgery, the control group patients wore DMG resin temporary crown material for gingival contouring, while the experimental group patients wore 3D printed resin temporary crowns for the same purpose. The patients were followed up in the outpatient clinic after wearing temporary crowns for 1 month, 3 months, and 6 months, respectively. The clinical results were evaluated in terms of marginal fit, red aesthetic index, and white aesthetic index. RESULTS: Based on the statistical analysis, the experimental group required significantly fewer follow-up visits and less time for guide design and fabrication compared to the control group. Additionally, the surgical time for the experimental group was significantly shorter than that of the control group. During the postoperative period between the 1st and 3rd month, the PES index scores for the marginal gingival level, proximal, and distal mesiodistal gingival papillae of the experimental group showed a trend of superiority over those of the control group. By the 6th month, the marginal gingival level exhibited a significant difference between the experimental and control groups. The experimental group demonstrated superior results to the control group in terms of shape, contour, and volume of the teeth, color, surface texture, and transparency of the restorations, and features during the 1st and 3rd postoperative months. In the 6th month, the comparative results indicated that the experimental group continued to exhibit superior outcomes to the control group in terms of the shape, color, surface texture, and transparency of the restorations, as well as the characteristics of the teeth. Additionally, the experimental group demonstrated significantly fewer gingival alterations than the control group at 1 month, 3 months, and 6 months post-procedure, with this difference being statistically significant. Furthermore, the combination of 3D printing technology and restorative techniques was utilized, resulting in consistent patient satisfaction. CONCLUSION: Digitalisation plays an important role in anterior aesthetic restorations. The use of digital technology to manage the entire process of anterior cosmetic restorations can improve restorative results, reduce the number of follow-up appointments, shorten consultation time, and achieve better patient satisfaction.


Assuntos
Coroas , Estética Dentária , Sorriso , Humanos , Feminino , Masculino , Adulto , Incisivo , Impressão Tridimensional , Tecnologia Digital , Planejamento de Prótese Dentária , Aumento da Coroa Clínica/métodos , Adulto Jovem , Pessoa de Meia-Idade , Desenho Assistido por Computador
5.
J Inflamm Res ; 17: 2547-2561, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686360

RESUMO

Introduction: Neutrophil predominant airway inflammation is associated with severe and steroid-resistant asthma clusters. Previously, we reported efficacy of ASHMI, a three-herb TCM asthma formula in a steroid-resistant neutrophil-dominant murine asthma model and further identified Ganoderic Acid C1 (GAC1) as a key ASHMI active compound in vitro. The objective of this study is to investigate GAC1 effect on neutrophil-dominant, steroid-resistant asthma in a murine model. Methods: In this study, Balb/c mice were systematically sensitized with ragweed (RW) and alum and intranasally challenged with ragweed. Unsensitized/PBS challenged mice served as normal controls. Post sensitization, mice were given 4 weeks of oral treatment with GAC1 or acute dexamethasone (Dex) treatment at 48 hours prior to challenge. Pulmonary cytokines were measured by ELISA, and lung sections were processed for histology by H&E staining. Furthermore, GAC1 effect on MUC5AC expression and on reactive oxygen species (ROS) production in human lung epithelial cell line (NCI-H292) was determined by qRT-PCR and ROS assay kit, respectively. Computational analysis was applied to select potential targets of GAC1 in steroid-resistant neutrophil-dominant asthma. Molecular docking was performed to predict binding modes between GAC1 and Dex with TNF-α. Results: The result of the study showed that chronic GAC1 treatment, significantly reduced pulmonary inflammation (P < 0.01-0.001 vs Sham) and airway neutrophilia (P < 0.01 vs Sham), inhibited TNF-α, IL-4 and IL-5 levels (P < 0.05-0.001 vs Sham). Acute Dex treatment reduced eosinophilic inflammation and IL-4, IL-5 levels, but had no effect on neutrophilia and TNF-α production. GAC1 treated H292 cells showed decreased MUC5AC gene expression and production of ROS (P < 0.001 vs stimulated/untreated cells). Molecular docking results showed binding energy of complex GAC1-TNF was -10.8 kcal/mol. Discussion: GAC1 may be a promising anti-asthma botanical drug for treatment of steroid-resistant asthma.

6.
Photodiagnosis Photodyn Ther ; : 104093, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641030

RESUMO

BACKGROUND: Dermatofibrosarcoma Protuberans (DFSP) is a rare, low-grade malignant tumor of the dermis with a high recurrence rate post-surgery. Current treatments, including surgery, radiotherapy, and targeted therapy, have limitations. Photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) is a promising non-invasive approach, but its efficacy in DFSP treatment remains underexplored. METHODS: This study aimed to evaluate the anti-tumor efficacy of 5-ALA PDT using an in vitro model derived from a recurrent DFSP patient. The cells were treated with varying concentrations of 5-ALA and exposed to red light, followed by assessments of cell viability, proliferation, apoptosis, migration, invasion, angiogenesis, and expression of DFSP-related genes and proteins. RESULTS: 5-ALA PDT significantly reduced DFSP cell viability in a dose-dependent manner and induced apoptosis. It also effectively inhibited cell proliferation, migration, and invasion, as well as suppressed angiogenic activity in conditioned media. Furthermore, 5-ALA PDT downregulated the expression of COL1A1 and PDGFRB, key genes in DFSP pathogenesis. CONCLUSIONS: The findings provide the first evidence of 5-ALA PDT's in vitro anti-tumor efficacy against DFSP, suggesting its potential as a novel therapeutic approach for DFSP. Further studies are warranted to explore the clinical utility of 5-ALA PDT in preventing DFSP recurrence.

7.
Nat Commun ; 15(1): 3113, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600097

RESUMO

Autophagy is a conserved, catabolic process essential for maintaining cellular homeostasis. Malfunctional autophagy contributes to neurodevelopmental and neurodegenerative diseases. However, the exact role and targets of autophagy in human neurons remain elusive. Here we report a systematic investigation of neuronal autophagy targets through integrated proteomics. Deep proteomic profiling of multiple autophagy-deficient lines of human induced neurons, mouse brains, and brain LC3-interactome reveals roles of neuronal autophagy in targeting proteins of multiple cellular organelles/pathways, including endoplasmic reticulum (ER), mitochondria, endosome, Golgi apparatus, synaptic vesicle (SV) for degradation. By combining phosphoproteomics and functional analysis in human and mouse neurons, we uncovered a function of neuronal autophagy in controlling cAMP-PKA and c-FOS-mediated neuronal activity through selective degradation of the protein kinase A - cAMP-binding regulatory (R)-subunit I (PKA-RI) complex. Lack of AKAP11 causes accumulation of the PKA-RI complex in the soma and neurites, demonstrating a constant clearance of PKA-RI complex through AKAP11-mediated degradation in neurons. Our study thus reveals the landscape of autophagy degradation in human neurons and identifies a physiological function of autophagy in controlling homeostasis of PKA-RI complex and specific PKA activity in neurons.


Assuntos
Neurônios , Proteômica , Camundongos , Animais , Humanos , Neurônios/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Autofagia/fisiologia , Homeostase
8.
Res Sq ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38645031

RESUMO

The intricate protein-chaperone network is vital for cellular function. Recent discoveries have unveiled the existence of specialized chaperone complexes called epichaperomes, protein assemblies orchestrating the reconfiguration of protein-protein interaction networks, enhancing cellular adaptability and proliferation. This study delves into the structural and regulatory aspects of epichaperomes, with a particular emphasis on the significance of post-translational modifications in shaping their formation and function. A central finding of this investigation is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 situated within an intrinsically disordered region, as critical determinants in epichaperome assembly. Our data demonstrate that the phosphorylation of these serine residues enhances HSP90's interaction with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Furthermore, this study establishes a direct link between epichaperome function and cellular physiology, especially in contexts where robust proliferation and adaptive behavior are essential, such as cancer and stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone complexes in diseases characterized by epichaperome dysregulation, bridging the gap between fundamental research and precision medicine.

9.
Mol Cell Biol ; 44(3): 87-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38520226

RESUMO

Although LncRNA AA465934 expression is reduced in high glucose (HG)-treated podocytes, its role in HG-mediated podocyte injury and diabetic nephropathy (DN) remains unknown. Herein, we investigated the role of AA465934 in HG-mediated podocyte injury and DN using a spontaneous type II diabetic nephropathy (T2DN) model. The model was created by injecting AA465934 overexpressed adeno-associated virus (AAV) or control into mice. The levels of renal function, proteinuria, renal structural lesions, and podocyte apoptosis were then examined. Furthermore, AA465934 and autophagy levels, as well as tristetraprolin (TTP) and high mobility group box 1 (HMGB1) expression changes were detected. We also observed podocyte injury and the binding ability of TTP to E3 ligase proviral insertion in murine lymphomas 2 (PIM2), AA465934, or HMGB1. According to the results, AA465934 improved DN progression and podocyte damage in T2DN mice. In addition, AA465934 bound to TTP and inhibited its degradation by blocking TTP-PIM2 binding. Notably, TTP knock-down blocked the ameliorating effects of AA465934 and TTP bound HMGB1 mRNA, reducing its expression. Overexpression of HMGB1 inhibited the ability of AA465934 and TTP to improve podocyte injury. Furthermore, AA465934 bound TTP, inhibiting TTP-PIM2 binding, thereby suppressing TTP degradation, downregulating HMGB1, and reversing autophagy downregulation, ultimately alleviating HG-mediated podocyte injury and DN. Based on these findings, we deduced that the AA465934/TTP/HMGB1/autophagy axis could be a therapeutic avenue for managing podocyte injury and DN.


Assuntos
Nefropatias Diabéticas , Proteína HMGB1 , Podócitos , RNA Longo não Codificante , Animais , Camundongos , Apoptose , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Regulação para Baixo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Podócitos/metabolismo , Podócitos/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
10.
Cancer Lett ; 589: 216832, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537774

RESUMO

Yes-associated protein (YAP) is an essential driver of hepatocellular carcinoma (HCC) progression and the ubiquitin-proteasome system controls its abundance. However, the role of ubiquitin-specific protease 40 (USP40) in YAP stability remains unclear. Here, USP40 was first identified as a novel regulator of YAP abundance and its target genes in HCC cells. USP40 interacted with YAP to remove the lysine 48 (K48)-linked polyubiquitination of YAP at K252 and K315 sites, thereby maintaining YAP stability. USP40 facilitated the proliferation, colony formation, migration and spheroid formation of HCC cells in vitro and promoted HCC growth in vivo in a YAP-dependent manner. In turn, YAP transcriptionally activated USP40 expression in HCC cells. RNA sequencing analysis showed that about 37% of USP40-regulated genes overlapped with YAP-regulated genes. Interestingly, stiffness-induced USP40 upregulation was abolished by YAP knockdown, and USP40 knockdown attenuated stiffness-induced YAP accumulation in HCC cells. Clinical data demonstrated that USP40 was positively associated with YAP expression in HCC tissues and its high expression indicated a poor prognosis. In conclusion, the USP40/YAP positive feedback loop contributes to HCC progression, suggesting that USP40 may be a promising drug target for anti-HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Retroalimentação , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
11.
Langmuir ; 40(14): 7733-7746, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38538620

RESUMO

The mechanism of ethanol-induced fibrillation of ß-lactoglobulin (ß-lg) in the acidic aqueous solution upon heating was investigated using various techniques, mainly thioflavin T fluorescence, atomic force microscopy, nonreducing electrophoresis, mass spectrometry, Fourier transform infrared spectroscopy, and circular dichroism spectroscopy. The results showed that fibrillation occurred with a heating time increase, but high ethanol content slowed down the process. At a low ethanol volume fraction, peptides existed after heating for 2 h, with long and straight fibrils formed after 4-6 h, while at a high ethanol volume fraction, the proteins aggregated with very few peptides appeared at the early stage of heating, and short and curved fibrils formed after heating for 8 h. Ethanol weakened the hydrophobic interactions between proteins in the aqueous solution; therefore the latter could not completely balance the electrostatic repulsion, and thus suppressing the fibrillation process. It is believed that the fibrillation of ß-lg in the acidic solution upon heating is mainly dominated by the polypeptide model; however, ethanol inhibited the hydrolysis of proteins, and the self-assembly mechanism changed to the monomer model.


Assuntos
Lactoglobulinas , Água , Solventes/química , Lactoglobulinas/química , Peptídeos , Etanol , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia de Força Atômica , Dicroísmo Circular
12.
Funct Integr Genomics ; 24(2): 35, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368303

RESUMO

Protocadherin 8 (PCDH8), a calcium-dependent transmembrane protein in the protocadherin family, regulates cell adhesion and signal transduction. While some studies have provided indirect evidence that PCDH8 has cancer-promoting properties, this association is controversial. In particular, its involvement in thyroid cancer (THCA) remains unclear. We aimed to elucidate the role of PCDH8 in THCA using bioinformatic analysis. Subsequently, the results were experimentally validated. The analysis conducted using the R programming language and online web tools explored PCDH8 expression levels, prognostic, and clinical implications, and its relationship with the tumor immune microenvironment in THCA. Furthermore, we examined the association between PCDH8 and co-expressed genes, highlighting their involvement in several biological processes relevant to THCA. The potential of PCDH8 as a therapeutic target for this pathology was also explored. Immunohistochemical (IHC) staining was performed on samples from 98 patients with THCA, and experimental validation was carried out. PCDH8 was significantly elevated in cancer tissues and associated with poor prognosis, several clinical factors, and immune cell and checkpoint abundance. Cox regression and survival analyses, together with Receiver Operating Curves (ROC) indicated that PCDH8 was an independent prognostic factor for THCA. Furthermore, PCDH8 impacts cell viability and proliferation, promoting tumorigenesis. Also, it influences tumor cell sensitivity to various drugs. Thus, PCDH8 might be a potential therapeutic target for THCA. IHC, cell culture, MTT, and colony formation experiments further confirmed our findings. This analysis provided insights into the potential carcinogenic role of PCDH8 in THCA, as it impacts cell viability and proliferation. Thus, PCDH8 might play an important role in its prognosis, immune infiltration, and diagnosis.


Assuntos
Protocaderinas , Neoplasias da Glândula Tireoide , Humanos , Prognóstico , Neoplasias da Glândula Tireoide/genética , Proliferação de Células , Carcinogênese , Biomarcadores , Microambiente Tumoral
13.
Front Immunol ; 15: 1299484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380329

RESUMO

Introduction: Peanut allergy is an immunoglobulin E (IgE) mediated food allergy. Rubia cordifolia L. (R. cordifolia), a Chinese herbal medicine, protects against peanut-induced anaphylaxis by suppressing IgE production in vivo. This study aims to identify IgE-inhibitory compounds from the water extract of R. cordifolia and investigate the underlying mechanisms using in vitro and in vivo models. Methods: Compounds were isolated from R. cordifolia water extract and their bioactivity on IgE production was assessed using a human myeloma U266 cell line. The purified active compound, xanthopurpurin (XPP), was identified by LC-MS and NMR. Peanut-allergic C3H/HeJ mice were orally administered with or without XPP at 200µg or 400µg per mouse per day for 4 weeks. Serum peanut-specific IgE levels, symptom scores, body temperatures, and plasma histamine levels were measured at challenge. Cytokines in splenocyte cultures were determined by ELISA, and IgE + B cells were analyzed by flow cytometry. Acute and sub-chronic toxicity were evaluated. IL-4 promoter DNA methylation, RNA-Seq, and qPCR analysis were performed to determine the regulatory mechanisms of XPP. Results: XPP significantly and dose-dependently suppressed the IgE production in U266 cells. XPP significantly reduced peanut-specific IgE (>80%, p <0.01), and plasma histamine levels and protected the mice against peanut-allergic reactions in both early and late treatment experiments (p < 0.05, n=9). XPP showed a strong protective effect even 5 weeks after discontinuing the treatment. XPP significantly reduced the IL-4 level without affecting IgG or IgA and IFN-γ production. Flow cytometry data showed that XPP reduced peripheral and bone marrow IgE + B cells compared to the untreated group. XPP increased IL-4 promoter methylation. RNA-Seq and RT-PCR experiments revealed that XPP regulated the gene expression of CCND1, DUSP4, SDC1, ETS1, PTPRC, and IL6R, which are related to plasma cell IgE production. All safety testing results were in the normal range. Conclusions: XPP successfully protected peanut-allergic mice against peanut anaphylaxis by suppressing IgE production. XPP suppresses murine IgE-producing B cell numbers and inhibits IgE production and associated genes in human plasma cells. XPP may be a potential therapy for IgE-mediated food allergy.


Assuntos
Anafilaxia , Hipersensibilidade Alimentar , Hipersensibilidade a Amendoim , Camundongos , Humanos , Animais , Hipersensibilidade a Amendoim/terapia , Anafilaxia/prevenção & controle , Histamina , Interleucina-4 , Medula Óssea , Camundongos Endogâmicos C3H , Imunoglobulina E , Água
14.
Cytokine ; 176: 156510, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38308951

RESUMO

More and more evidence shows that long non-coding RNA (lncRNA) plays an important role in the biological behavior of many kinds of malignant tumors, but the specific function of lncRNA Linc00657 in cervical cancer is still unknown. The purpose of this study is to explore the effect of Linc00657 on the malignant progression of cervical cancer and its potential mechanism. In two kinds of cervical cancer cell lines and normal cervical epithelial cells, qRT-PCR showed increased expression of Linc00657 in cervical cancer cells. Through MTT, clone formation test, flow cytometry, wound healing test and Transwell test, it has been found that overexpression of Linc00657 could promote the proliferation,migration and invasion of cervical cancer cells,and inhibit apoptosis. Through the StarBase database, it was found that there may be a mutual regulatory relationship between Linc00657 and Skp2, and Skp2 may be the downstream target of Linc00657. QRT-PCR detection confirmed that the expression of Skp2 was increased in cervical cancer cells with overexpression of Linc00657. TIMER2 database found that Skp2 was associated with lipid metabolic enzymes and immune cell infiltration. It was found that Linc00657 knockdown inhibited tumor growth and metastasis and inhibited the expression of Skp2 in vivo. In short, our research shows that Linc00657 has carcinogenic properties in cervical cancer, and LINC00657 promotes the occurrence of cervical cancer by up-regulating the expression of Skp2. We predict that Linc00657/mir30s/Skp2 axis plays a role in the malignant progression of cervical cancer. In addition, Skp2 may participate in cancer immune response and promote lymph node metastasis of cervical cancer through lipid reprogramming. These findings also provide promising targets for the diagnosis and treatment of cervical cancer.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias do Colo do Útero , Feminino , Humanos , Linhagem Celular Tumoral , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/genética , Carcinogênese/genética , Lipídeos , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Movimento Celular/genética , MicroRNAs/metabolismo , Microambiente Tumoral/genética
15.
Int Wound J ; 21(3): e14804, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38385817

RESUMO

The process of wound healing in the dental pulp is characterized by intricate interplay of signalling cascades, cellular responses, and extracellular matrix (ECM). The objective of this research was to examine the intricate interaction between signalling cascades, cellular responses, and extracellular matrix (ECM) dynamics that comprise the wound healing process of dental pulp. We conducted a controlled laboratory analysis of transcriptomic landscape of dental pulp tissues, including both healthy and inflamed samples, utilizing single-cell RNA sequencing. We identified significant change in cellular composition under carious conditions by analysing samples from 50 patients. Specifically, the proportion of immune cells increased from 25% to 40%, while the proportion of fibroblasts decreased from 20% to 10%. A transition towards ECM remodelling and fibrosis was indicated by this change. In addition, substantial increase inexpression of critical genes including COL1A1, FN1, IL-1B, IL-6 and TNC was detected, indicating that the extracellular matrix (ECM) was actively remodelled and that a robust inflammatory response was present, both of which are vital for tissue repair. Increased cell-cell interactions among B cells, plasma cells, macrophages and MSCs, and fibroblasts were highlighted in our study, demonstrating the intricate cellular dynamics that occur in response to dental pulp injury. The knowledge gained regarding the cellular and molecular processes underlying pulp wound healing contributed to the advancement of knowledge regarding pulp pathology and regeneration. Moreover, it established a foundation for creation of targeted therapeutic interventions that seek to maximize pulp repair and regeneration. This study represented noteworthy achievement in the field of dental surgery, establishing a solid groundwork for subsequent investigations into regenerative medicine, wound healing, and dental tissue restoration.


Assuntos
Polpa Dentária , Perfilação da Expressão Gênica , Humanos , Nível de Saúde , Fibroblastos , Análise de Sequência de RNA
16.
Mol Cell Proteomics ; 23(3): 100738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364992

RESUMO

Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics. This quantitative biotinylproteomics was separately performed on MKK1-ID and MKK2-ID transgenic plants, respectively, using the genetically engineered TurboID biotin ligase expression transgenics as a universal control. This unique PTM proteomics successfully identified 11 and 71 MKK1 and MKK2 putative interactors, respectively. Biotin occupancy ratio (BOR) was found to be an alternative parameter to measure the extent of proximity and specificity between the proximal target proteins and the bait fusion protein. Bioinformatics analysis of these biotinylprotein data also found that TurboID biotin ligase favorably labels the loop region of target proteins. A WInd-Related Kinase 1 (WIRK1), previously known as rapidly accelerated fibrosarcoma (Raf)-like kinase 36 (RAF36), was found to be a putative common interactor for both MKK1 and MKK2 and preferentially interacts with MKK2. Further molecular biology studies of the Arabidopsis RAF36 kinase found that it plays a role in wind regulation of the touch-responsive TCH3 and CML38 gene expression and the phosphorylation of a touch-regulated PATL3 phosphoprotein. Measurement of leaf morphology and shoot gravitropic response of wirk1 (raf36) mutant revealed that the WIRK1 gene is involved in both wind-triggered rosette thigmomorphogenesis and gravitropism of Arabidopsis stems, suggesting that the WIRK1 (RAF36) protein probably functioning upstream of both MKK1 and MKK2 and that it may serve as the crosstalk point among multiple mechano-signal transduction pathways mediating both wind mechano-response and gravitropism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Gravitropismo , Biotina/metabolismo , Vento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Ligases/metabolismo , Calmodulina/metabolismo
17.
Adv Healthc Mater ; 13(8): e2303074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38197479

RESUMO

Ratiometric imaging of tumor-related mRNA is significant, yet spatiotemporally resolved regulation on the ratiometric signals to avoid non-specific activation in the living cells remains challenging. Herein, orthogonally sequential activation of concatenated DNAzyme circuits is, first, developed for Spatio Temporally regulated Amplified and Ratiometric (STAR) imaging of TK1 mRNA inside living cells with enhanced reliability and accuracy. By virtue of the synthesized CuO/MnO2 nanosheets, orthogonally regulated self-powered DNAzyme circuits are operated precisely in living cells, sequentially activating two-layered DNAzyme cleavage reactions to achieve the two ratiometric signal readouts successively for reliable monitoring of low-abundance mRNA in living cells. It is found that the ratiometric signals can only be derived from mRNA over-expressed tumor cells, also irrespective of probes' delivery concentration. The presented approach could provide new insight into orthogonally regulated ratiometric systems for reliable imaging of specific biomarkers in living cells, benefiting disease precision diagnostics.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Humanos , RNA Mensageiro , Compostos de Manganês , Reprodutibilidade dos Testes , Óxidos , Técnicas Biossensoriais/métodos
18.
J Ethnopharmacol ; 323: 117698, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38171464

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polycystic ovary syndrome (PCOS) is a prevalent female endocrine condition that significantly affects women of all age groups and is characterized by metabolic dysfunction. The efficacy of existing pharmaceutical interventions for the treatment of PCOS remains inadequate. With a rich history and cultural significance spanning thousands of years, Traditional Chinese Medicine (TCM) is extensively employed for treating a variety of ailments and can serve as a supplementary therapy for managing PCOS. Multiple clinical observations and laboratory tests have unequivocally demonstrated the substantial effectiveness and safety of TCM formulae in treating PCOS, and further investigations are currently in progress. AIM OF THE STUDY: To summarize the TCM formulae commonly employed in the clinical management of PCOS, examine their therapeutic benefits, investigate their mechanism of action, active constituents, and establish the correlation between efficacy, mechanism of action, and active constituents. MATERIALS AND METHODS: We conducted a comprehensive search on PubMed, Web of Science, and China national knowledge infrastructure (CNKI) using the following keywords: "Polycystic Ovary Syndrome", "Traditional Chinese Medicine Decoctions", "Traditional Chinese Medicine formulae", "Traditional Chinese Medicine", "Clinical Observation", "Mechanism", "Treatment", "Pharmacology", and various combinations of these terms. From January 1, 2006 until October 7, 2023, (inclusive). RESULTS: This paper summarized the clinical effectiveness, mechanism of action, and active components of 8 TCM formulae for the treatment of PCOS. Our research indicates that TCM formulae can potentially treat PCOS by enhancing the levels of hyperandrogenism and other endocrine hormones, decreasing insulin resistance and hyperinsulinemia, and controlling chronic low-grade inflammation, among other modes of action. In addition, we found an association between epigenetics and TCM formulae for the treatment of PCOS. CONCLUSION: TCM formulae have specific advantages in the treatment of Polycystic Ovary Syndrome (PCOS). They achieve therapeutic benefits by targeting several pathways and connections, attracting considerable interest and playing a vital role in the treatment of PCOS. TCM formulae can be used as an adjunctive therapy for the treatment of PCOS.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Medicina Tradicional Chinesa , Inflamação , China
19.
Oncogenesis ; 13(1): 6, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272870

RESUMO

Hypoxia-inducible factor 1 (HIF1) is critically important for driving angiogenesis and tumorigenesis. Linear ubiquitin chain assembly complex (LUBAC), the only known ubiquitin ligase capable of catalyzing protein linear ubiquitination to date, is implicated in cell signaling and associated with cancers. However, the role and mechanism of LUBAC in regulating the expression and function of HIF1α, the labile subunit of HIF1, remain to be elucidated. Herein we showed that LUBAC increases HIF1α protein expression in cultured cells and tissues of human lung cancer and enhances HIF1α DNA-binding and transcriptional activities, which are dependent upon LUBAC enzymatic activity. Mechanistically, LUBAC increases HIF1α stability through antagonizing HIF1α decay by the chaperone-mediated autophagy (CMA)-lysosome pathway, thereby potentiating HIF1α activity. We further demonstrated that HIF1α selectively interacts with HOIP (the catalytic subunit of LUBAC) primarily in the cytoplasm. LUBAC catalyzes linear ubiquitination of HIF1α at lysine 362. Linear ubiquitination shields HIF1α from interacting with heat-shock cognate protein of 70 kDa and lysosome-associated membrane protein type 2 A, two components of CMA. Consequently, linear ubiquitination confers protection against CMA-mediated destruction of HIF1α, increasing HIF1α stability and activity. We found that prolyl hydroxylation is not a perquisite for LUBAC's effects on HIF1α. Functionally, LUBAC facilitates proliferation, clonogenic formation, invasion and migration of lung cancer cells. LUBAC also boosts angiogenesis and exacerbates lung cancer growth in mice, which are greatly compromised by inhibition of HIF1α. This work provides novel mechanistic insights into the role of LUBAC in regulating HIF1α homeostasis, tumor angiogenesis and tumorigenesis of lung cancer, making LUBAC an attractive therapeutic target for cancers.

20.
Oncoimmunology ; 13(1): 2304963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38235317

RESUMO

Approximately two-thirds of hepatocellular carcinoma (HCC) is considered a "cold tumor" characterized by few tumor-infiltrating T cells and an abundance of immunosuppressive cells. Cilengitide, an integrin αvß3 inhibitor, has failed in clinical trials as a potential anticancer drug. This failure implies that integrin αvß3 may play an important role in immune cells. However, the expression and potential role of integrin αvß3 in T cells of HCC patients remain unknown. Here, we established two HCC models and found that cilengitide had a dual effect on the HCC microenvironment by exerting both antitumor effect and immunosuppressive effect on T cells. This may partly explain the failure of cilengitide in clinical trials. In clinical specimens, HCC-infiltrating T cells exhibited deficient expression and activation of integrin ß3, which was associated with poor T-cell infiltration into tumors. Additionally, integrin ß3 functioned as a positive immunomodulatory molecule to facilitate T-cell infiltration and T helper 1-type immune response in vitro. Furthermore, T cells and platelet-derived microparticles (PMPs) co-culture assay revealed that PMPs adoptively transferred integrin ß3 to T cells and positively regulated T cell immune response. This process was mediated by clathrin-dependent endocytosis and macropinocytosis. Our data demonstrate that integrin ß3 deficiency on HCC-infiltrating T cells may be involved in shaping the immunosuppressive tumor microenvironment. PMPs transfer integrin ß3 to T cells and positively regulate T cell immune response, which may provide a new insight into immune therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Micropartículas Derivadas de Células , Neoplasias Hepáticas , Humanos , Integrina beta3/metabolismo , Integrina beta3/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Integrina alfaVbeta3/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , Linfócitos T , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA