Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 61(7): 3218-3223, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29528634

RESUMO

Glucagon-like peptide 2 (GLP-2) is a hormone that has been shown to stimulate intestinal growth and attenuate intestinal inflammation. Despite being efficacious in a variety of animal models of disease, its therapeutic potential is hampered by the short half-life in vivo. We now describe a highly potent, stapled long-acting GLP-2 analog, peptide 10, that has a more than 10-fold longer half-life than teduglutide and improved intestinotrophic and anti-inflammatory effects in mouse models of DSS-induced colitis.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Colite/tratamento farmacológico , Fármacos Gastrointestinais/farmacologia , Peptídeo 2 Semelhante ao Glucagon/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacocinética , Colite/induzido quimicamente , Reagentes de Ligações Cruzadas , AMP Cíclico/biossíntese , Sulfato de Dextrana , Desenho de Fármacos , Feminino , Fármacos Gastrointestinais/síntese química , Fármacos Gastrointestinais/farmacocinética , Peptídeo 2 Semelhante ao Glucagon/síntese química , Peptídeo 2 Semelhante ao Glucagon/farmacocinética , Meia-Vida , Intestinos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Conformação Molecular , Peptídeos/farmacocinética , Peptídeos/farmacologia
2.
Proc Natl Acad Sci U S A ; 113(15): 4140-5, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035989

RESUMO

Antidiabetic treatments aiming to reduce body weight are currently gaining increased interest. Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist administered twice daily via s.c. injection, improves glycemic control, often with associated weight reduction. To further improve the therapeutic efficacy of exendin-4, we have developed a novel peptide engineering strategy that incorporates a serum protein binding motif onto a covalent side-chain staple and applied to the peptide to enhance its helicity and, as a consequence, its potency and serum half-life. We demonstrated that one of the resulting peptides, E6, has significantly improved half-life and glucose tolerance in an oral glucose tolerance test in rodents. Chronic treatment of E6 significantly decreased body weight and fasting blood glucose, improved lipid metabolism, and also reduced hepatic steatosis in diet-induced obese mice. Moreover, the high potency of E6 allowed us to administer this peptide using a dissolvable microstructure-based transdermal delivery system. Pharmacokinetic and pharmacodynamic studies in guinea pigs showed that a single 5-min application of a microstructure system containing E6 significantly improved glucose tolerance for 96 h. This delivery strategy may offer an effective and patient-friendly alternative to currently marketed GLP-1 injectables and can likely be extended to other peptide hormones.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/química , Engenharia de Proteínas , Administração Cutânea , Sequência de Aminoácidos , Peso Corporal , Dicroísmo Circular , AMP Cíclico/biossíntese , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/farmacocinética , Teste de Tolerância a Glucose , Células HEK293 , Humanos
3.
Proc Natl Acad Sci U S A ; 113(13): 3615-20, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976568

RESUMO

Thiopeptides are a subclass of ribosomally synthesized and posttranslationally modified peptides (RiPPs) with complex molecular architectures and an array of biological activities, including potent antimicrobial activity. Here we report the generation of thiopeptides containing noncanonical amino acids (ncAAs) by introducing orthogonal amber suppressor aminoacyl-tRNA synthetase/tRNA pairs into a thiocillin producer strain of Bacillus cereus .We demonstrate that thiopeptide variants containing ncAAs with bioorthogonal chemical reactivity can be further postbiosynthetically modified with biophysical probes, including fluorophores and photo-cross-linkers. This work allows the site-specific incorporation of ncAAs into thiopeptides to increase their structural diversity and probe their biological activity; similar approaches can likely be applied to other classes of RiPPs.


Assuntos
Aminoácidos/química , Peptídeos/química , Substituição de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Bacillus cereus/genética , Bacillus cereus/metabolismo , Estrutura Molecular , Mutagênese Sítio-Dirigida , Peptídeos/genética , Peptídeos/metabolismo , Engenharia de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem
4.
Chemistry ; 18(27): 8403-13, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22674877

RESUMO

Trypanosoma brucei is a parasite that causes African sleeping sickness in humans and nagana in livestock and is transmitted by the tsetse fly. There is an urgent need for the development of new drugs against African trypanosomiasis due to the lack of vaccines and effective drugs. Orlistat (also called tetrahydrolipstatin or THL) is an FDA-approved antiobesity drug targeting primarily the pancreatic and gastric lipases within the gastrointestinal tract. It shows potential activities against tumors, mycobacteria, and parasites. Herein, we report the synthesis and evaluation of an expanded set of orlistat-like compounds, some of which showed highly potent trypanocidal activities in both the bloodstream form (BSF) and the procyclic form (PCF) of T. brucei. Subsequent in situ parasite-based proteome profiling was carried out to elucidate potential cellular targets of the drug in both forms. Some newly identified targets were further validated by the labeling of recombinantly expressed enzymes in Escherichia coli lysates. Bioimaging experiments with a selected compound were carried out to study the cellular uptake of the drug in T. brucei. Results indicated that orlistat is much more efficiently taken up by the BSF than the PCF of T. brucei and has clear effects on the morphology of mitochondria, glycosomes, and the endoplasmic reticulum in both BSF and PCF cells. These results support specific effects of orlistat on these organelles and correlate well with our in situ proteome profiling. Given the economic challenges of de novo drug development for neglected diseases, we hope that our findings will stimulate further research towards the conversion of orlistat-like compounds into new trypanocidal drugs.


Assuntos
Lactonas/química , Lactonas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Animais , Descoberta de Drogas , Humanos , Lactonas/síntese química , Estrutura Molecular , Orlistate , Proteoma , Tripanossomicidas/síntese química , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Estados Unidos , United States Food and Drug Administration
5.
Chemistry ; 18(21): 6528-41, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22488888

RESUMO

Trypanosoma cruzi and Trypanosoma brucei are parasites that cause Chagas disease and African sleeping sickness, respectively. There is an urgent need for the development of new drugs against both diseases due to the lack of adequate cures and emerging drug resistance. One promising strategy for the discovery of small-molecule therapeutics against parasitic diseases has been to target the major cysteine proteases such as cruzain for T. cruzi, and rhodesain/TbCatB for T. brucei. Azadipeptide nitriles belong to a novel class of extremely potent cysteine protease inhibitors against papain-like proteases. We herein report the design, synthesis, and evaluation of a series of azanitrile-containing compounds, most of which were shown to potently inhibit both recombinant cruzain and rhodesain at low nanomolar/picomolar ranges. A strong correlation between the potency of rhodesain inhibition (i.e., target-based screening) and trypanocidal activity (i.e., whole-organism-based screening) of the compounds was observed. To facilitate detailed studies of this important class of inhibitors, selected hit compounds from our screenings were chemically converted into activity-based probes (ABPs), which were subsequently used for in situ proteome profiling and cellular localization studies to further elucidate potential cellular targets (on and off) in both the disease-relevant bloodstream form (BSF) and the insect-residing procyclic form (PCF) of Trypanosoma brucei. Overall, the inhibitors presented herein show great promise as a new class of anti-trypanosome agents, which possess better activities than existing drugs. The activity-based probes generated from this study could also serve as valuable tools for parasite-based proteome profiling studies, as well as bioimaging agents for studies of cellular uptake and distribution of these drug candidates. Our studies therefore provide a good starting point for further development of these azanitrile-containing compounds as potential anti-parasitic agents.


Assuntos
Compostos Azo/síntese química , Compostos Azo/farmacologia , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/síntese química , Dipeptídeos/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Compostos Azo/química , Cisteína Endopeptidases/efeitos dos fármacos , Inibidores de Cisteína Proteinase/química , Dipeptídeos/química , Desenho de Fármacos , Células Hep G2 , Humanos , Microscopia de Fluorescência , Nitrilas , Proteínas de Protozoários/efeitos dos fármacos , Relação Estrutura-Atividade , Tripanossomicidas/química , Trypanosoma cruzi/efeitos dos fármacos
7.
Chem Asian J ; 6(10): 2762-75, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21744505

RESUMO

Orlistat, also known as tetrahydrolipstatin (THL), is an FDA-approved anti-obesity drug with potential anti-cancer activity. Previously, we developed a chemical proteomic approach, based on the Orlistat-like probe (1a) for large-scale identification of unknown cellular targets of Orlistat in human hepatocytes. In this article, we report the chemical synthesis and biological evaluation of an expanded set of Orlistat-like compounds, with the intention to further dissect and manipulate potential cellular targets of Orlistat. In doing so, we carried out proteome-wide activity-based profiling and large-scale pull-down/LCMS analysis of these compounds in live HepG2 cells, and successfully identified many putative cellular targets for Orlistat and its structural analogues. By qualitatively assessing the spectra counts of potential protein hits against each of the seventeen Orlistat analogues, we obtained both common and unique targets of these probes. Our results revealed that subtle structural modifications of Orlistat led to noticeable changes in both the cellular potency and target profiles of the drug. In order to further improve the cellular activity of Orlistat, we successfully applied the well-established AGT/SNAP-tag technology to our cell-permeable, benzylguanine (BG)-containing Orlistat variant (4). We showed that the drug could be delivered and effectively retained in different sub-cellular organelles of living cells. This strategy may provide a general and highly effective chemical tool for the potential sub-cellular targeting of small molecule drugs.


Assuntos
Antineoplásicos/metabolismo , Produtos Biológicos/metabolismo , Desenho de Fármacos , Lactonas/química , Organelas/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Produtos Biológicos/síntese química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Estrutura Molecular , Organelas/efeitos dos fármacos , Orlistate , Estereoisomerismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
8.
J Am Chem Soc ; 133(31): 12009-20, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21732629

RESUMO

Fluorescence imaging provides an indispensable way to locate and monitor biological targets within complex and dynamic intracellular environments. Of the various imaging agents currently available, small molecule-based probes provide a powerful tool for live cell imaging, primarily due to their desirable properties, including cell permeability (as a result of their smaller sizes), chemical tractability (e.g., different molecular structures/designs can be installed), and amenability to imaging a wide variety of biological events. With a few exceptions, most existing small molecule probes are however not suitable for in vivo bioimaging experiments in which high-resolution studies of enzyme activity and localization are necessary. In this article, we reported a new class of fluorescently Quenched Activity-Based Probes (qABPs) which are highly modular, and can sensitively image (through multiple enzyme turnovers leading to fluorescence signal amplification) different types of enzyme activities in live mammalian cells with good spatial and temporal resolution. We have also incorporated two-photon dyes into our modular probe design, enabling for the first time activity-based, fluorogenic two-photon imaging of enzyme activities. This, hence, expands the repertoire of 'smart', responsive probes currently available for live cell bioimaging experiments.


Assuntos
Cisteína Proteases/metabolismo , Fluorescência , Corantes Fluorescentes/química , Imagem Molecular , Fótons , Proteínas Tirosina Fosfatases/metabolismo , Benzoquinonas/química , Cisteína Proteases/química , Ativação Enzimática , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Estrutura Molecular , Proteínas Tirosina Fosfatases/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
10.
J Am Chem Soc ; 133(6): 1946-54, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21247160

RESUMO

Microarrays provide exciting opportunities in the field of large-scale proteomics. With the aim to elucidate enzymatic activity and profiles within native biological samples, we developed a microarray comprising a focused positional-scanning library of enzyme inhibitors. The library was diversified across P(1)-P(4) positions, creating 270 different inhibitor sublibraries which were immobilized onto avidin slides. The peptide aldehyde-based small-molecule microarray (SMM) specifically targeted cysteine proteases, thereby enabling large-scale functional assessment of this subgroup of proteases, within fluorescently labeled samples, including pure proteins, cellular lysates, and infected samples. The arrays were shown to elicit binding fingerprints consistent with those of model proteins, specifically caspases and purified cysteine proteases from parasites (rhodesein and cruzain). When tested against lysates from apoptotic Hela and red blood cells infected with Plasmodium falciparum, clear signatures were obtained that were readily attributable to the activity of constituent proteases within these samples. Characteristic binding profiles were further able to distinguish various stages of the parasite infection in erythrocyte lysates. By converting one of our brightest microarray hits into a probe, putative protein markers were identified and pulled down from within apoptotic Hela lysates, demonstrating the potential of target validation and discovery. Taken together, these results demonstrate the utility of targeted SMMs in dissecting cellular biology in complex proteomic samples.


Assuntos
Aldeídos/química , Peptídeos/química , Análise Serial de Proteínas/métodos , Proteômica/métodos , Extratos Celulares , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Células HeLa , Humanos , Plasmodium falciparum/fisiologia , Reprodutibilidade dos Testes
11.
Chem Commun (Camb) ; 46(44): 8335-7, 2010 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-20577697

RESUMO

Using click chemistry to enable both structural diversity and proteome profiling within a natural product derived library, two out of nineteen lipstatin analogues showed similar activity to Orlistat against fatty acid synthase (FAS), but with an improved ability to induce tumour cell death.


Assuntos
Antineoplásicos/química , Ácido Graxo Sintases/antagonistas & inibidores , Lactonas/química , Proteoma/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Química Click , Ácido Graxo Sintases/metabolismo , Humanos , Lactonas/síntese química , Lactonas/farmacologia , Orlistate , Proteoma/metabolismo
12.
J Am Chem Soc ; 132(2): 656-66, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20028024

RESUMO

Orlistat, or tetrahydrolipstatin (THL), is an FDA-approved antiobesity drug with potential antitumor activities. Cellular off-targets and potential side effects of Orlistat in cancer therapies, however, have not been extensively explored thus far. In this study, we report the total of synthesis of THL-like protein-reactive probes, in which extremely conservative modifications (i.e., an alkyne handle) were introduced in the parental THL structure to maintain the native biological properties of Orlistat, while providing the necessary functionality for target identification via the bio-orthogonal click chemistry. With these natural productlike, cell-permeable probes, we were able to demonstrate, for the first time, this chemical proteomic approach is suitable for the identification of previously unknown cellular targets of Orlistat. In addition to the expected fatty acid synthase (FAS), we identified a total of eight new targets, some of which were further validated by experiments including Western blotting, recombinant protein expression, and site-directed mutagenesis. Our findings have important implications in the consideration of Orlistat as a potential anticancer drug at its early stages of development for cancer therapy. Our strategy should be broadly useful for off-target identification against quite a number of existing drugs and/or candidates, which are also covalent modifiers of their biological targets.


Assuntos
Antineoplásicos/farmacologia , Lactonas/farmacologia , Proteoma/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lactonas/síntese química , Lactonas/química , Lactonas/metabolismo , Conformação Molecular , Sondas Moleculares/síntese química , Sondas Moleculares/química , Sondas Moleculares/farmacologia , Orlistate , Proteoma/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Estados Unidos , United States Food and Drug Administration
13.
Org Lett ; 10(10): 1881-4, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18407644

RESUMO

An efficient strategy for the solid-phase synthesis of azidomethylene inhibitors targeting cysteine proteases is described. The method is highlighted by its compatibility with readily available building blocks, as well as its ability to accommodate different functional groups. A 249-member library has thus far been successfully synthesized, characterized, and screened against Caspase-1, -3 and -7.


Assuntos
Azidas/síntese química , Técnicas de Química Combinatória , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/síntese química , Metano/análogos & derivados , Metano/síntese química , Azidas/química , Azidas/farmacologia , Caspase 1/química , Caspase 3/química , Caspase 7/química , Inibidores de Caspase , Cisteína Endopeptidases/efeitos dos fármacos , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Avaliação Pré-Clínica de Medicamentos , Metano/química , Metano/farmacologia , Estrutura Molecular , Bibliotecas de Moléculas Pequenas , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA