Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Epigenetics ; 18(1): 2276384, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37908128

RESUMO

Tamoxifen (Tam) has long been a top treatment option for breast cancer patients, but the challenge of eliminating cancer recurrence remains. Here, we identify a signalling pathway involving ELOVL2, ELOVL2-AS1, and miR-1233-3p, which contributes to drug resistance in Tam-resistant (TamR) breast cancer. ELOVL2-AS1, a long noncoding RNA, was significantly upregulated by its antisense gene, ELOVL2, which is known to be downregulated in TamR cells. Additionally, ELOVL2-AS1 underwent the most hypermethylation in MCF-7/TamR cells. Furthermore, patients with breast cancer who developed TamR during chemotherapy had significantly lower expression of ELOVL2-AS1 compared to those who responded to Tam. Ectopic downregulation of ELOVL2-AS1 by siRNA both stimulated cancer cell growth and deteriorated TamR. We also found that ELOVL2-AS1 sponges miR-1233-3p, which has pro-proliferative activity and elevates TamR, leading to the activation of potential target genes, such as MYEF2, NDST1, and PIK3R1. These findings suggest that ELOVL2-AS1, in association with ELOVL2, may contribute to the suppression of drug resistance by sponging miR-1233-3p in breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , RNA Antissenso
2.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175475

RESUMO

Korean ginseng is a source of functional foods and medicines; however, its productivity is hindered by abiotic stress factors, such as light. This study investigated the impacts of darkness and different light wavelengths on the metabolomics and anti-cancer activity of ginseng extracts. Hydroponically-grown Korean ginseng was shifted to a light-emitting diodes (LEDs) chamber for blue-LED and darkness treatments, while white fluorescent (FL) light treatment was the control. MCF-7 breast cancer and lipopolysaccharide (LPS)-induced BV-2 microglial cells were used to determine chemo-preventive and neuroprotective potential. Overall, 53 significant primary metabolites were detected in the treated samples. The levels of ginsenosides Rb1, Rb2, Rc, Rd, and Re, as well as organic and amino acids, were significantly higher in the dark treatment, followed by blue-LED treatment and the FL control. The dark-treated ginseng extract significantly induced apoptotic signaling in MCF-7 cells and dose-dependently inhibited the NF-κB and MAP kinase pathways in LPS-induced BV-2 cells. Short-term dark treatment increased the content of Rd, Rc, Rb1, Rb2, and Re ginsenosides in ginseng extracts, which promoted apoptosis of MCF-7 cells and inhibition of the MAP kinase pathway in BV-2 microglial cells. These results indicate that the dark treatment might be effective in improving the pharmacological potential of ginseng.


Assuntos
Ginsenosídeos , Panax , Humanos , Ginsenosídeos/uso terapêutico , Extratos Vegetais/química , Panax/química , Células MCF-7 , Escuridão , Lipopolissacarídeos/farmacologia
3.
Int Neurourol J ; 27(1): 15-22, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37015721

RESUMO

Functional bladder disorders including overactive bladder and interstitial cystitis may induce problems in many other parts of our body such as brain and gut. In fact, diagnosis is often less accurate owing to their complex symptoms. To have correct diagnosis of these diseases, we need to understand the pathophysiology behind overlapped clinical presentation. First, we focused on reviewing literatures that have reported the link between bladder and brain, as the patients with bladder disorders frequently accompanied mood disorders such as depression and anxiety. Second, we reviewed literatures that have described the relationship between bladder and gut. There exist many evidences of patients who suffered from both bladder and intestinal diseases, such as irritable bowel syndrome and inflammatory bowel disease, at the same time. Furthermore, the interaction between brain and gut, well-known as brain-gut axis, might be a key factor that could change the activity of bladder and vice versa. For example, the affective disorders could alter the activity of efferent nerves or autonomic nervous system that modulate the gut itself and its microbiota, which might cause the destruction of homeostasis in bladder eventually. In this way, the communication between bladder and brain-gut axis might affect permeability, inflammation, as well as infectious etiology and dysbiosis in bladder diseases. In this review, we aimed to find an innovative insight of the pathophysiology in the functional bladder disorders, and we could provide a new understanding of the overlapped clinical presentation by elucidating the pathophysiology of functional bladder disorders.

4.
Urol Oncol ; 40(3): 105.e1-105.e10, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34952790

RESUMO

Prostate cancer (CaP) is the most common malignant neoplasm of the urinary tract. The current recommendations for CaP diagnosis rely on the prostate-specific antigen levels and a digital rectal examination for anatomical abnormalities. However, these diagnostic tools are not highly sensitive. In particular, prostate-specific antigen has a low positive predictive value (approximately 30%). Thus, there is a need to develop biomarkers to improve the early clinical detection of CaP. Several novel technologies enable the identification of biomarkers from diverse sources, including the urine, serum, and prostate tissues. Furthermore, advances in genomic techniques have enabled the analysis of novel biomarkers, such as deoxyribonucleic acids (DNAs), ribonucleic acids (RNAs), proteins, and circulating tumor cells. Previous studies have demonstrated that RNAs are potential diagnostic biomarkers for various cancers using high-throughput sequencing analysis. The sensitivity and specificity of RNA biomarkers are higher than those of protein biomarkers. Polymerase chain reaction enables the amplification of trace levels of RNAs with high sensitivity and specificity. RNA biomarkers provide dynamic insights into cellular states and regulatory processes when compared with DNA biomarkers. Additionally, multiple copies of various RNAs in a cell provide more information than DNA. The levels of specific RNAs in CaP tissues are upregulated when compared with those in non-cancerous tissues. Additionally, RNAs can be easily isolated from various body fluids. Thus, RNAs are potential non-invasive biomarkers for CaP. Moreover, the analysis of RNA levels adjusted for each stage of CaP enables the determination of prognostic individualized therapy for aggressive or progressive CaP. This review focused on the diagnostic and prognostic values of RNAs for CaP.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Biomarcadores Tumorais/análise , DNA , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , RNA
5.
Nutrients ; 13(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34836147

RESUMO

Whitening research is of particular interest in the cosmetics market. The main focus of whitening research is on melanogenesis inhibition through tyrosinase activity. The mechanism of melanogenesis is involved with tyrosinase activity and p-PKC signaling. In this study, we used Momordica cochinchinensis (Lour.) spreng, a tropical fruit found throughout Southeast Asia, to investigate the inhibitory effect of melanogenesis. M. cochinchinensis contains a high concentration of polyphenols, flavonoids, and unsaturated fatty acids, which might be related to antioxidant activity. This study aimed to determine whether M. cochinchinensis extracts inhibit melanin synthesis in melan-A cells by inhibiting tyrosinase activity and p-PKC signaling. M. cochinchinensis was divided into pulp and aril and extracted under various conditions, and it was confirmed that all pulp and aril extracts have high contents of both phenols and flavonoids. Melan-A cells were treated with PMA for three days to induce melanin synthesis. After PMA treatment, M. cochinchinensis extracts were added to cultured media in a dose-dependent manner. Melanin contents and MTS were used to determine the amount of melanin in live cells. M. cochinchinensis extracts were evaluated for their effects on tyrosinase activity and p-PKC signaling pathways by Western blotting. It was found that M. cochinchinensis extract treatment decreased the amount of melanin and suppressed p-PKC expression. Additionally, tyrosinase activity was reduced after M. cochinchinensis extract treatment in a dose-dependent manner. Therefore, it was concluded that M. cochinchinensis could be used in antimelanogenesis and functional cosmetic materials to improve whitening.


Assuntos
Antioxidantes/farmacologia , Melaninas/biossíntese , Momordica , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Flavonoides/farmacologia , Humanos , Fenóis/farmacologia
6.
Antioxidants (Basel) ; 10(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34439431

RESUMO

The effect of salt treatment on Brassica carinata (BC) microgreens grown under different light wavelengths on glucosinolates (GLs) and phenolic compounds were evaluated. Quantifiable GLs were identified using ultra-high performance-quadrupole time of flight mass spectrometry. Extracts' ability to activate antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) was evaluated on human colorectal carcinoma cells (HCT116). Furthermore, BC compounds' ability to activate expression of nuclear transcription factor-erythroid 2 related factor (Nrf2) and heme-oxygenase-1 (HO-1) proteins was examined using specific antibodies on HCT116 cells. Sinigrin (SIN) was the abundant GLs of the six compounds identified and its content together with total aliphatic GLs increased in saline conditions. Fluorescent (FL) and blue plus red (B1R1) lights were identified as stable cultivation conditions for microgreens, promoting biomass and glucobrassicin contents, whereas other identified individual and total indole GLs behaved differently in saline and non-saline environments. Blue light-emitting diodes and FL light in saline treatments mostly enhanced SIN, phenolics and antioxidant activities. The increased SOD and CAT activities render the BC microgreens suitable for lowering oxidative stress. Additionally, activation of Nrf2, and HO-1 protein expression by the GLs rich extracts, demonstrate their potential to treat and prevent oxidative stress and inflammatory disorders. Therefore, effective salt treatments and light exposure to BC microgreens present an opportunity for targeted regulation of growth and accumulation of bioactive metabolites.

7.
Molecules ; 26(15)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34361637

RESUMO

Ganoderma lucidum extract is a potent traditional remedy for curing various ailments. Drying is the most important postharvest step during the processing of Ganoderma lucidum. The drying process mainly involves heat (36 h at 60 °C) and freeze-drying (36 h at -80 °C). We investigated the effects of different postharvest drying protocols on the metabolites profiling of Ganoderma lucidum using GC-MS, followed by an investigation of the anti-neuroinflammatory potential in LPS-treated BV2 microglial cells. A total of 109 primary metabolites were detected from heat and freeze-dried samples. Primary metabolite profiling showed higher levels of amino acids (17.4%) and monosaccharides (8.8%) in the heat-dried extracts, whereas high levels of organic acids (64.1%) were present in the freeze-dried samples. The enzymatic activity, such as ATP-citrate synthase, pyruvate kinase, glyceraldehyde-3-phosphatase dehydrogenase, glutamine synthase, fructose-bisphosphate aldolase, and D-3-phosphoglycerate dehydrogenase, related to the reverse tricarboxylic acid cycle were significantly high in the heat-dried samples. We also observed a decreased phosphorylation level of the MAP kinase (Erk1/2, p38, and JNK) and NF-κB subunit p65 in the heat-dried samples of the BV2 microglia cells. The current study suggests that heat drying improves the production of ganoderic acids by the upregulation of TCA-related pathways, which, in turn, gives a significant reduction in the inflammatory response of LPS-induced BV2 cells. This may be attributed to the inhibition of NF-κB and MAP kinase signaling pathways in cells treated with heat-dried extracts.


Assuntos
Anti-Inflamatórios , Antineoplásicos Fitogênicos , Neoplasias/tratamento farmacológico , Reishi/química , Metabolismo Secundário , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Dessecação , Camundongos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia
8.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800290

RESUMO

Tumor necrosis factor alpha (TNF-α) was initially recognized as a factor that causes the necrosis of tumors, but it has been recently identified to have additional important functions as a pathological component of autoimmune diseases. TNF-α binds to two different receptors, which initiate signal transduction pathways. These pathways lead to various cellular responses, including cell survival, differentiation, and proliferation. However, the inappropriate or excessive activation of TNF-α signaling is associated with chronic inflammation and can eventually lead to the development of pathological complications such as autoimmune diseases. Understanding of the TNF-α signaling mechanism has been expanded and applied for the treatment of immune diseases, which has resulted in the development of effective therapeutic tools, including TNF-α inhibitors. Currently, clinically approved TNF-α inhibitors have shown noticeable potency in a variety of autoimmune diseases, and novel TNF-α signaling inhibitors are being clinically evaluated. In this review, we briefly introduce the impact of TNF-α signaling on autoimmune diseases and its inhibitors, which are used as therapeutic agents against autoimmune diseases.


Assuntos
Doenças Autoimunes , Fatores Imunológicos/uso terapêutico , Transdução de Sinais , Fator de Necrose Tumoral alfa , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Doença Crônica , Humanos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/imunologia
9.
Sci Rep ; 11(1): 543, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436909

RESUMO

Pro-inflammatory cytokines such as IL-1ß, IL-6, and TNF-α are mediated by the activation of various kinds of signaling pathways in the innate immune system. Particularly, NF-κB and NLRP3 inflammasome signaling are involved in the production and secretion of these cytokines. Each signaling is participated in the two steps necessary for IL-1ß, a representative pro-inflammatory cytokine, to be processed into a form secreted by cells. In the priming step stimulated by LPS, pro-IL-1ß is synthesized through NF-κB activation. Pro-IL-1ß cleavages into mature IL-1ß by formed NLRP3 inflammasome in the activation step induced by ATP. The mature form of IL-1ß is subsequently secreted out of the cell, causing inflammation. Moreover, IL-6 and TNF-α are known to increase in NLRP3 inflammasome-mediated conditions. Here, we found that fucoxanthin, one of the major components of Phaeodactylum tricornutum, has an inhibitory effect on NF-κB and NLRP3 inflammasome activation induced by the combination of LPS and ATP in bone marrow-derived immune cells as well as astrocytes. Fucoxanthin, which is abundant in the EtOH fraction of Phaeodactylum tricornutum extracts, has shown to have less cell toxicity and found to decrease the production of major pro-inflammatory cytokines such as IL-1ß, IL-6, and TNF-α. Fucoxanthin has also shown to suppress the expression of cleaved caspase-1 and the oligomerization of ASC, which are the main components of the NLRP3 inflammasome. Furthermore, phosphorylated IκBα and pro-IL-1ß expression decreased in the presence of fucoxanthin, suggesting that fucoxanthin can negatively regulate the priming step of inflammasome signaling. Thus, our results provide reliable evidence that fucoxanthin may serve as a key candidate in the development of potential therapeutic agents for inflammatory diseases as well as neurodegenerative diseases caused by NF-κB and NLRP3 inflammasome activation.


Assuntos
Citocinas/metabolismo , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Microalgas/química , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Xantofilas/farmacologia , Astrócitos/imunologia , Astrócitos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Inflamação , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Terapia de Alvo Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Fitoterapia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Xantofilas/isolamento & purificação , Xantofilas/uso terapêutico
10.
ACS Chem Neurosci ; 10(6): 3031-3044, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31016960

RESUMO

Recent clinical approvals of brain imaging radiotracers targeting amyloid-ß provided clinicians the tools to detect and confirm Alzheimer's disease pathology without autopsy or biopsy. While current imaging agents are effective in postsymptomatic Alzheimer's patients, there is much room for improvement in earlier diagnosis, hence prompting a need for new and improved amyloid imaging agents. Here we synthesized 41 novel 1,4-naphthoquinone derivatives and initially discovered 14 antiamyloidogenic compounds via in vitro amyloid-ß aggregation assay; however, qualitative analyses of these compounds produced conflicting results and required further investigation. Follow-up docking and biophysical studies revealed that four of these compounds penetrate the blood-brain barrier, directly bind to amyloid-ß aggregates, and enhance fluorescence properties upon interaction. These compounds specifically stain both diffuse and dense-core amyloid-ß plaques in brain sections of APP/PS1 double transgenic Alzheimer's mouse models. Our findings suggest 1,4-naphthoquinones as a new scaffold for amyloid-ß imaging agents for early stage Alzheimer's.


Assuntos
Encéfalo , Corantes Fluorescentes/farmacologia , Naftoquinonas/farmacologia , Placa Amiloide , Precursor de Proteína beta-Amiloide/genética , Animais , Camundongos , Camundongos Transgênicos , Presenilina-1/genética
11.
Int J Syst Evol Microbiol ; 67(8): 2975-2979, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28820106

RESUMO

A bacterial strain, designated SN6-9T, was isolated from soil of the Gotjawal, lava forest, located in Jeju, Republic of Korea. Strain SN6-9T was Gram-stain-negative, motile, oxidase- and catalase-negative, yellow-pigmented and rod-shaped. It contained summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) as the major fatty acids, Q-10 as the predominant isoprenoid quinone, sym-homospermidine as the major polyamine and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid and two unidentified phospholipids as the polar lipids. The DNA G+C content was 64.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain formed a separate lineage in the genus Sphingomonas. Based on the results from this polyphasic taxonomic study, it is concluded that strain SN6-9T represents a novel species in the genus Sphingomonas. The name Sphingomonas gotjawalisoli sp. nov. is proposed; the type strain is SN6-9T (=KCTC 52405T=NRRL B-65395T).


Assuntos
Florestas , Filogenia , Microbiologia do Solo , Sphingomonas/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Espermidina/análogos & derivados , Espermidina/química , Sphingomonas/genética , Sphingomonas/isolamento & purificação , Ubiquinona/química
12.
Sci Rep ; 6: 34922, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713511

RESUMO

High-grade glioma is a highly malignant and metastatic brain cancer, resistant to many existing anticancer treatments. In such glioma cancer cells, the glucose-regulated protein 78 kDa (GRP78) is particularly highly up-regulated. Former studies have thus targeted mutation-free GRP78 not only to detect glioma cancer cells specifically but also to enhance cytotoxic effect. We focus on cell surface-expressed GRP78 as a target for suppressing high-grade glioma cell lines. Glioblastoma multiforme (GBM) cell line, highly malignant glioma cells, was first injected into 5-week-old athymic mice to confirm and compare GRP78 expression in vivo in xenografted and normal brain tissue. Immunofluorescence and immunoblotting were utilized to detect surface-localized GRP78 in diverse high-grade glioma cell lines. By treating glioma cell lines with the polyclonal N-20 antibody against surface-localized GRP78, we subsequently studied the significance of surface GRP78 to the survival and growth of the glioma cell lines. We found that inhibiting the function of surface GRP78 suppressed cancer cell survival and growth proving that the surface-expressed GRP78 is a vital receptor involved in the proliferation of high-grade glioma. Our findings provide opportunities to target surface GRP78 as a biomarker for high-grade glioma and to develop effective cell-specific anticancer therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteínas de Choque Térmico/metabolismo , Animais , Anticorpos Bloqueadores/administração & dosagem , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Sobrevivência Celular , Chaperona BiP do Retículo Endoplasmático , Glioblastoma/patologia , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/imunologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Transplante de Neoplasias , Transplante Heterólogo , Regulação para Cima
13.
Artigo em Inglês | MEDLINE | ID: mdl-24959189

RESUMO

Mistletoe (Viscum Album coloratum) has been known as a medicinal plant in European and Asian countries. Recent data show that biological activity of mistletoe alleviates hypertension, heart disease, renal failure, and cancer development. In this study, we report the antidiabetic effect of Korean mistletoe extract (KME). KME treatments enhanced the insulin secretion from the pancreatic ß -cell without any effects of cytotoxicity. PDX-1 and beta2/neuroD known as transcription factors that regulate the expression of insulin gene were upregulated by treatment of the KME protein fractions isolated by ion-exchange chromatography after ammonium sulfate precipitation. Furthermore, these KME protein fractions significantly lowered the blood glucose level and the volume of drinking water in alloxan induced hyperglycemic mice. Taken together with the findings, it provides new insight that KME might be served as a useful source for the development of medicinal reagent to reduce blood glucose level of type I diabetic patients.

14.
Immunity ; 34(3): 340-51, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21419663

RESUMO

Excessive responses to pattern-recognition receptors are prevented by regulatory mechanisms that affect the amounts and activities of the downstream signaling proteins. We report that activation of the transcription factor IRF3 by the ribonucleic acid sensor RIG-I was restricted by caspase-8-mediated cleavage of the RIP1 protein, which resulted in conversion of RIP1 from a signaling enhancer to a signaling inhibitor. The proteins RIP1 and caspase-8 were recruited to the RIG-I complex after viral infection and served antagonistic regulatory roles. Conjugation of ubiquitin chains to RIP1 facilitated assembly of the RIG-I complex, resulting in enhanced phosphorylation of IRF3. However, the ubiquitination of RIP1 also rendered it susceptible to caspase-8-mediated cleavage that yielded an inhibitory RIP1 fragment. The dependence of RIP1 cleavage on the same molecular change as that facilitating RIG-I signaling allows for RIG-I signaling to be restricted in its duration without compromising its initial activation.


Assuntos
Caspase 8/imunologia , Regulação da Expressão Gênica , Fator Regulador 3 de Interferon/imunologia , Complexo de Proteínas Formadoras de Poros Nucleares/imunologia , RNA Helicases/imunologia , Proteínas de Ligação a RNA/imunologia , Receptores do Ácido Retinoico/imunologia , Animais , Caspase 8/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Camundongos , Análise em Microsséries , RNA Helicases/metabolismo , Proteínas Repressoras/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA