Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
World J Gastroenterol ; 30(8): 919-942, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38516243

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common types of tumors. The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies. AIM: To establish an HCC prognostic model for lipid metabolism-related long non-coding RNAs (LMR-lncRNAs) and conduct in-depth research on the specific role of novel LMR-lncRNAs in HCC. METHODS: Correlation and differential expression analyses of The Cancer Genome Atlas data were used to identify differentially expressed LMR-lncRNAs. Quantitative real-time polymerase chain reaction analysis was used to evaluate the expression of LMR-lncRNAs. Nile red staining was employed to observe intracellular lipid levels. The interaction between RP11-817I4.1, miR-3120-3p, and ATP citrate lyase (ACLY) was validated through the performance of dual-luciferase reporter gene and RIP assays. RESULTS: Three LMR-lncRNAs (negative regulator of antiviral response, RNA transmembrane and coiled-coil domain family 1 antisense RNA 1, and RP11-817I4.1) were identified as predictive markers for HCC patients and were utilized in the construction of risk models. Additionally, proliferation, migration, and invasion were reduced by RP11-817I4.1 knockdown. An increase in lipid levels in HCC cells was significantly induced by RP11-817I4.1 through the miR-3120-3p/ACLY axis. CONCLUSION: LMR-lncRNAs have the capacity to predict the clinical characteristics and prognoses of HCC patients, and the discovery of a novel LMR-lncRNAs, RP11-817I4.1, revealed its role in promoting lipid accumulation, thereby accelerating the onset and progression of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Ácidos Graxos , Lipídeos , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral
2.
Dig Liver Dis ; 55(3): 400-406, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35999136

RESUMO

The FGF/FGFR signaling axis deregulation of the fibroblast growth factor receptor (FGFR) family is closely related to tumorigenesis, tumor progression and drug resistance to anticancer therapy. And fibroblast growth factor receptor 3 (FGFR3) is one member of this family. In this study, we aimed to investigate the effect of siRNA-induced knockdown of FGFR3 on the biological behaviors of intrahepatic cholangiocarcinoma (ICC). The expression levels of FGFR3 were determined in three intrahepatic cholangiocarcinoma cell lines RBE, HUCCT1 and HCCC9810 cell lines by Western blot. FGFR3 expression in RBE cell line was knocked down by siRNA. Our study found that knockdown of FGFR3 inhibited the migration, invasion and proliferation of ICC cells using Wound healing assay, Transwell migration and invasion assays and Cell proliferation assay. And significantly down-regulated the protein expression levels of MMP2, cyclinD1, and NCadherin, but had no significant effect on MMP9, cyclinD3, vimentin, E-cadherin protein. In addition, we found that ERK/c-Myc presumably is its signaling pathway by bioinformatics analysis and Western blot verification. To sum up, knockdown of FGFR3 inhibited the migration, invasion and proliferation of ICC cells. It demonstrated that FGFR3 probably becomes a therapeutic target for ICC and increases the proportion of potentially curable intrahepatic cholangiocarcinoma patients treated with FGFR inhibitors.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/farmacologia , Proliferação de Células/genética , Movimento Celular/genética , Colangiocarcinoma/patologia , RNA Interferente Pequeno/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
3.
J Food Biochem ; 46(12): e14458, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265159

RESUMO

The phenolics are the main bioactive substances of Huangshan Gongju, a famous chrysanthemum of China, but their digestive characteristics are still unknown. To explore the digestive properties of Huangshan Gongju phenolics, the flower was extracted and subjected to simulated digestions, and their phenolic profile and activity were analyzed. The results indicated that the total phenolics content and antioxidant activity of the extract varied with the simulated digestion steps, and they generally decreased in the oral and small intestine digestions but increased in the gastric digestion, and high correlations were detected between the total phenolics content and antioxidant activity (0.873 < r < 0.979, p < .01). The change of phenolic profile during the simulated digestions was similar to that of total phenolics content, and six individual phenolics were identified and quantified, and three of them, including chlorogenic acid, apigenin-7-O-rutinoside, and apigenin-7-O-6″-acetylglucoside showed higher recovery (>64.29%), implying they may be the main functional phenolics of Huangshan Gongju. PRACTICAL APPLICATIONS: This study proved that most phenolics in Huangshan Gongju were relatively stable during digestion. The finding may guarantee the application of Huangshan Gongju in the field of functional foods.


Assuntos
Antioxidantes , Chrysanthemum , Fenóis , Extratos Vegetais , Digestão
4.
Clin Res Hepatol Gastroenterol ; 46(7): 101991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35792239

RESUMO

PURPOSE: Intrahepatic cholangiocarcinoma (ICC) can invade and metastasize. EIF5A2 is involved in the invasive metastatic process of several digestive malignancies. However, its role in ICC is yet to be elucidated. METHODS: Immunohistochemistry (IHC) and Western blot (WB) were used to detect the level of EIF5A2 in the tumor specimens of ICC patients and evaluate the correlation between its expression and clinicopathological characteristics. The significance of EIF5A2 in the prognosis of ICC patients was further evaluated by Kaplan-Meier and Cox regression analysis. In addition, CCK-8, EdU, Transwell invasion, and scratch assays were utilized to detect tumor cell proliferation, invasion, and metastasis. Furthermore, the role of EIF5A2 in ICC cells was evaluated after modification of EIF5A2 expression. RESULTS: The level of EIF5A2 protein was significantly higher in ICC than in adjacent tissues. This high expression in the tumor samples was significantly associated with malignant phenotypes, such as lymph node metastasis (LNM), microvascular or bile duct invasion, and poor differentiation. ICC patients with high expression of EIF5A2 had short overall survival and a high cumulative recurrence rate. The multifactorial analysis showed that EIF5A2 is an independent prognostic marker. Furthermore, high levels of EIF5A2 may activate the PI3K/AKT/mTOR signaling pathway and upregulate Cyclin D1, Cyclin D3, MMP2, and MMP9 to promote ICC cell proliferation, migration, and invasion. CONCLUSION: The current study found that EIF5A2 promotes ICC progression and is a prognostic biomarker and candidate therapeutic target for ICC patients.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Ductos Biliares Intra-Hepáticos/patologia , Proliferação de Células/fisiologia , Humanos , Fatores de Iniciação de Peptídeos , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas de Ligação a RNA , Fator de Iniciação de Tradução Eucariótico 5A
5.
J Cereb Blood Flow Metab ; 42(7): 1259-1271, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35078350

RESUMO

The brain is highly complex with diverse structural characteristics in accordance with specific functions. Accordingly, differences in regional function, cellular compositions, and active metabolic pathways may link to differences in glucose metabolism at different brain regions. In the current study, we optimized an acute biopsy punching method and characterized region-specific glucose metabolism of rat and mouse brain by a Seahorse XFe96 analyzer. We demonstrated that 0.5 mm diameter tissue punches from 180-µm thick brain sections allow metabolic measurements of anatomically defined brain structures using Seahorse XFe96 analyzer. Our result indicated that the cerebellum displays a more quiescent phenotype of glucose metabolism than cerebral cortex, basal ganglia, and hippocampus. In addition, the cerebellum has higher AMPK activation than other brain regions evidenced by the expression of pAMPK, upstream pLKB1, and downstream pACC. Furthermore, rodent brain has relatively low mitochondrial oxidative phosphorylation efficiency with up to 30% of respiration linked to proton leak. In summary, our study discovered region-specific glucose metabolic profile and relative high proton leak coupled respiration in the brain. Our study warrants future research on spatial mapping of the brain glucose metabolism in physiological and pathological conditions and exploring the mechanisms and significance of mitochondrial uncoupling in the brain.


Assuntos
Glucose , Smegmamorpha , Animais , Encéfalo/metabolismo , Glucose/metabolismo , Metaboloma , Camundongos , Prótons , Ratos , Roedores/metabolismo , Smegmamorpha/metabolismo
6.
Food Chem Toxicol ; 147: 111875, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33227389

RESUMO

Huangshan Gongju was extracted with organic solvents (ethanol, methanol and acetone) of different concentrations (0-90%), and the extracts' phenolic content and antioxidant activity, as well as the correlations between them were examined. With the increasing concentration of organic solvent, the total phenolic compound (TPC) increased continuously and met its maximum at 70% acetone, whereas the total flavonoid compound (TFC) and most individual phenolics met their maximums at 70% ethanol. Similar changes occurred to the antioxidant activity, including DPPH and ABTS scavenging activities, and their maximums were respectively found at 50% acetone and 70% ethanol. The antioxidant activity correlated strongly with TPC/TFC (r > 0.954, p < 0.01) and individual phenolics (r > 0.886, p < 0.05), and the strongest correlations between them were mainly given by luteolin-7-O-glucoside (r > 0.975, p < 0.001). These results suggested that high content organic solvent (50-70%) was beneficial to obtain Huangshan Gongju extracts of higher phenolic content and antioxidant activity, and 70% ethanol may be the promising solvent. Besides, phenolics were found to be the main antioxidants of Huangshan Gongju extracts, and flavonoids especially luteolin-7-O-glucoside may play more important roles in the antioxidant activity.


Assuntos
Antioxidantes/farmacologia , Asteraceae/química , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/química , Solventes/química
8.
Front Cell Neurosci ; 12: 108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731711

RESUMO

Artemisinin is an anti-malarial drug that has been in use for almost half century. Recently, novel biological effects of artemisinin on cancer, inflammation-related disorders and cardiovascular disease were reported. However, neuroprotective actions of artemisinin against glutamate-induced oxidative stress have not been investigated. In the current study, we determined the effect of artemisinin against oxidative insult in HT-22 mouse hippocampal cell line. We found that pretreatment of artemisinin declined reactive oxygen species (ROS) production, attenuated the collapse of mitochondrial membrane potential induced by glutamate and rescued HT-22 cells from glutamate-induced cell death. Furthermore, our study demonstrated that artemisinin activated Akt/Bcl-2 signaling and that neuroprotective effect of artemisinin was blocked by Akt-specific inhibitor, MK2206. Taken together, our study indicated that artemisinin prevented neuronal HT-22 cell from glutamate-induced oxidative injury by activation of Akt signaling pathway.

9.
Neurosurg Rev ; 41(3): 891-894, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29572579

RESUMO

Giant intrapetrous internal carotid aneurysms (petrous ICA aneurysm) are rare. A giant petrous ICA aneurysm presenting with otorrhagia and coil exposure to the external auditory meatus (EAM) after endovascular treatment has never been documented before. The authors report here a case of successful surgical trapping with bypass intervention of a giant petrous ICA aneurysm presenting with coil exposure after endovascular treatment. A 58-year-old man presented with persistent otorrhagia having been admitted to our hospital because of the recurrence of a giant petrous ICA aneurysm after repeated embolization treatments with coils. An electronic otoscope examination demonstrated that a piece of coil escaped into his right EAM. After multidisciplinary consultation, an extracranial-intracranial (EC-IC) bypass with ICA occlusion and coil removal with a closed EAM filling were performed in stages. The patient recovered quickly without any neurological deficits. A digital subtraction angiography confirmed the absence of the aneurysm and patency of the bypass graft.


Assuntos
Prótese Vascular/efeitos adversos , Doenças das Artérias Carótidas/cirurgia , Procedimentos Endovasculares/métodos , Aneurisma Intracraniano/cirurgia , Procedimentos Neurocirúrgicos/métodos , Osso Petroso/cirurgia , Angiografia Digital , Implante de Prótese Vascular , Meato Acústico Externo/diagnóstico por imagem , Embolização Terapêutica , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva
10.
Zhongguo Zhong Yao Za Zhi ; 42(18): 3435-3442, 2017 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-29218925

RESUMO

In this paper,the potential climate factors affecting the Pairs polyphylla var. yunnanensis distribution in China at rational scales were selected from related literatures, using the sampling point geographic information from of P. polyphylla var. yunnanensis, combine the maximum entropy model (MaxEnt) with spatial analyst function of ArcGIS software, to study the climate suitability of P. polyphylla var. yunnanensis cultivating region in China and the leading climate factors. The results showed that, average rainfall in August, average rainfall in October, coefficient of variation of seasonal precipitation, the average temperature of the dry season, isothermal characteristic, average temperature in July were the leading climate factors affecting the potential distribution of P. polyphylla var. yunnanensis cultivating region in China, with their cumulative contribution rate reached 97.2% of all candidate climate factors. Existence probability of the region to be predicted of P. polyphylla var. yunnanensis through the constructed model, the climate unsuitable region, low, medium and high region of P. polyphylla var. yunnanensis in China were clarified and the threshold of climatic factors were gave and clarified the climate characteristics of the cultivating region in each climatic suitability division. The results of research can provide reference for production layout and introduction of P. polyphylla var. yunnanensis.


Assuntos
Clima , Mineração de Dados , Liliaceae/crescimento & desenvolvimento , China , Medicamentos de Ervas Chinesas/análise , Liliaceae/química
11.
Aging Dis ; 8(2): 203-214, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28400986

RESUMO

Stroke survivors are typically left with structural brain damage and associated functional impairment in the chronic phase of injury, for which few therapeutic options exist. We reported previously that transplantation of human embryonic stem cell (hESC)-derived neural stem cells together with Matrigel scaffolding into the brains of rats after focal ischemia reduced infarct volume and improved neurobehavioral performance. Matrigel is a gelatinous protein mixture extracted from mouse sarcoma cells, thus would not be approved for use as a scaffold clinically. In this study, we generated a gel-like scaffold from plasma that was controlled by changing the concentration of CaCl2. In vitro study confirmed that 10-20 mM CaCl2 and 10-40% plasma did not affect the viability and proliferation of human and rat bone marrow mesenchymal stem/stromal cells (BMSCs) and neural stem cells (NSCs). We transplanted plasma scaffold in combination of BMSCs into the cystic cavity after focal cerebral ischemia, and found that the atrophy volume was dramatically reduced and motor function was significantly improved in the group transplanted with scaffold/BMSCs compared with the groups treated with vehicle, scaffold or BMSCs only. Our data suggest that plasma-derived scaffold in combination of BMSCs is feasible for tissue engineering approach for the stroke treatment.

12.
Prog Neurobiol ; 157: 273-291, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26603930

RESUMO

Brain has exceptional high requirement for energy metabolism with glucose as the exclusive energy source. Decrease of brain energy metabolism and glucose uptake has been found in patients of Alzheimer's, Parkinson's and other neurodegenerative diseases, providing a clear link between neurodegenerative disorders and energy metabolism. On the other hand, cancers, including glioblastoma, have increased glucose uptake and rely on aerobic glycolysis for energy metabolism. The switch of high efficient oxidative phosphorylation to low efficient aerobic glycolysis pathway (Warburg effect) provides macromolecule for biosynthesis and proliferation. Current research indicates that methylene blue, a century old drug, can receive electron from NADH in the presence of complex I and donates it to cytochrome c, providing an alternative electron transfer pathway. Methylene blue increases oxygen consumption, decrease glycolysis, and increases glucose uptake in vitro. Methylene blue enhances glucose uptake and regional cerebral blood flow in rats upon acute treatment. In addition, methylene blue provides protective effect in neuron and astrocyte against various insults in vitro and in rodent models of Alzheimer's, Parkinson's, and Huntington's disease. In glioblastoma cells, methylene blue reverses Warburg effect by enhancing mitochondrial oxidative phosphorylation, arrests glioma cell cycle at s-phase, and inhibits glioma cell proliferation. Accordingly, methylene blue activates AMP-activated protein kinase, inhibits downstream acetyl-coA carboxylase and cyclin-dependent kinases. In summary, there is accumulating evidence providing a proof of concept that enhancement of mitochondrial oxidative phosphorylation via alternative mitochondrial electron transfer may offer protective action against neurodegenerative diseases and inhibit cancers proliferation.


Assuntos
Transporte de Elétrons/efeitos dos fármacos , Azul de Metileno/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transporte de Elétrons/fisiologia , Humanos , Azul de Metileno/uso terapêutico , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/uso terapêutico
13.
Med Gas Res ; 6(3): 154-163, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27867483

RESUMO

Globins are globular proteins for either transport or storage of oxygen which are critical for cellular metabolism. Four globins have been identified in rodent and human brains. Among them, neuroglobin, cytoglobin and hemoglobin chains are constitutively expressed in normal brain, while myoglobin is only expressed in some neurological disorders. Studies on the molecular structure, expression and functional features of these brain globins indicated that they may play crucial roles in maintenance of neural cell survival and activity, including neurons and astrocytes. Their regulation in neurological disorders may help thoroughly understand initiation and progression of ischemia, Alzheimer's disease and glioma, etc. Elucidation of the brain globin functions might remarkably improve medical strategies that sustain neurological homeostasis and treat neurological diseases. Here the expression pattern and functions of brain globins and their involvement in neurological disorders are reviewed.

14.
Arch Virol ; 161(11): 3081-93, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27518404

RESUMO

The binding motif of BF2*15 major histocompatibility complex (MHC) class I was explored by analyzing the interaction between an infectious bronchitis virus octapeptide and BF2*15, and the cytotoxic T lymphocyte (CTL) epitope from the nucleoprotein (NP) of H5N1 virus was identified using experimental methods. Computational methods, including homology modeling, molecular dynamics simulation, and molecular docking analysis, were used. The recombinant plasmid pCAGGS-NP was constructed, and NP expression was confirmed by indirect immunofluorescence and Western blot in transfected 293T cells. Antibodies against NP in pCAGGS-NP-inoculated specific-pathogen-free chickens were detected by enzyme-linked immunosorbent assay (ELISA). Interferon γ (IFN-γ) mRNA was quantified, and IFN-γ production was evaluated using quantitative reverse transcription PCR and capture ELISA, respectively. CD8(+) T-lymphocyte proliferation was detected using flow cytometric analysis. The BF2*15 MHC class I binding motif "x-Arg/Lys-x-x-x-Arg/Lys" was explored. Quantification of chicken IFN-γ mRNA, evaluation of IFN-γ production, and measurement of CD8(+) T-lymphocyte proliferation confirmed that the peptide NP67-74 of H5N1 was the BF2*15 MHC-class-I-restricted CTL epitope.


Assuntos
Epitopos de Linfócito T/metabolismo , Antígenos HLA-B/metabolismo , Virus da Influenza A Subtipo H5N1/imunologia , Proteínas de Ligação a RNA/imunologia , Linfócitos T Citotóxicos/imunologia , Proteínas do Core Viral/imunologia , Animais , Sítios de Ligação , Linhagem Celular , Galinhas , Humanos , Simulação de Acoplamento Molecular , Proteínas do Nucleocapsídeo , Ligação Proteica
15.
Brain Pathol ; 26(1): 31-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25758142

RESUMO

Heat shock protein 47 (HSP47) is a collagen-binding protein, which has been recently found to express in glioma vessels. However, the expression profile of HSP47 in glioma patients and the underlying mechanisms of HSP47 on glioma angiogenesis are not fully explored. In the current study, we found that expression of HSP47 in glioma vessels was correlated with the grades of gliomas. HSP47 knockdown by siRNAs significantly decreased cell viability in vitro and tumor volume in vivo; moreover, it reduced the microvessel density (MVD) by CD31 immunohistochemistry in vivo. HSP47 knockdown significantly inhibited tube formation, invasion and proliferation of human umbilical vein endothelial cells (HUVECs). Furthermore, conditional medium derived from HSP47 knockdown cells significantly inhibited HUVECs tube formation and migration, while it increased chemosensitivity of HUVECs cells to Avastin. Silencing of HSP47 decreased VEGF expression in glioma cells consistently, and reduced glioma vasculature. Furthermore, HSP47 promoted glioma angiogenesis through HIF1α-VEGFR2 signaling. The present study demonstrates that HSP47 promotes glioma angiogenesis and highlights the importance of HSP47 as an attractive therapeutic target of GBM.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Proteínas de Choque Térmico HSP47/metabolismo , Neovascularização Patológica/etiologia , Neovascularização Patológica/metabolismo , Células Tumorais Cultivadas/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Choque Térmico HSP47/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Microvasos/metabolismo , Microvasos/patologia , Pessoa de Meia-Idade , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neovascularização Patológica/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor ErbB-2/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/genética
16.
Mol Neurobiol ; 53(2): 1254-1265, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25616953

RESUMO

Neuroglobin (Ngb) is a recently discovered globin with preferential localization to neurons. Growing evidence indicates that Ngb has distinct physiological functions separate from the oxygen storage and transport roles of other globins, such as hemoglobin and myoglobin. We found increased ATP production and decreased glycolysis in Ngb-overexpressing immortalized murine hippocampal cell line (HT-22), in parallel with inhibition of AMP-activated protein kinase (AMPK) signaling and activation of acetyl-CoA carboxylase (ACC). In addition, lipid and glycogen content was increased in Ngb-overexpressing HT-22 cells. AMPK signaling was also inhibited in the brain and heart from Ngb-overexpressing transgenic mice. Although Ngb overexpression did not change glycogen content in whole brain, glycogen synthase was activated in cortical neurons of Ngb-overexpressing mouse brain and Ngb overexpression primary neurons. Moreover, lipid and glycogen content was increased in hearts derived from Ngb-overexpressing mice. These findings suggest that Ngb functions as a metabolic regulator and enhances cellular anabolism through the inhibition of AMPK signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Globinas/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/biossíntese , Animais , Linhagem Celular , Córtex Cerebral/citologia , Ativação Enzimática , Glucose/deficiência , Ácido Glutâmico/toxicidade , Glicogênio/metabolismo , Glicogênio Sintase/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Lipídeos/química , Camundongos Transgênicos , Modelos Biológicos , Miocárdio/enzimologia , Neuroglobina , Neurônios/metabolismo , Oxigênio , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
17.
PLoS One ; 10(4): e0123096, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25848957

RESUMO

Astrocytes outnumber neurons and serve many metabolic and trophic functions in the mammalian brain. Preserving astrocytes is critical for normal brain function as well as for protecting the brain against various insults. Our previous studies have indicated that methylene blue (MB) functions as an alternative electron carrier and enhances brain metabolism. In addition, MB has been shown to be protective against neurodegeneration and brain injury. In the current study, we investigated the protective role of MB in astrocytes. Cell viability assays showed that MB treatment significantly protected primary astrocytes from oxygen-glucose deprivation (OGD) & reoxygenation induced cell death. We also studied the effect of MB on cellular oxygen and glucose metabolism in primary astrocytes following OGD-reoxygenation injury. MB treatment significantly increased cellular oxygen consumption, glucose uptake and ATP production in primary astrocytes. In conclusion our study demonstrated that MB protects astrocytes against OGD-reoxygenation injury by improving astrocyte cellular respiration.


Assuntos
Astrócitos/fisiologia , Respiração Celular/efeitos dos fármacos , Glucose/metabolismo , Azul de Metileno/farmacologia , Fármacos Neuroprotetores/farmacologia , Trifosfato de Adenosina/biossíntese , Animais , Astrócitos/efeitos dos fármacos , Hipóxia Celular , Sobrevivência Celular , Células Cultivadas , Citoproteção , Avaliação Pré-Clínica de Medicamentos , Glicogênio/biossíntese , Hexoquinase/metabolismo , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Consumo de Oxigênio
18.
Anticancer Drugs ; 26(3): 293-300, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25535979

RESUMO

Tamoxifen, a selective estrogen receptor modulator, is widely used in the chemotherapy of estrogen receptor-positive breast cancer. Recent studies have indicated that tamoxifen might have a potential chemotherapeutic effect on glioma. In the present study, we determined the chemotherapeutic action of tamoxifen on human glioma cell lines. Methylation of 06-methylguanine-DNA methyltransferase was identified in A172, U251, and BT325 glioma cell lines, but not in the U87 cell line. Consistently, A172, U251, and BT325 cell lines are resistant to temozolomide. Tamoxifen induced significant cytotoxic action in A172, U251, BT325, and U87 cell lines. Further, Hoechst 33342 staining and apoptosis flow cytometric analysis demonstrated that tamoxifen induced apoptosis in the BT325 cell line. Mitochondrial complex analysis indicated that tamoxifen, but not other estrogen receptor modulators, dose-dependently inhibits complex I activity. In summary, our study suggests that tamoxifen might have a chemotherapeutic effect on temozolomide-resistant glioma through its direct action on mitochondrial complex I inhibition and could provide further evidence to support future clinical trials of tamoxifen for the treatment of glioblastoma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioma/tratamento farmacológico , Tamoxifeno/farmacologia , Animais , Antineoplásicos Hormonais/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Dacarbazina/farmacologia , Relação Dose-Resposta a Droga , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Glioma/metabolismo , Humanos , Masculino , Metilação , Mitocôndrias/metabolismo , Regiões Promotoras Genéticas , Ratos Sprague-Dawley , Temozolomida , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
19.
Eur J Immunol ; 45(1): 180-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25329858

RESUMO

Forkhead box P3 (Foxp3)(+) regulatory T (Treg) cells maintain the immune tolerance and prevent inflammatory responses in the periphery. However, the presence of Treg cells in the CNS under steady state has not been studied. Here, for the first time, we show a substantial TCRαß (+) CD4(+) Foxp3(+) T-cell population (cerebral Treg cells) in the rat cerebrum, constituting more than 15% of the cerebral CD4(+) T-cell compartment. Cerebral Treg cells showed an activated/memory phenotype and expressed many Treg-cell signature genes at higher levels than peripheral Treg cells. Consistent with their activated/memory phenotype, cerebral Treg cells robustly restrained the LPS-induced inflammatory responses of brain microglia/macrophages, suggesting a role in maintaining the cerebral homeostasis by inhibiting the neuroinflammation. In addition, brain astrocytes were the helper cells that sustained Foxp3 expression in Treg cells through IL-2/STAT5 signaling, showing that the interaction between astrocytes and Treg cells contributes to the maintenance of Treg-cell identity in the brain. Taken together, our work represents the first study to characterize the phenotypic and functional features of Treg cells in the rat cerebrum. Our data have provided a novel insight for the contribution of Treg cells to the immunosurveillance and immunomodulation in the cerebrum under steady state.


Assuntos
Astrócitos/imunologia , Cérebro/imunologia , Encefalite/imunologia , Interleucina-10/imunologia , Macrófagos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Comunicação Celular , Cérebro/efeitos dos fármacos , Cérebro/patologia , Encefalite/patologia , Encefalite/prevenção & controle , Regulação da Expressão Gênica , Memória Imunológica , Vigilância Imunológica , Interleucina-10/genética , Interleucina-2/genética , Interleucina-2/imunologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/imunologia , Transdução de Sinais , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/patologia
20.
Clin Exp Pharmacol Physiol ; 41(12): 995-1002, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224725

RESUMO

The present study aimed to test the hypothesis that berberine, a plant-derived anti-oxidant, attenuates adverse left ventricular remodelling and improves cardiac function in a rat model of myocardial infarction (MI). Furthermore, the potential mechanisms that mediated the cardioprotective actions of berberine, in particular the effect on autophagy, were also investigated. Acute MI was induced by ligating the left anterior descending coronary artery of Sprague-Dawley rats. Cardiac function was assessed by transthoracic echocardiography. The protein activity/levels of autophagy related to signalling pathways (e.g. LC-3B, Beclin-1) were measured in myocardial tissue by immunohistochemical staining and western blot. Four weeks after MI, berberine significantly prevented cardiac dysfunction and adverse cardiac remodelling. MI rats treated with low dose berberine (10 mg/kg per day) showed higher left ventricular ejection fraction and fractional shortening than those treated with high-dose berberine (50 mg/kg per day). Both doses reduced interstitial fibrosis and post-MI adverse cardiac remodelling. The cardioprotective action of berberine was associated with increased LC-3B II and Beclin-1 expressions. Furthermore, cardioprotection with berberine was potentially related to p38 MAPK inhibition and phospho-Akt activation. The present in vivo study showed that berberine is effective in promoting autophagy, and subsequently attenuating left ventricular remodelling and cardiac dysfunction after MI. The potential underlying mechanism is augmentation of autophagy through inhibition of p38 MAPK and activation of phospho-Akt signalling pathways.


Assuntos
Autofagia/efeitos dos fármacos , Berberina/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Disfunção Ventricular Esquerda/tratamento farmacológico , Remodelação Ventricular/efeitos dos fármacos , Animais , Ecocardiografia/métodos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA