Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(6): 2702-2718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38515244

RESUMO

Hydrolyzable tannins (HTs), predominant polyphenols in oaks, are widely used in grape wine aging, feed additives, and human healthcare. However, the limited availability of a high-quality reference genome of oaks greatly hampered the recognition of the mechanism of HT biosynthesis. Here, high-quality reference genomes of three Asian oak species (Quercus variabilis, Quercus aliena, and Quercus dentata) that have different HT contents were generated. Multi-omics studies were carried out to identify key genes regulating HT biosynthesis. In vitro enzyme activity assay was also conducted. Dual-luciferase and yeast one-hybrid assays were used to reveal the transcriptional regulation. Our results revealed that ß-glucogallin was a biochemical marker for HT production in the cupules of the three Asian oaks. UGT84A13 was confirmed as the key enzyme for ß-glucogallin biosynthesis. The differential expression of UGT84A13, rather than enzyme activity, was the main reason for different ß-glucogallin and HT accumulation. Notably, sequence variations in UGT84A13 promoters led to different trans-activating activities of WRKY32/59, explaining the different expression patterns of UGT84A13 among the three species. Our findings provide three high-quality new reference genomes for oak trees and give new insights into different transcriptional regulation for understanding ß-glucogallin and HT biosynthesis in closely related oak species.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica , Taninos Hidrolisáveis , Quercus , Quercus/genética , Quercus/metabolismo , Taninos Hidrolisáveis/metabolismo , Genômica/métodos , Regiões Promotoras Genéticas/genética , Especificidade da Espécie , Biomarcadores/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas
2.
Plant Biotechnol J ; 17(10): 1985-1997, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30963689

RESUMO

The red coloration of pear (Pyrus pyrifolia) results from anthocyanin accumulation in the fruit peel. Light is required for anthocyanin biosynthesis in pear. A pear homolog of Arabidopsis thaliana BBX22, PpBBX16, was differentially expressed after fruits were removed from bags and may be involved in anthocyanin biosynthesis. Here, the expression and function of PpBBX16 were analysed. PpBBX16's expression was highly induced by white-light irradiation, as was anthocyanin accumulation. PpBBX16's ectopic expression in Arabidopsis increased anthocyanin biosynthesis in the hypocotyls and tops of flower stalks. PpBBX16 was localized in the nucleus and showed trans-activity in yeast cells. Although PpBBX16 could not directly bind to the promoter of PpMYB10 or PpCHS in yeast one-hybrid assays, the complex of PpBBX16/PpHY5 strongly trans-activated anthocyanin pathway genes in tobacco. PpBBX16's overexpression in pear calli enhanced the red coloration during light treatments. Additionally, PpBBX16's transient overexpression in pear peel increased anthocyanin accumulation, while virus-induced gene silencing of PpBBX16 decreased anthocyanin accumulation. The expression patterns of pear BBX family members were analysed, and six additional BBX genes, which were differentially expressed during light-induced anthocyanin biosynthesis, were identified. Thus, PpBBX16 is a positive regulator of light-induced anthocyanin accumulation, but it could not directly induce the expression of the anthocyanin biosynthesis-related genes by itself but needed PpHY5 to gain full function. Our work uncovered regulatory modes for PpBBX16 and suggested the potential functions of other pear BBX genes in the regulation of anthocyanin accumulation, thereby providing target genes for further studies on anthocyanin biosynthesis.


Assuntos
Antocianinas/biossíntese , Luz , Proteínas de Plantas/metabolismo , Pyrus/genética , Fatores de Transcrição/metabolismo , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Pyrus/efeitos da radiação , Fatores de Transcrição/genética
3.
Planta ; 248(1): 37-48, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29546452

RESUMO

MAIN CONCLUSION: A conserved blue light sensing and transduction pathway contributes to blue light-induced anthocyanin accumulation in the peel of red pear. Peel color is an economically important characteristic that influences the appearance quality of red pear, whose red color is due to anthocyanin accumulation. The process of coloration in the fruit peel is strongly influenced by light. However, how light quality influences color development remains unclear. In this study, we analyzed the effects of different light qualities on color development in the red pear 'Red Zaosu', a mutant of the hybrid cultivar 'Zaosu' of Pyrus pyrifolia and P. communis. The results showed that blue light increased anthocyanin accumulation after 72 h of light treatment, while red light had almost no effect. The expression of anthocyanin biosynthesis-related genes showed a similar trend to the anthocyanin accumulation. To clarify the mechanism of blue-light induced coloration, PpCRYs, PpCOP1 and PpHY5 genes were cloned. Gene expression analysis showed that their transcript abundance did not correlate with the expression of anthocyanin-related genes or anthocyanin content, but the yeast two-hybrid system revealed conserved physical interactions among these proteins. In addition, PpHY5 directly bound to the promoters of the anthocyanin biosynthesis genes PpCHS, PpDFR, PpANS and PpMYB10, and activated the transcription of PpCHS in a Nicotiana benthamiana-based dual-luciferase assay. In summary, our results preliminarily revealed that the conserved blue light signal transduction module CRY-COP1-HY5 contributed to the anthocyanin biosynthesis induced by blue light in red pear. However, our results did not provide evidence for why red light had no effect on anthocyanin accumulation, which needs further study.


Assuntos
Antocianinas/metabolismo , Pyrus/metabolismo , Transdução de Sinais/efeitos da radiação , Clonagem Molecular , Cor , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas/genética , Luz , Plantas Geneticamente Modificadas , Pyrus/genética , Pyrus/efeitos da radiação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/genética , Transcriptoma , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA