Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Commun ; 15(1): 3669, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693119

RESUMO

Oncolytic viruses (OVs) show promise as a cancer treatment by selectively replicating in tumor cells and promoting antitumor immunity. However, the current immunogenicity induced by OVs for tumor treatment is relatively weak, necessitating a thorough investigation of the mechanisms underlying its induction of antitumor immunity. Here, we show that HSV-1-based OVs (oHSVs) trigger ZBP1-mediated PANoptosis (a unique innate immune inflammatory cell death modality), resulting in augmented antitumor immune effects. Mechanistically, oHSV enhances the expression of interferon-stimulated genes, leading to the accumulation of endogenous Z-RNA and subsequent activation of ZBP1. To further enhance the antitumor potential of oHSV, we conduct a screening and identify Fusobacterium nucleatum outer membrane vesicle (Fn-OMV) that can increase the expression of PANoptosis execution proteins. The combination of Fn-OMV and oHSV demonstrates potent antitumor immunogenicity. Taken together, our study provides a deeper understanding of oHSV-induced antitumor immunity, and demonstrates a promising strategy that combines oHSV with Fn-OMV.


Assuntos
Fusobacterium nucleatum , Herpesvirus Humano 1 , Terapia Viral Oncolítica , Vírus Oncolíticos , Proteínas de Ligação a RNA , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/genética , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Animais , Humanos , Terapia Viral Oncolítica/métodos , Camundongos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/imunologia , Linhagem Celular Tumoral , Fusobacterium nucleatum/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Feminino , Imunidade Inata , Camundongos Endogâmicos BALB C
2.
Cancer Lett ; 588: 216727, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38431035

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a formidable cancer type that poses significant treatment challenges, including radiotherapy (RT) resistance. The metabolic characteristics of tumors present substantial obstacles to cancer therapy, and the relationship between RT and tumor metabolism in HNSCC remains elusive. Ferroptosis is a type of iron-dependent regulated cell death, representing an emerging disease-modulatory mechanism. Here, we report that after RT, glutamine levels rise in HNSCC, and the glutamine transporter protein SLC1A5 is upregulated. Notably, blocking glutamine significantly enhances the therapeutic efficacy of RT in HNSCC. Furthermore, inhibition of glutamine combined with RT triggers immunogenic tumor ferroptosis, a form of nonapoptotic regulated cell death. Mechanistically, RT increases interferon regulatory factor (IRF) 1 expression by activating the interferon signaling pathway, and glutamine blockade augments this efficacy. IRF1 drives transferrin receptor expression, elevating intracellular Fe2+ concentration, disrupting iron homeostasis, and inducing cancer cell ferroptosis. Importantly, the combination treatment-induced ferroptosis is dependent on IRF1 expression. Additionally, blocking glutamine combined with RT boosts CD47 expression and hinders macrophage phagocytosis, attenuating the treatment effect. Dual-blocking glutamine and CD47 promote tumor remission and enhance RT-induced ferroptosis, thereby ameliorating the tumor microenvironment. Our work provides valuable insights into the metabolic and immunological mechanisms underlying RT-induced ferroptosis, highlighting a promising strategy to augment RT efficacy in HNSCC.


Assuntos
Ferroptose , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Glutamina/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Antígeno CD47 , Linhagem Celular Tumoral , Ferro/metabolismo , Microambiente Tumoral , Antígenos de Histocompatibilidade Menor/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo
3.
Int Immunopharmacol ; 125(Pt A): 111128, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907049

RESUMO

V-domain Ig suppressor of T-cell activation (VISTA) is a novel immune checkpoint regulator that can inhibit T cell-mediated antitumor immunity. Although the use of anti-VISTA monoclonal antibody has demonstrated encouraging outcomes in the therapy of various malignancies, its specific impact and underlying mechanisms in oral squamous cell carcinoma (OSCC) remain to be explored. In this work, we analyzed human OSCC tissue microarrays, human peripheral blood mononuclear cells, and immunocompetent transgenic mouse models to investigate the relationship between high VISTA expression and markers of myeloid-derived immunosuppressive cells (MDSCs; CD11b, CD33, Arginase-1), tumor-associated macrophages (CD68, CD163, CD206), and T cell function (CD8, PD-L1, Granzyme B). In OSCC, we discovered that VISTA was highly expressed and stably expressed in MDSCs. Furthermore, we established a mouse OSCC orthotopic xenograft tumor model to investigate the impact of VISTA blockade on the tumor microenvironment. We found that VISTA blockade reduces the immunosuppressive microenvironment and delays tumor growth. This is achieved by suppressing the quantity and function of MDSCs while boosting the function of tumor-infiltrating T cells. Our research indicated that VISTA expressed by MDSCs has a crucial function in the progression of OSCC and that VISTA blockade therapy is a promising immune checkpoint blockade therapy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Células Supressoras Mieloides , Animais , Humanos , Camundongos , Neoplasias de Cabeça e Pescoço/metabolismo , Terapia de Imunossupressão , Leucócitos Mononucleares , Camundongos Transgênicos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Microambiente Tumoral
4.
Nat Commun ; 14(1): 5355, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660063

RESUMO

Immunogenic programmed cell death, such as pyroptosis and ferroptosis, efficiently induces an acute inflammatory response and boosts antitumor immunity. However, the exploration of dual-inducers, particularly nonmetallic inducers, capable of triggering both pyroptosis and ferroptosis remains limited. Here we show the construction of a covalent organic framework (COF-919) from planar and twisted AIEgen-based motifs as a dual-inducer of pyroptosis and ferroptosis for efficient antitumor immunity. Mechanistic studies reveal that COF-919 displays stronger near-infrared light absorption, lower band energy, and longer lifetime to favor the generation of reactive oxygen species (ROS) and photothermal conversion, triggering pyroptosis. Because of its good ROS production capability, it upregulates intracellular lipid peroxidation, leading to glutathione depletion, low expression of glutathione peroxidase 4, and induction of ferroptosis. Additionally, the induction of pyroptosis and ferroptosis by COF-919 effectively inhibits tumor metastasis and recurrence, resulting in over 90% tumor growth inhibition and cure rates exceeding 80%.


Assuntos
Ferroptose , Estruturas Metalorgânicas , Neoplasias , Piroptose , Espécies Reativas de Oxigênio , Imunoterapia , Neoplasias/terapia
5.
J Am Chem Soc ; 145(32): 17689-17699, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37550880

RESUMO

Covalent organic frameworks (COFs) have emerged as a promising class of crystalline porous materials for cancer phototherapy, due to their exceptional characteristics, including light absorption, biocompatibility, and photostability. However, the aggregation-caused quenching effect and apoptosis resistance often limit their therapeutic efficacy. Herein, we demonstrated for the first time that linking luminogens with aggregation-induced emission effect (AIEgens) into COF networks via vinyl linkages was an effective strategy to construct nonmetallic pyroptosis inducers for boosting antitumor immunity. Mechanistic investigations revealed that the formation of the vinyl linkage in the AIE COF endowed it with not only high brightness but also strong light absorption ability, long lifetime, and high quantum yield to favor the generation of reactive oxygen species for eliciting pyroptosis. In addition, the synergized system of the AIE COF and αPD-1 not only effectively eradicated primary and distant tumors but also inhibited tumor recurrence and metastasis in a bilateral 4T1 tumor model.


Assuntos
Estruturas Metalorgânicas , Fotoquimioterapia , Piroptose , Apoptose , Carbono , Cloreto de Polivinila
6.
Front Pharmacol ; 14: 1144824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426814

RESUMO

Background: Even 3 years into the COVID-19 pandemic, questions remain about how to safely and effectively vaccinate vulnerable populations. A systematic analysis of the safety and efficacy of the COVID-19 vaccine in at-risk groups has not been conducted to date. Methods: This study involved a comprehensive search of PubMed, EMBASE, and Cochrane Central Controlled Trial Registry data through 12 July 2022. Post-vaccination outcomes included the number of humoral and cellular immune responders in vulnerable and healthy populations, antibody levels in humoral immune responders, and adverse events. Results: A total of 23 articles assessing 32 studies, were included. The levels of IgG (SMD = -1.82, 95% CI [-2.28, -1.35]), IgA (SMD = -0.37, 95% CI [-0.70, -0.03]), IgM (SMD = -0.94, 95% CI [-1.38, -0.51]), neutralizing antibodies (SMD = -1.37, 95% CI [-2.62, -0.11]), and T cells (SMD = -1.98, 95% CI [-3.44, -0.53]) were significantly lower in vulnerable than in healthy populations. The positive detection rates of IgG (OR = 0.05, 95% CI [0.02, 0.14]) and IgA (OR = 0.03, 95% CI [0.01, 0.11]) antibodies and the cellular immune response rates (OR = 0.20, 95% CI [0.09, 0.45]) were also lower in the vulnerable populations. There were no statistically significant differences in fever (OR = 2.53, 95% CI [0.11, 60.86]), chills (OR = 2.03, 95% CI [0.08, 53.85]), myalgia (OR = 10.31, 95% CI [0.56, 191.08]), local pain at the injection site (OR = 17.83, 95% CI [0.32, 989.06]), headache (OR = 53.57, 95% CI [3.21, 892.79]), tenderness (OR = 2.68, 95% CI [0.49, 14.73]), and fatigue (OR = 22.89, 95% CI [0.45, 1164.22]) between the vulnerable and healthy populations. Conclusion: Seroconversion rates after COVID-19 vaccination were generally worse in the vulnerable than healthy populations, but there was no difference in adverse events. Patients with hematological cancers had the lowest IgG antibody levels of all the vulnerable populations, so closer attention to these patients is recommended. Subjects who received the combined vaccine had higher antibody levels than those who received the single vaccine.

7.
iScience ; 26(6): 106916, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37305703

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been demonstrated to play a critical role in regulating cholesterol homeostasis and T cell antitumor immunity. However, the expression, function, and therapeutic value of PCSK9 in head and neck squamous cell carcinoma (HNSCC) remain largely unexplored. Here, we found that the expression of PCSK9 was upregulated in HNSCC tissues, and higher PCSK9 expression indicated poorer prognosis in HNSCC patients. We further found that pharmacological inhibition or siRNA downregulating PCSK9 expression suppressed the stemness-like phenotype of cancer cells in an LDLR-dependent manner. Moreover, PCSK9 inhibition enhanced the infiltration of CD8+ T cells and reduced the myeloid-derived suppressor cells (MDSCs) in a 4MOSC1 syngeneic tumor-bearing mouse model, and it also enhanced the antitumor effect of anti-PD-1 immune checkpoint blockade (ICB) therapy. Together, these results indicated that PCSK9, a traditional hypercholesterolemia target, may be a novel biomarker and therapeutic target to enhance ICB therapy in HNSCC.

8.
Int Immunopharmacol ; 119: 110243, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37137265

RESUMO

Enhancer of zeste homolog 2 (EZH2) is implicated in promoting HNSCC malignant progression. However, EZH2 inhibitors, when used alone, increase the number of myeloid-derived suppressor cells (MDSCs), which are responsible for enhancing tumor stemness and promoting tumor immune escape. We aimed to determine whether combining tazemetostat (an EZH2 inhibitor) and sunitinib (a MDSC inhibitor) can improve the response rate to an immune-checkpoint-blocking (ICB) therapy. We evaluated the efficacy of the above treatment strategies by bioinformatics analysis and animal experiments. EZH2 overexpression and abundant MDSCs in patients with HNSCC are associated with tumor progression. Tazemetostat treatment alone had limited inhibitory effect on HNSCC progression in the mouse models, accompanied by a surge in the number of MDSCs in the tumor microenvironment. Conversely, the combined use of tazemetostat and sunitinib reduced the number of MDSCs and regulatory T cell populations, promoting intratumoral infiltration of T cells and inhibiting of T cell exhausting, regulating of wnt/ß-catenin signaling pathway and tumor stemness, promoting the intratumoral PD-L1 expression and improved the response rate to anti-PD-1 therapy. The combined use of EZH2 and MDSC inhibitors effectively reverses HNSCC-specific immunotherapeutic resistance and is a promising strategy for overcoming resistance to ICB therapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Células Supressoras Mieloides , Camundongos , Animais , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Sunitinibe/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Microambiente Tumoral
9.
Mol Ther ; 31(7): 2154-2168, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36869589

RESUMO

Immune checkpoint blockade (ICB) treatment has demonstrated excellent medical effects in oncology, and it is one of the most sought after immunotherapies for tumors. However, there are several issues with ICB therapy, including low response rates and a lack of effective efficacy predictors. Gasdermin-mediated pyroptosis is a typical inflammatory death mode. We discovered that increased expression of gasdermin protein was linked to a favorable tumor immune microenvironment and prognosis in head and neck squamous cell carcinoma (HNSCC). We used the mouse HNSCC cell lines 4MOSC1 (responsive to CTLA-4 blockade) and 4MOSC2 (resistant to CTLA-4 blockade) orthotopic models and demonstrated that CTLA-4 blockade treatment induced gasdermin-mediated pyroptosis of tumor cells, and gasdermin expression positively correlated to the effectiveness of CTLA-4 blockade treatment. We found that CTLA-4 blockade activated CD8+ T cells and increased the levels of interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) cytokines in the tumor microenvironment. These cytokines synergistically activated the STAT1/IRF1 axis to trigger tumor cell pyroptosis and the release of large amounts of inflammatory substances and chemokines. Collectively, our findings revealed that CTLA-4 blockade triggered tumor cells pyroptosis via the release of IFN-γ and TNF-α from activated CD8+ T cells, providing a new perspective of ICB.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço , Camundongos , Animais , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Antígeno CTLA-4 , Fator de Necrose Tumoral alfa/metabolismo , Piroptose , Gasderminas , Citocinas/metabolismo , Interferon gama/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Microambiente Tumoral
10.
Br J Cancer ; 128(11): 2126-2139, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36977825

RESUMO

BACKGROUND: Enhancing the response rate of immunotherapy will aid in the success of cancer treatment. Here, we aimed to explore the combined effect of immunogenic radiotherapy with anti-PD-L1 treatment in immunotherapy-resistant HNSCC mouse models. METHODS: The SCC7 and 4MOSC2 cell lines were irradiated in vitro. SCC7-bearing mice were treated with hypofractionated or single-dose radiotherapy followed by anti-PD-L1 therapy. The myeloid-derived suppressive cells (MDSCs) were depleted using an anti-Gr-1 antibody. Human samples were collected to evaluate the immune cell populations and ICD markers. RESULTS: Irradiation increased the release of immunogenic cell death (ICD) markers (calreticulin, HMGB1 and ATP) in SCC7 and 4MOSC2 in a dose-dependent manner. The supernatant from irradiated cells upregulated the expression of PD-L1 in MDSCs. Mice treated with hypofractionated but not single-dose radiotherapy were resistant to tumour rechallenge by triggering ICD, when combined with anti-PD-L1 treatment. The therapeutic efficacy of combination treatment partially relies on MDSCs. The high expression of ICD markers was associated with activation of adaptive immune responses and a positive prognosis in HNSCC patients. CONCLUSION: These results present a translatable method to substantially improve the antitumor immune response by combining PD-L1 blockade with immunogenic hypofractionated radiotherapy in HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Inibidores de Checkpoint Imunológico , Células Supressoras Mieloides , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Imunoterapia/métodos , Células Supressoras Mieloides/metabolismo , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico
11.
Oral Oncol ; 138: 106331, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36753904

RESUMO

OBJECTIVES: CD103+CD8+T cells is a subtype of T cells with excellent tumor killing ability and it could response to immune checkpoint blockade therapy in several types of cancer, but the phenotype, role and molecular mechanism CD103+CD8+T cells in the OSCC still unclear. MATERIALS AND METHODS: The distribution and phenotype of CD103+CD8+T cells were investigated by performing multiplexed immunohistochemistry on human OSCC tissue microarray and flow cytometric analysis of fresh OSCC tumor-infiltrating lymphocytes (TILs). By in vivo use of anti-CD103 monoclonal antibody (mAb) in the 4MOSC1 tumor-bearing mouse model, CD103+CD8+T cell infiltration and cytotoxicity was clarified. RESULTS: The majority of CD8+T cells in both human and animal OSCC intra-tumoral region were CD103+CD8+T cells with high expression levels of cytotoxic molecules, which can be impaired by CD103 blockade. In addition, combined use of anti-CD103 mAb with anti-CTLA-4 mAb displayed impaired immune checkpoint blockade therapy efficiency. CONCLUSION: CD103+CD8+T cells are the major intra-tumoral subset of CD8+T cells in both animal and human OSCC, and that CD103+CD8+T cells demonstrate remarkable tumor-infiltrating and tumor-killing properties, thereby CD103+CD8+T cells may critical for anti-CTLA-4 immunotherapy in OSCC.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias Bucais , Humanos , Animais , Camundongos , Neoplasias Bucais/metabolismo , Linfócitos T CD8-Positivos , Fenótipo , Imunoterapia , Linfócitos do Interstício Tumoral
12.
Chem Commun (Camb) ; 59(7): 932-935, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36597866

RESUMO

Glutathione-responsive nanogels (CDNPs) crosslinked via crosslinker DBHD with the BRAF inhibitor dabrafenib and the COX2 inhibitor celecoxib were fabricated. The CDNPs can effectively induce tumor cell pyroptosis to activate robust antitumor immunity. Additionally, CDNPs combined with αPD-1 antibody greatly inhibited tumor growth in a melanoma mouse model with a prolonged survival time.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Melanoma , Camundongos , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , Nanogéis , Piroptose , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases , Bioengenharia , Imunoterapia , Oximas , Mutação
13.
Adv Healthc Mater ; 12(7): e2202135, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36479643

RESUMO

Pyroptosis is demonstrated to trigger antitumor immunity and represents a promising new strategy to potentiate cancer immunotherapy. The number of potent pyroptosis inducers, however, is limited and without tumor-targeting capability, which inevitably causes damage in normal tissues. Herein, a small molecular prodrug of paclitaxel-oxaliplatin is rationally synthesized, which can be covalently self-assembled with diselenide-containing cross-linking (Dse11), producing a diselenide nanoprodrug (DSe@POC) to induce pyroptosis for the first time. The diselenide bonds within DSe@POC can be split by high glutathione in the tumor microenvironment (TME) and reactive oxygen species induced by photodynamic therapy, thus possessing excellent TME on-target effects. Additionally, DSe@POC is able to elicit intense pyroptosis to remodel the immunostimulated TME and trigger a robust immune response. Furthermore, combined αPD-1 therapy effectively inhibits the growth of remote tumors through the abscopal effect, amplifies a long-term immune memory response to reject rechallenged tumors, and prolongs survival. Collectively, DSe@POC, as the first TME dual-responsive diselenide-based pyroptosis inducer, will open up an attractive approach for cancer immunotherapy.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Piroptose , Paclitaxel/farmacologia , Imunoterapia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
14.
Adv Mater ; 35(11): e2209379, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36545949

RESUMO

Immune checkpoint blockade (ICB) therapy shows excellent efficacy against malignancies; however, insufficient tumor immunogenicity and the immunosuppressive tumor microenvironment (TME) are considered as the two major stumbling blocks to a broad ICB response. Here, a combinational therapeutic strategy is reported, wherein TME-reactive oxygen species/pH dual-responsive signal transducers and activators of transcription 3 inhibitor nanoprodrugs MPNPs are combined with oncolytic herpes simplex virus 1 virotherapy to synergistically ignite pyroptosis for enhancing immunotherapy. MPNPs exhibit a certain level of tumor accumulation, reduce tumor cell stemness, and enhance antitumor immune responses. Furthermore, the simultaneous application of oncolytic viruses (OVs) confers MPNPs with higher tumor penetration capacity and remarkable gasdermin-E-mediated pyroptosis, thereby reshaping the TME and transforming "cold" tumors into "hot" ones. This "fire of immunity" strategy successfully activates robust T-cell-dependent antitumor responses, potentiating ICB effects against local recurrence and pulmonary metastasis in preclinical "cold" murine triple-negative breast cancer and syngeneic oral cancer models. Collectively, this work may pave a new way and offer an unprecedented opportunity for the combination of OVs with nanomedicine for cancer immunotherapy.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Camundongos , Animais , Vírus Oncolíticos/fisiologia , Piroptose , Neoplasias/terapia , Imunoterapia , Imunidade , Microambiente Tumoral , Fator de Transcrição STAT3
15.
Int Immunopharmacol ; 111: 109113, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35944462

RESUMO

Epigenetic alterations, including DNA methylation, play crucial roles in the tumor. Epigenetic drugs like DNA methyltransferase-1 (DNMT1) inhibitors have been exhibited positive effects in cancer treatment. However, the role of DNMT1 in oral squamous cell carcinoma (OSCC) is less clearly described. What is more, the effects on the immune microenvironment of DNMT1 have not become appreciated. In this research, we determine the expression levels of DNMT1 and the association of prognosis by analyzing human OSCC tissue microarrays. Two different types of immunocompetent mouse OSCC models were established to explore the effects of DNMT1 inhibitor on the tumor microenvironment(TME). We identified DNMT1 was highly expressed both in human and mouse OSCC tissues. The expression levels of DNMT1 was also correlated with the immunosuppressive molecules and tumor-promoter such as VISTA, PD-L1, B7-H4, and PAK2, indicating a worse prognosis. Of particular concern is that DNMT1 inhibition improved TME and delayed tumor growth by decreasing myeloid-derived suppressor cells (MDSCs) and increasing tumor-infiltrating T cells. Our data suggests that DNMT1 play a key role in OSCC and has a possible immunotherapeutic marker treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Carcinoma de Células Escamosas/genética , Metilação de DNA , Neoplasias de Cabeça e Pescoço/genética , Humanos , Camundongos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Microambiente Tumoral
16.
Oral Dis ; 28(2): 364-372, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33386685

RESUMO

OBJECTIVES: Receptor for hyaluronic acid (HA)-mediated motility (RHAMM) is also known as CD168. This study proposed to elucidate the prognostic and clinicopathological significance of CD168 expression in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS: Immune staining of a human tissue microarray and Western blot were used to reveal the expression level of CD168 in OSCC. Correlations between clinicopathological indexes and CD168 expression in OSCC patients were assessed. RESULTS: Increased expression of CD168 was detected in OSCC tissues. High expression of CD168 indicated worse survival of patients (p < .05). Furthermore, high expression of CD168 was related to pathological grade in OSCC (p < .05). CD168 expression was positively related to programmed death ligand 1 (PD-L1), CKLF-like MARVEL transmembrane domain-containing protein 6 (CMTM6), B7 homology 4 protein (B7-H4), CD44, CD133, and Slug expression in OSCC. CONCLUSION: This study revealed the overexpression of CD168 in OSCC and shed light on the prognostic significance of CD168 expression in OSCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/patologia , Humanos , Neoplasias Bucais/patologia , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço
17.
Adv Mater ; 34(13): e2108174, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34918837

RESUMO

The engineering of a series of multienzyme-mimicking covalent organic frameworks (COFs), COF-909-Cu, COF-909-Fe, and COF-909-Ni, as pyroptosis inducers, remodeling the tumor microenvironment to boost cancer immunotherapy, is reported. Mechanistic studies reveal that these COFs can serve as hydrogen peroxide (H2 O2 ) homeostasis disruptors to elevate intracellular H2 O2 levels, and they not only exhibit excellent superoxide dismutase (SOD)-mimicking activity and convert superoxide radicals (O2 •- ) to H2 O2 to facilitate H2 O2 generation, but also possess outstanding glutathione peroxidase (GPx)-mimicking activity and deplete glutathione (GSH) to alleviate the scavenging of H2 O2 . Meanwhile, the outstanding photothermal therapy properties of these COFs can accelerate the Fenton-like ionization process to facilitate their chemodynamic therapy efficiency. One member, COF-909-Cu, can robustly induce gasdermin E (GSDME)-dependent pyroptosis and remodel the tumor microenvironment to trigger durable antitumor immunity, thus promoting the response rate of αPD-1 checkpoint blockade and successfully restraining tumor metastasis and recurrence.


Assuntos
Estruturas Metalorgânicas , Linhagem Celular Tumoral , Imunoterapia , Estruturas Metalorgânicas/farmacologia , Piroptose , Microambiente Tumoral
18.
Adv Sci (Weinh) ; 8(24): e2101840, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34705343

RESUMO

The absence of tumor antigens leads to a low response rate, which represents a major challenge in immune checkpoint blockade (ICB) therapy. Pyroptosis, which releases tumor antigens and damage-associated molecular patterns (DAMPs) that induce antitumor immunity and boost ICB efficiency, potentially leads to injury when occurring in normal tissues. Therefore, a strategy and highly efficient agent to induce tumor-specific pyroptosis but reduce pyroptosis in normal tissues is urgently required. Here, a smart tumor microenvironmental reactive oxygen species (ROS)/glutathione (GSH) dual-responsive nano-prodrug (denoted as MCPP) with high paclitaxel (PTX) and photosensitizer purpurin 18 (P18) loading is rationally designed. The ROS/GSH dual-responsive system facilitates the nano-prodrug response to high ROS/GSH in the tumor microenvironment and achieves optimal drug release in tumors. ROS generated by P18 after laser irradiation achieves controlled release and induces tumor cell pyroptosis with PTX by chemo-photodynamic therapy. Pyroptotic tumor cells release DAMPs, thus initiating adaptive immunity, boosting ICB efficiency, achieving tumor regression, generating immunological memory, and preventing tumor recurrence. Mechanistically, chemo-photodynamic therapy and control-release PTX synergistically induce gasdermin E (GSDME)-related pyroptosis. It is speculated that inspired chemo-photodynamic therapy using the presented nano-prodrug strategy can be a smart strategy to trigger pyroptosis and augment ICB efficiency.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Colo/terapia , Imunoterapia/métodos , Fotoquimioterapia/métodos , Pró-Fármacos/uso terapêutico , Piroptose/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Feminino , Glutationa/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/uso terapêutico
19.
Nano Lett ; 21(19): 7979-7988, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34525805

RESUMO

We report the design and synthesis of a series of three-dimensional (3D) covalent organic frameworks (COFs) as immunogenic cell death (ICD) inducers for cancer immunotherapy. Three triple-topic amine building blocks, inactive to inducing ICD, were used to construct three COFs, COF-607, COF-608, and COF-609, with outstanding ICD eliciting efficiency. Mechanism studies revealed that after linking these ICD inert monomers into the COF backbone, the optical properties of these COFs could be systematically tuned to achieve excellent reactive oxygen species (ROS) production performance. This combined with 3D cross-linked pores, mimicking lung structure, favor the exchange and diffusion of oxygen and ROS, leading to excellent inducing ICD efficacy. One member, COF-609, is capable of triggering abscopal and long-lasting immune memory effects in a mouse model of breast cancer with >95% mice survival after being treated with COF-609+αCD47 for 110 days.


Assuntos
Antineoplásicos , Estruturas Metalorgânicas , Neoplasias , Animais , Imunoterapia , Camundongos , Espécies Reativas de Oxigênio
20.
Oral Oncol ; 121: 105472, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34333450

RESUMO

OBJECTIVES: Anti-PD-1/PD-L1 therapy has recently been approved for head and neck squamous cell carcinoma (HNSCC). However, given that large numbers of patients with HNSCC do not respond to PD-1/PD-L1 antibodies, combination strategies for elevating the response rate need to be further investigated. The goal of this study was to explore the possibility of dual-targeting CD155/TIGIT and PD-1/PD-L1 signalling in HNSCC. MATERIALS AND METHODS: Multiplex flow cytometry was performed to determine the co-expression of CD155 and PD-L1 in human HNSCC and transgenic HNSCC mouse models. The combined application of TIGIT mAb and PD-L1 mAb in a mouse model was used to explore the therapeutic effect. RESULTS: CD155 and PD-L1 were highly co-expressed on myeloid-derived suppressor cells (MDSCs) derived from patients with HNSCC and were inversely associated with the percentage of tumour CD3+ T and effector memory T cells. CD155+PD-L1+ MDSCs in the mouse model were gradually enriched in the tumour microenvironment in the middle and late stages of tumour progression. Anti-PD-L1 treatment alone upregulated the expression of CD155 on MDSCs and while anti-TIGIT treatment upregulated the expression of PD-L1 on MDSCs in mice. The combined blockade of TIGIT/CD155 and PD-1/PD-L1 signalling in mice significantly inhibited tumour growth, enhanced the percentages of effector T cells and cytokine secretion and elicited immune memory effects. CONCLUSION: Our study indicated that CD155+PD-L1+ MDSCs are enriched in the tumour microenvironment and blocking TIGIT/CD155 can effectively enhance the response rate of HNSCC to PD-L1 mAb therapy, which provides the clinical potential of co-targeting TIGIT/CD155 and PD-1/PD-L1 signalling.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço , Células Supressoras Mieloides , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Anticorpos Monoclonais/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Células T de Memória , Camundongos , Receptores Imunológicos/antagonistas & inibidores , Receptores Virais/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA