Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Front Immunol ; 15: 1412022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881898

RESUMO

Abdominal aortic aneurysm (AAA) is a degenerative disease characterized by local abnormal dilation of the aorta accompanied by vascular smooth muscle cell (VSMC) dysfunction and chronic inflammation. VSMC dedifferentiation, transdifferentiation, and increased expression of matrix metalloproteinases (MMPs) are essential causes of AAA formation. Previous studies from us and others have shown that Anemoside B4 (AB4), a saponin from Pulsatilla chinensis, has anti-inflammatory, anti-tumor, and regulatory effects on VSMC dedifferentiation. The current study aimed to investigate whether AB4 inhibits AAA development and its underlying mechanisms. By using an Ang II induced AAA model in vivo and cholesterol loading mediated VSMC to macrophage transdifferentiation model in vitro, our study demonstrated that AB4 could attenuate AAA pathogenesis, prevent VSMC dedifferentiation and transdifferentiation to macrophage-like cells, decrease vascular inflammation, and suppress MMP expression and activity. Furthermore, KLF4 overexpression attenuated the effects of AB4 on VSMC to macrophage-like cell transition and VSMC inflammation in vitro. In conclusion, AB4 protects against AAA formation in mice by inhibiting KLF4 mediated VSMC transdifferentiation and inflammation. Our study provides the first proof of concept of using AB4 for AAA management.


Assuntos
Aneurisma da Aorta Abdominal , Transdiferenciação Celular , Inflamação , Fator 4 Semelhante a Kruppel , Miócitos de Músculo Liso , Saponinas , Animais , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Abdominal/induzido quimicamente , Transdiferenciação Celular/efeitos dos fármacos , Fator 4 Semelhante a Kruppel/metabolismo , Camundongos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Inflamação/metabolismo , Saponinas/farmacologia , Modelos Animais de Doenças , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Angiotensina II/farmacologia , Humanos
2.
Arch Pharm (Weinheim) ; 357(5): e2300603, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38290060

RESUMO

Alzheimer's disease (AD) is a multifactorial neurological disease, and the multitarget directed ligand (MTDL) strategy may be an effective approach to delay its progression. Based on this strategy, 27 derivatives of l-tryptophan, 3a-1-3d-1, were designed, synthesized, and evaluated for their biological activity. Among them, IC50 (inhibitor concentration resulting in 50% inhibitory activity) values of compounds 3a-18 and 3b-1 were 0.58 and 0.44 µM for human serum butyrylcholinesterase (hBuChE), respectively, and both of them exhibited more than 30-fold selectivity for human serum acetylcholinesterase. Enzyme kinetics studies showed that these two compounds were mixed inhibitors of hBuChE. In addition, these two derivatives possessed extraordinary antioxidant activity in OH radical scavenging and oxygen radical absorption capacity fluorescein assays. Meanwhile, these compounds could also prevent ß-amyloid (Aß) self-aggregation and possessed low toxicity on PC12 and AML12 cells. Molecular modeling studies revealed that these two compounds could interact with the choline binding site, acetyl binding site, and peripheral anionic site to exert submicromolar BuChE inhibitory activity. In the vitro blood-brain barrier permeation assay, compounds 3a-18 and 3b-1 showed enough blood-brain barrier permeability. In drug-likeness prediction, compounds 3a-18 and 3b-1 showed good gastrointestinal absorption and a low risk of human ether-a-go-go-related gene toxicity. Therefore, compounds 3a-18 and 3b-1 are potential multitarget anti-AD lead compounds, which could work as powerful antioxidants with submicromolar selective inhibitory activity for hBuChE as well as prevent Aß self-aggregation.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Peptídeos beta-Amiloides , Antioxidantes , Barreira Hematoencefálica , Butirilcolinesterase , Inibidores da Colinesterase , Desenho de Fármacos , Triptofano , Doença de Alzheimer/tratamento farmacológico , Humanos , Antioxidantes/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/metabolismo , Animais , Triptofano/farmacologia , Triptofano/química , Triptofano/análogos & derivados , Triptofano/síntese química , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Ratos , Acetilcolinesterase/metabolismo , Estrutura Molecular , Células PC12 , Relação Dose-Resposta a Droga , Modelos Moleculares
3.
Inflamm Res ; 73(3): 345-362, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38157008

RESUMO

OBJECTIVES: Colitis is a global disease usually accompanied by intestinal epithelial damage and intestinal inflammation, and an increasing number of studies have found natural products to be highly effective in treating colitis. Anemoside B4 (AB4), an abundant saponin isolated from Pulsatilla chinensis (Bunge), which was found to have strong anti-inflammatory activity. However, the exact molecular mechanisms and direct targets of AB4 in the treatment of colitis remain to be discovered. METHODS: The anti-inflammatory activities of AB4 were verified in LPS-induced cell models and 2, 4, 6-trinitrobenzene sulfonic (TNBS) or dextran sulfate sodium (DSS)-induced colitis mice and rat models. The molecular target of AB4 was identified by affinity chromatography analysis using chemical probes derived from AB4. Experiments including proteomics, molecular docking, biotin pull-down, surface plasmon resonance (SPR), and cellular thermal shift assay (CETSA) were used to confirm the binding of AB4 to its molecular target. Overexpression of pyruvate carboxylase (PC) and PC agonist were used to study the effects of PC on the anti-inflammatory and metabolic regulation of AB4 in vitro and in vivo. RESULTS: AB4 not only significantly inhibited LPS-induced NF-κB activation and increased ROS levels in THP-1 cells, but also suppressed TNBS/DSS-induced colonic inflammation in mice and rats. The molecular target of AB4 was identified as PC, a key enzyme related to fatty acid, amino acid and tricarboxylic acid (TCA) cycle. We next demonstrated that AB4 specifically bound to the His879 site of PC and altered the protein's spatial conformation, thereby affecting the enzymatic activity of PC. LPS activated NF-κB pathway and increased PC activity, which caused metabolic reprogramming, while AB4 reversed this phenomenon by inhibiting the PC activity. In vivo studies showed that diisopropylamine dichloroacetate (DADA), a PC agonist, eliminated the therapeutic effects of AB4 by changing the metabolic rearrangement of intestinal tissues in colitis mice. CONCLUSION: We identified PC as a direct cellular target of AB4 in the modulation of inflammation, especially colitis. Moreover, PC/pyruvate metabolism/NF-κB is crucial for LPS-driven inflammation and oxidative stress. These findings shed more light on the possibilities of PC as a potential new target for treating colitis.


Assuntos
Colite , Saponinas , Ratos , Camundongos , Animais , Piruvato Carboxilase/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação/metabolismo , Saponinas/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Macrófagos/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
4.
Chin Med ; 18(1): 153, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996917

RESUMO

BACKGROUND: The successful launch of icaritin, a therapeutic drug for liver cancer derived from Epimedium brevicornu, has provided new impetus for the development of prenylated flavonoids in the field of oncology. Flemingia macrophylla is reported to contain characteristic prenylated flavonoids which can regulate the p53 protein. We aimed to isolate these constituents and conduct activity evaluation, structure-activity relationship, and mechanism studies to provide candidate compounds for antitumor drug development. METHODS: In this study, chromatographic techniques combined with spectroscopic methods were used to separate, purify, and identify the constituents of Flemingia macrophylla methanol extract. The cytotoxic activity of the constituents was evaluated using an MTT assay with A549 and H1975 cells as the model. The binding mechanism between the compounds and the p53 protein was investigated with molecular docking and validated with cellular thermal shift assay (CETSA). Western blotting (WB) was employed to detect the expression of p53 protein and apoptosis-related proteins in cells. RESULTS: Chiral HPLC separation of racemates 1 and 7 provided two pairs of undescribed enantiomers (1a/1b and 7a/7b), along with eight known compounds (2 - 9) isolated from Flemingia macrophylla roots. Their structures were elucidated by spectroscopic analysis, and the absolute configurations of the enantiomers were determined from experimental and calculated electronic circular dichroism data. Compounds 1 - 7, and the non-prenyl analogues 10 - 13, were evaluated for cytotoxic activity against the human lung cancer A549 and H1975 cell line. Compounds 5 - 7 displayed better cytotoxicity than the positive control icaritin in A549 and H1975, with IC50 values ranging from 4.50 to 19.83 µmol·L-1 and < 5 µmol·L-1, respectively. The structure-activity relationships of the chromone or flavonoid analogues against A549 cells were discussed. Molecular docking results demonstrated that compound 7a has strong interaction with p53 and WB indicated that 7a induced apoptosis by increasing the p53 protein, decreasing the anti-apoptotic protein Bcl-2, and activating the caspase family in A549 cells. These results suggest that prenylated flavonoids are potential p53 protein activators. CONCLUSION: This study demonstrates that Flemingia macrophylla is rich in prenylated flavonoid constituents, among which compounds 5 and 7 exhibited significant cytotoxic activity against A549 cells and served as reference candidates for the design and development of prenylated compounds as antitumor therapeutic drugs.

5.
Heliyon ; 9(11): e21889, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027563

RESUMO

Background: Necroptosis, a novel form of programmed cell death wherein the necrotic morphology is characterized by swelling of the cells, rupture of the plasma membrane, and dysfunction of the organelle, has been always observed in cardiovascular diseases. Sugarcane leaf polysaccharide (SLP) are primary components present in sugarcane leaves that exert cardiovascular protective effects. However, the positive effect of SLP and underlying mechanisms in myocardial ischemia-reperfusion (MI/R) remain unexplored. Aim: In this study, the protective effects of SLP on MI/R injury were investigated under in vitro and in vivo conditions. Methods: The protective effects of SLP on MI/R injury were assessed using tertiary butyl hydrogen peroxide (TBHP)-stimulated-H9c2 cells in the in vitro assay and using Sprague Dawley rats in the in vivo assay. Results: In vitro, SLP significantly reversed TBHP-induced H9c2 cell death by inhibiting necroptosis and oxidative stress. SLP exerted antioxidant activity through the Nrf2/HO-1 pathway. SLP suppressed necroptosis by decreasing phosphorylation of RIP1, RIP3, and MLKL in TBHP-stimulated H9c2 cells. In vivo, SLP attenuated MI/R injury by decreasing the myocardial infarct area; increasing myeloperoxidase and superoxide dismutase levels; and reducing malondialdehyde, interleukin-6, and tumor necrosis factor-α levels.

6.
Phytother Res ; 37(12): 5974-5990, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778741

RESUMO

Acute kidney injury (AKI) is a common clinical condition associated with increased incidence and mortality rates. Hederasaponin C (HSC) is one of the main active components of Pulsatilla chinensis (Bunge) Regel. HSC possesses various pharmacological activities, including anti-inflammatory activity. However, the protective effect of HSC against lipopolysaccharide (LPS)-induced AKI in mice remains unclear. Therefore, we investigated the protective effect of HSC against LPS-induced renal inflammation and the underlying molecular mechanisms. Herein, using MTT and LDH assays to assess both cell viability and LDH activity; using dual staining techniques to identify different cell death patterns; conducting immunoblotting, QRT-PCR, and immunofluorescence analyses to evaluate levels of protein and mRNA expression; employing immunoblotting, molecular docking, SPR experiments, and CETSA to investigate the interaction between HSC and TLR4; and studying the anti-inflammatory effects of HSC in the LPS-induced AKI. The results indicate that HSC inhibits the expression of TLR4 and the activation of NF-κB and PIP2 signaling pathways, while simultaneously suppressing the activation of the NLRP3 inflammasome. In animal models, HSC ameliorated LPS-induced AKI and diminished inflammatory response and the level of renal injury markers. These findings suggest that HSC has potential as a therapeutic agent to mitigate sepsis-related AKI.


Assuntos
Injúria Renal Aguda , NF-kappa B , Saponinas , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Fosfoinositídeo Fosfolipase C
7.
Front Immunol ; 14: 1185985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334368

RESUMO

Background: Indoleamine-2,3-dioxygenase 1 (IDO1) is responsible for tumor immune escape by regulating T cell-associated immune responses and promoting the activation of immunosuppressive. Given the vital role of IDO1 in immune response, further investigation on the regulation of IDO1 in tumors is needed. Methods: Herein, we used ELISA kit to detect the interferon-gamma (IFN-γ), Tryptophan (Trp), and kynurenic acid (Kyn) levels; western blot, Flow cytometry, and immunofluorescence assays detected the expression of the proteins; Molecular docking assay, SPR assay and Cellular Thermal Shift Assay (CETSA) were used to detect the interaction between IDO1 and Abrine; nano live label-free system was used to detect the phagocytosis activity; tumor xenografts animal experiments were used to explore the anti-tumor effect of Abrine; flow cytometry detected the immune cells changes. Results: The important immune and inflammatory response cytokine interferon-gamma (IFN-γ) up-regulated the IDO1 expression in cancer cells through the methylation of 6-methyladenosine (m6A) m6A modification of RNA, metabolism of Trp into Kyn, and JAK1/STAT1 signaling pathway, which could be inhibited by IDO1 inhibitor Abrine. CD47 is IFN-γ-stimulated genes (ISGs) and prevents the phagocytosis of macrophages, leading to the cancer immune escape, and this effect could be inhibited by Abrine both in vivo and in vitro. The PD-1/PD-L1 axis is an important immune checkpoint in regulating immune response, overexpression of PD-1 or PD-L1 promotes immune suppression, while in this study Abrine could inhibit the expression of PD-L1 in cancer cells or tumor tissue. The combination treatment of Abrine and anti-PD-1 antibody has a synergistic effect on suppressing the tumor growth through up-regulating CD4+ or CD8+ T cells, down-regulating the Foxp3+ Treg cells, and inhibiting the expression of IDO1, CD47, and PD-L1. Conclusion: Overall, this study reveals that Abrine as an IDO1 inhibitor has an inhibition effect on immune escape and has a synergistic effect with the anti-PD-1 antibody on the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Antígeno CD47/metabolismo , Linfócitos T CD8-Positivos , Imunoterapia , Alcaloides Indólicos/metabolismo , Interferon gama/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Simulação de Acoplamento Molecular , Triptofano/metabolismo
8.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2904-2918, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381972

RESUMO

Ajania belonging to the subtribe Artemisiinae of Anthemideae(Asteraceae) is a genus of semi-shrubs closely related to Chrysanthemum. There are 24 species of Ajania in northwestern China, most of which are folk herbal medicines with strong stress tolerance. Modern medical studies have demonstrated that the chemical constituents of Ajania mainly include terpenoids, flavonoids, phenylpropanoids, alkynes, and essential oils. These compounds endow the plants with antimicrobial, anti-inflammatory, antitumor, antimalarial, antioxidant, and insecticide effects. In this study, we reviewed the research progress in the chemical constituents and pharmacological activities of Ajania, aiming to provide reference for the further research and development of Ajania.


Assuntos
Antimaláricos , Asteraceae , Chrysanthemum , Alcinos , Antioxidantes/farmacologia
9.
Phytomedicine ; 116: 154884, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37209605

RESUMO

BACKGROUND: Lung cancer is the primary cause of cancer-related mortality worldwide owing to its strong metastatic ability. EGFR-TKI (Gefitinib) has demonstrated efficacy in metastatic lung cancer therapy, but most patients ultimately develop resistance to Gefitinib, leading to a poor prognosis. Pedunculoside (PE), a triterpene saponin extracted from Ilex rotunda Thunb., has shown anti-inflammatory, lipid-lowering and anti-tumor effects. Nevertheless, the therapeutic effect and potential mechanisms of PE on NSCLC treatment are unclear. PURPOSE: To investigate the inhibitory effect and prospective mechanisms of PE on NSCLC metastases and Gefitinib-resistant NSCLC. METHODS: In vitro, A549/GR cells were established by Gefitinib persistent induction of A549 cells with a low dose and shock with a high dose. The cell migratory ability was measured using wound healing and Transwell assays. Additionally, EMT-related Markers or ROS production were assessed by RT-qPCR, immunofluorescence, Western blotting, and flow cytometry assays in A549/GR and TGF-ß1-induced A549 cells. In vivo, B16-F10 cells were intravenously injected into mice, and the effect of PE on tumor metastases were determined using hematoxylin-eosin staining, Caliper IVIS Lumina, DCFH2-DA staining, and western blotting assays. RESULTS: PE reversed TGF-ß1-induced EMT by downregulating EMT-related protein expression through MAPK and Nrf2 pathways, decreasing ROS production, and inhibiting cell migration and invasion ability. Moreover, PE treatment enabled A549/GR cells to retrieve the sensitivity to Gefitinib and mitigate the biological characteristics of EMT. PE also significantly inhibited lung metastasis in mice by reversing EMT proteins expression, decreasing ROS production, and inhibiting MAPK and Nrf2 pathways. CONCLUSIONS: Collectively, this research presents a novel finding that PE can reverse NSCLC metastasis and improve Gefitinib sensitivity in Gefitinib-resistant NSCLC through the MAPK and Nrf2 pathways, subsequently suppressing lung metastasis in B16-F10 lung metastatic mice model. Our findings indicate that PE is a potential agent for inhibiting metastasis and improving Gefitinib resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Triterpenos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Gefitinibe/farmacologia , Neoplasias Pulmonares/patologia , Fator de Crescimento Transformador beta1/farmacologia , Fator 2 Relacionado a NF-E2 , Transição Epitelial-Mesenquimal , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Triterpenos/farmacologia , Resistencia a Medicamentos Antineoplásicos
10.
J Ethnopharmacol ; 314: 116478, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121449

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza Bunge is a widely used traditional Chinese medicine with anticholinesterase, antitumor, and anti-inflammatory. Total Tanshinones (TTN), the most significant active ingredient of Salvia miltiorrhiza Bunge, exerts anti-inflammatory activity. However, the protective mechanism of total Tanshinones on acute lung injury (ALI) still needs to be explored. AIM OF THIS STUDY: In this study, the underlying mechanisms of TTN to treat with ALI were investigated in vitro and in vivo. MATERIALS AND METHODS: Cell experiments established an in vitro model of LPS-induced J774A.1 and MH-S macrophages to verify the mechanism. The levels of inflammatory cytokines (TNF-α, IL-6 and IL-1ß) were estimated by ELISA. The changes of ROS, Ca2+ and NO were detected by flow cytometry. The expression levels of proteins related to the NLRP3 inflammasome were determined by Western blotting. The effect of TTN on NLRP3 inflammasome activation was examined by immunofluorescence analysis of caspase-1 p20. Male BALB/c mice were selected to establish the ALI model. The experiment was randomly divided into six groups: control, LPS, LPS + si-NC, LPA + si-Nek7, LPS + TTN, and DEX. Pathological alterations were explored by H&E staining. The expression levels of proteins related to the NLRP3 inflammasome were analyzed by Western blotting. RESULTS: TTN decreased pro-inflammatory cytokines levels like TNF-α, IL-6, IL-1ß, NO, and ROS in alveolar macrophages. TTN bound to NIMA-related kinase 7 (NEK7), a new therapeutic protein to modulate NLRP3 inflammasome and PLCγ2-PIP2 signaling pathway. In ALI mice, LPS enhanced IL-1ß levels in the serum, lung tissues, and bronchoalveolar lavage fluid (BALF),which were reversed by TTN. TTN decreased cleaved-caspase-1 and NLRP3 expressions in lung tissues. When Nek7 was knocked down in mice by siRNA, the syndrome of ALI in mice was significantly suppressed, of which the effect was similar to that of TTN. CONCLUSIONS: This research demonstrates that TTN alleviated ALI by binding to NEK7 in vitro and in vivo to modulate NLRP3 inflammasome activation and PLCγ2-PIP2 signaling pathways.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Masculino , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-6 , Lipopolissacarídeos/farmacologia , Fosfolipase C gama/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Transdução de Sinais , Citocinas/farmacologia , Anti-Inflamatórios/efeitos adversos , Caspases/metabolismo , Camundongos Endogâmicos C57BL
11.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834992

RESUMO

NF-κB and MAPK are classic inflammation signaling pathways which regulate inflammation signal transmission and induce the expression of many inflammatory factors. Based on the potent anti-inflammatory activity of benzofuran and its derivatives, several new heterocyclic/benzofuran hybrids were first designed and synthesized by molecular hybridization. Their structure was confirmed by 1H NMR, 13C NMR, HRMS or X-single crystal diffraction. The anti-inflammatory activity of these new compounds was screened by compounds; compound 5d exhibited an excellent inhibitory effect on the generation of NO (IC50 = 52.23 ± 0.97 µM), and low cytotoxicity (IC50 > 80 µM) against the RAW-264.7 cell lines. To further elucidate the possible anti-inflammatory mechanisms of compound 5d, the hallmark protein expressions of the NF-κB and MAPK pathways were studied in LPS-stimulated RAW264.7 cells. The results indicate that compound 5d not only significantly inhibits the phosphorylation levels of IKKα/IKKß, IKßα, P65, ERK, JNK and P38 in the classic MAPK/NF-κB signaling pathway in a dose-dependent manner, but also down-regulates the secretion of pro-inflammatory factors such as NO, COX-2, TNF-α and IL-6. Further, the in vivo anti-inflammatory activity of compound 5d indicated that it could regulate the involvement of neutrophils, leukocytes and lymphocytes in inflammation processes, and reduce the expression of IL-1ß, TNF-α and IL-6 in serum and tissues. These results strongly suggest that the piperazine/benzofuran hybrid 5d has a good potential for developing an anti-inflammatory lead compound, and the anti-inflammatory mechanism might be related to the NF-κB and MAPK signaling pathways.


Assuntos
Anti-Inflamatórios , Benzofuranos , Sistema de Sinalização das MAP Quinases , NF-kappa B , Animais , Camundongos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Benzofuranos/química , Benzofuranos/farmacologia , Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia
12.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770636

RESUMO

Anemoside B4 (B4) is a saponin that is extracted from Pulsatilla chinensis (Bge.), and Regel exhibited anti-inflammatory, antioxidant, antiviral, and immunomodulatory activities. However, its hypoglycemic activity in diabetes mellitus has not been evaluated. Here, we explored the effect of B4 on hyperglycemia and studied its underlying mechanism of lowering blood glucose based on hyperglycemic rats in vivo and L6 skeletal muscle cells (L6) in vitro. The rats were fed a high-fat diet (HFD) for one month, combined with an intraperitoneal injection of 60 mg/kg streptozotocin (STZ) to construct the animal model, and the drug was administrated for two weeks. Blood glucose was detected and the proteins and mRNA were expressed. Our study showed that B4 significantly diminished fasting blood glucose (FBG) and improved glucose metabolism. In addition, B4 facilitated glucose utilization in L6 cells. B4 could enhance the expression of glucose transporter 4 (GLUT4) in rat skeletal muscle and L6 cells. Mechanistically, B4 elevated the inhibition of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways. Furthermore, we confirmed the effect of B4 on glucose uptake involved in the enhancement of GLUT4 expression in part due to PI3K/AKT signaling by using a small molecule inhibitor assay and constructing a GLUT4 promoter plasmid. Taken together, our study found that B4 ameliorates hyperglycemia through the PI3K/AKT pathway and promotes GLUT4 initiation, showing a new perspective of B4 as a potential agent against diabetes.


Assuntos
Hiperglicemia , Saponinas , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipoglicemiantes/farmacologia , Glicemia , Estreptozocina , Fosfatidilinositol 3-Quinases/metabolismo , Dieta Hiperlipídica/efeitos adversos , Saponinas/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Transportador de Glucose Tipo 4/genética
13.
Phytomedicine ; 109: 154544, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610155

RESUMO

BACKGROUND: Pinnatifolone A is a typical sesquiterpenoid and the primary active ingredient of Syringa oblata Lindl., has potent anti-inflammatory activity. However, Pinnatifolone A pharmacokinetic and metabolites analysis investigations in male and female rats, as well as its in vitro stability in male and female rat liver microsomes, have not been evaluated and compared. PURPOSE: To investigate preclinical pharmacokinetic and metabolite in both genders, confirm gender differences, and provide usable information for the development of clinical applications. METHODS: A quick, precise, and sensitive LC-MS/MS method was created and effectively used to determine the pharmacokinetics of oral (140 mg/kg) and intravenous (6.3 mg/kg) Pinnatifolone A in male and female rats, in vitro Pinnatifolone A elimination studies in male and female rat liver microsomes. Following that, a UHPLC-Q-TOF-MS/MS technique was established to identify the metabolic profiles of Pinnatifolone A obtained from rat plasma and excreta. RESULTS: In the current study, we established for the first time an LC-MS/MS method for the quantitation of Pinnatifolone A with acceptable linearity and selectivity, recovery and matrix effect, accuracy and precision. The absolute oral bioavailability of Pinnatifolone A was approximately 30.36% in female rats, the clearance (CL) was 20.99±3.33 l/h/kg in female rats and 472.37±437.31 l/h/kg in male rats. This difference in rat genders may pertain to the sex-specific expression of hepatic enzymes as demonstrated in the metabolic stability evaluation in the present research; the male rats exhibited higher CLint(mic) (158.83±9.57 µl/min/mg protein) than female rats (76.47±7.90 µl/min/mg protein) liver microsomes, indicating higher Pinnatifolone A clearance in male rats. Twenty-four metabolites were detected and identified in female and male rats; N-acetylcysteine conjugation metabolite was the most abundant metabolites in both rat feces and urine. Furthermore, male and female rats had significantly different levels of the N-acetylcysteine conjugation metabolite. Hydrogenation metabolite was particular to female rats both in rat fecal and urine. Glucuronide conjugation metabolite was the predominant metabolite in rat plasma, and its amount in female rats was double that of male rats. CONCLUSIONS: The present research is the first to report the preclinical pharmacokinetics and metabolites of Pinnatifolone A in male and female rats, confirming the gender-based differences. The findings provide a comprehensive overview for further understanding of the pharmacokinetic and metabolic characteristics of Pinnatifolone A and serve as a guide for its future development and utilization.


Assuntos
Acetilcisteína , Espectrometria de Massas em Tandem , Ratos , Feminino , Masculino , Animais , Espectrometria de Massas em Tandem/métodos , Disponibilidade Biológica , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Fatores Sexuais , Administração Oral
14.
Naunyn Schmiedebergs Arch Pharmacol ; 395(10): 1283-1295, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35881166

RESUMO

Pteris cretica L. var. nervosa is one of the most well-known Chinese medicines. Although it is widely used to treat jaundice hepatitis, the main ingredient for its treatment was not thoroughly explored until recently. Essentially, the purpose of this study is to find the monomer compound in Pteris cretica L. var. nervosa, which is most likely to be effective in treating liver injury. Through the model of LPS/D-gal-induced liver injury in mice, the best therapeutic site of the total extract was explored, the chemical components of the parts with the best therapeutic effect were separated, a total of 10 flavonoids were isolated, and the RAW264.7 cells induced by LPS were used as the experimental model to explore the preliminary anti-inflammatory activity of NO production in vitro. Finally, the anti-inflammatory activity and the highest content in this plant Luteolin-7-O-rutinoside (LUT) were selected, as the object of study in vivo. It was found that LUT could not only reduce alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, but also significantly reduce the release of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß), and inhibit PI3K/AKT/AMPK/NF-κB pathway. In addition, LUT can increase levels of SOD and GSH to reduce oxidative stress. It has an obvious therapeutic effect on acute liver injury induced by LPS/D-gal in mice. Therefore, infer LUT is a functional substance in Pteris cretica L. var. nervosa.


Assuntos
Pteris , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Lipopolissacarídeos/toxicidade , Fígado , Luteolina/farmacologia , Luteolina/uso terapêutico , Camundongos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pteris/metabolismo , Transdução de Sinais
15.
Front Immunol ; 13: 846384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281058

RESUMO

Gene transcription is governed by epigenetic regulation that is essential for the pro-inflammatory mediators surge following pathological triggers. Acute lung injury (ALI) is driven by pro-inflammatory cytokines produced by the innate immune system, which involves the nod-like receptor 3 (NLRP3) inflammasome and nuclear factor-κB (NF-κB) pathways. These two pathways are interconnected and share a common inducer the phosphatidylinositol 4,5-bisphosphate (PIP2), an epigenetic regulator of (Ribosomal ribonucleic acid (rRNA) gene transcription, to regulate inflammation by the direct inhibition of NF-κB phosphorylation and NLRP3 inflammasome activation. Herein, we report that hederasaponin C (HSC) exerted a therapeutic effect against ALI through the regulation of the PIP2/NF-κB/NLRP3 signaling pathway. In lipopolysaccharide (LPS)/lipopolysaccharide + adenosine triphosphate (LPS+ATP)-stimulated macrophages, our results showed that HSC remarkably inhibited the secretion of interleukin-6 (IL-6), IL-1ß, and tumor necrosis factor-α (TNF-α). Moreover, HSC inhibited NF-κB/p65 nuclear translocation and the binding of PIP2 to transforming growth factor-ß activated kinase 1 (TAK1). The intracellular calcium (Ca2+) level was decreased by HSC via the PIP2 signaling pathway, which subsequently inhibited the activation of NLRP3 inflammasome. HSC markedly alleviated LPS-induced ALI, restored lung function of mice, and rescued ALI-induced mice death. In addition, HSC significantly reduced the level of white blood cells (WBC), neutrophils, and lymphocytes, as well as pro-inflammatory mediators like IL-6, IL-1ß, and TNF-α. Hematoxylin and eosin (H&E) staining results suggested HSC has a significant therapeutic effect on lung injury of mice. Interestingly, the PIP2/NF-κB/NLRP3 signaling pathway was further confirmed by the treatment of HSC with ALI, which is consistent with the treatment of HSC with LPS/LPS+ATP-stimulated macrophages. Overall, our findings revealed that HSC demonstrated significant anti-inflammatory activity through modulating the PIP2/NF-κB/NLRP3 axis in vitro and in vivo, suggesting that HSC is a potential therapeutic agent for the clinical treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Trifosfato de Adenosina , Animais , Epigênese Genética , Inflamassomos/metabolismo , Mediadores da Inflamação/uso terapêutico , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
16.
Chin Med ; 17(1): 24, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183200

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer mortality worldwide, and most of the patients after treatment with EGF-TKIs develop drug resistance, which is closely correlated with EMT. Cucurbitacin B (CuB) is a natural product of the Chinese herb Cucurbitaceae plant, which has a favorable role in anti-inflammation and anti-cancer activities. However, the effect of CuB on EMT is still far from fully explored. In this study, the inhibition effect of CuB on EMT was investigated. METHODS: In this study, TGF-ß1 was used to induce EMT in A549 cells. MTS assay was used to detect the cell viability of CuB co-treated with TGF-ß1. Wound healing assay and transwell assay were used to determine the migration and invasion capacity of cells. Flow cytometry and fluorescence microscope were used to detect the ROS level in cells. Western blotting assay and immunofluorescence assay were used to detect the proteins expression. Gefitinib was used to establish EGF-TKI resistant NSCLC cells. B16-F10 intravenous injection mice model was used to evaluate the effect of CuB on lung cancer metastasis in vivo. Caliper IVIS Lumina and HE staining were used to detect the lung cancer metastasis of mice. RESULTS: In this study, the results indicated that CuB inhibited TGF-ß1-induced EMT in A549 cells through reversing the cell morphology changes of EMT, increasing the protein expression of E-cadherin, decreasing the proteins expression of N-cadherin and Vimentin, suppressing the migration and invasion ability. CuB also decreased the ROS production and p-PI3K, p-Akt and p-mTOR expression in TGF-ß1-induced EMT in A549 cells. Furthermore, Gefitinib resistant A549 cells (A549-GR) were well established, which has the EMT characteristics, and CuB could inhibit the EMT in A549-GR cells through ROS and PI3K/Akt/mTOR pathways. In vivo study showed that CuB inhibited the lung cancer metastasis effectively through intratracheal administration. CONCLUSION: CuB inhibits EMT in TGF-ß1-induced A549 cells and Gefitinib resistant A549 cells through decreasing ROS production and PI3K/Akt/mTOR signaling pathway. In vivo study validated that CuB inhibits lung cancer metastasis in mice. The study may be supporting CuB as a promising therapeutic agent for NSCLC and Gefitinib resistant NSCLC.

17.
Curr Mol Pharmacol ; 15(7): 1009-1023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35086466

RESUMO

BACKGROUND: Necroptosis is a type of programmed necrosis mediated by receptor-interacting protein kinases 1 and 3 (RIP1 and RIP3), which is morphologically characterized by enlarged organelles, ruptured plasma membrane, and subsequent loss of intracellular contents. Cryptotanshinone (CPT), a diterpene quinone compound extracted from the root of Salvia miltiorrhiza Bunge, has been reported to have significant anticancer activities. However, the detailed mechanism of CPT has not been clearly illustrated. OBJECTIVE: The present study aimed to explore the cell death type and mechanisms of CPT-induced in non-small cell lung cancer (NSCLC) cells. METHODS: The cytotoxicity of CPT on A549 cells was assessed by MTS assay. Ca2+ release and reactive oxygen species (ROS) generation were detected by flow cytometry. The changes in mitochondrial membrane potential (MMP) were observed through JC-1 staining. The expressions of p- RIP1, p-RIP3, p-MLKL, and MAPKs pathway proteins were analyzed by western blotting analysis. The efficacy of CPT in vivo was evaluated by the Lewis lung carcinoma (LLC) xenograft mice model. Blood samples were collected for hematology analysis. ELISA investigated the effects of CPT on tumor necrosis factor α (TNF-α). Hematoxylin and eosin staining (HE) determined the tumor tissues. Proteins' expression of tumor tissues was quantified by western blotting. RESULTS: CPT inhibited the cell viability of A549 cells in a time- and concentration-dependent manner, which was reversed by Necrostatin-1 (Nec-1). In addition, CPT treatment increased the expression of p-RIP1, p-RIP3, p-MLKL, the release of Ca2+, ROS generation, and the MAPKs pathway activated in A549 cells. Moreover, animal experiment results showed that intraperitoneal injection of CPT (15 mg/kg and 30 mg/kg) significantly inhibited tumor growth in C57BL/6 mice without affecting the bodyweight and injuring the organs. CONCLUSION: Our findings suggested that CPT-induced necroptosis via RIP1/RIP3/MLKL signaling pathway both in vitro and in vivo, indicating that CPT may be a promising agent in the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Necroptose , Fenantrenos , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
18.
J Colloid Interface Sci ; 607(Pt 2): 942-953, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34571315

RESUMO

A hollow core-shell potassium phosphomolybdate (KMoP)@cadmium sulfide (CdS)@bismuth sulfide (Bi2S3) Z-scheme tandem heterojunction is fabricated by a simple hydrothermal strategy and kept in a water bath to continue the reaction. At the same time, the ternary structure combined Keggin-type polyoxometalate with two photosensitive sulfide semiconductors to form a stable hollow core-shell heterojunction. KMoP@CdS@Bi2S3 with a narrow band gap of âˆ¼ 1.2 eV also has excellent photothermal performance, which may further promote photocatalytic efficiency. The hollow core-shell KMoP@CdS@Bi2S3 tandem heterojunction shows excellent H2 production performance, CrVI reduction ability and photocatalytic degradation performance of highly toxic tetracycline (TC). Under visible light irradiation, the photocatalytic H2 generation rate of the KMoP@CdS@Bi2S3 tandem heterojunction reaches 831 µmol h-1, which is 103 times higher than that of pristine KMoP. The photocatalytic reduction efficiency of CrVI and degradation efficiency of TC are as high as 95.5 and 97.51%, ∼4 times higher than that of KMoP. The boosted photocatalytic performance can be ascribed to the formation of core-shell Z-scheme tandem heterojunctions favoring spatial charge separation and the narrow band gap, which extends the photoresponse to visible light/NIR regions. When TC and CrVI exist at the same time, the reduction efficiency of CrVI can be as high as 99.64% because the intermediate of TC degradation can promote the reduction of CrVI. In addition, the photocatalytic performance of the KMoP@CdS@Bi2S3 heterojunction remains nearly constant after 4 recycles, which indicates high stability. The design strategy may provide new insights for preparing other high-performance core-shell tandem heterojunction photocatalysts for solar energy conversion.


Assuntos
Cádmio , Potássio , Bismuto , Compostos de Cádmio , Catálise , Molibdênio , Ácidos Fosfóricos , Sulfetos
19.
Pharmacol Res Perspect ; 9(6): e00895, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34817124

RESUMO

Cisplatin (CP), an anticancer drug, often causes kidney damage. However, the mechanism of CP-induced acute kidney injury (AKI) is not completely understood. AKI was induced by intravenous injection (i.v.) of cisplatin at doses of 5, 8, and 10 mg/kg. Anemoside B4 (B4) (20 mg/kg, i.m.) and dexamethasone (DXM) (0.5 mg/kg, i.v.) were used for AKI treatment. Biochemical indicators were assessed using an automatic biochemical analyzer, protein expression was analyzed by western blotting, and morphological changes in the kidney were examined by PAS staining. The serum creatinine (Cre) and blood urea nitrogen (BUN) levels did not change significantly in the first 2 days but abruptly increased on the third day after CP injection. The serum albumin (ALB) and total protein (TP) levels decreased in both a time- and dose-dependent manner. The urine protein level increased, the clearing rate of Cre decreased distinctly, and morphologic changes appeared in a dose-dependent manner. The protein expression of p53/caspase-3, NLRP3, IL-6, and TNF-α was obviously upregulated on day 3; concurrently, nephrin and podocin were downregulated. The expression of LC3II and p62 was upregulated significantly as the CP dose increased. B4 and DXM obviously decreased the BUN and Cre levels after 3 or 5 days of treatment. AKI appeared distinctly in a time-dependent manner at 2 to 5 days after the administration of 5 mg/kg CP and in a dose-dependent manner upon the administration of 5, 8, and 10 mg/kg CP. The third day was a significant time point for renal deterioration, and treatment with B4 and DXM within the first 3 days provided significant protection against AKI.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Cisplatino/toxicidade , Dexametasona/farmacologia , Saponinas/farmacologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/toxicidade , Nitrogênio da Ureia Sanguínea , Cisplatino/administração & dosagem , Creatinina/sangue , Dexametasona/administração & dosagem , Relação Dose-Resposta a Droga , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Saponinas/administração & dosagem , Albumina Sérica/metabolismo , Fatores de Tempo , Regulação para Cima
20.
Pharmacol Res ; 170: 105748, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34217831

RESUMO

Pyroptosis, a type of programmed cell death (PCD), is characterized by cell swelling with bubbles, and the release of inflammatory cell cytokines. Cucurbitacin B (CuB), extracted from muskmelon pedicel, is a natural bioactive product that could effectively exert anti-tumor activities in lung cancer. However, the exact molecular mechanisms and the direct targets of CuB in non-small cell lung cancer (NSCLC) remain to be discovered. Here, we firstly found that CuB exerted an anti-tumor effect via pyroptosis in NSCLC cells and NSCLC mice models. Next, based on the molecular docking and cellular thermal shift assay (CETSA), we identified that CuB directly bound to Toll-like receptor 4 (TLR4) to activate the NLRP3 inflammasome, which further caused the separation of N- and C-terminals of Gasdermin D (GSDMD) to execute pyroptosis. Moreover, CuB enhanced the mitochondrial reactive oxygen species (ROS), mitochondrial membrane protein Tom20 accumulation, and cytosolic calcium (Ca2+) release, leading to pyroptosis in NSCLC cells. Silencing of TLR4 inhibited CuB-induced pyroptosis and decreased the level of ROS and Ca2+ in A549 cells. In vivo study showed that CuB treatment suppressed lung tumor growth in mice via pyroptosis without dose-dependent manner, and CuB at 0.75 mg/kg had a better anti-tumor effect compared to the Gefitinib group. Taken together, our findings revealed the mechanisms and targets of CuB triggering pyroptosis in NSCLC, thus supporting the notion of developing CuB as a promising therapeutic agent for NSCLC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inflamassomos/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Triterpenos/farmacologia , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Transdução de Sinais , Receptor 4 Toll-Like/genética , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA