Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(29): e2215744120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428911

RESUMO

Hepatocellular carcinoma (HCC) takes the predominant malignancy of hepatocytes with bleak outcomes owing to high heterogeneity among patients. Personalized treatments based on molecular profiles will better improve patients' prognosis. Lysozyme (LYZ), a secretory protein with antibacterial function generally expressed in monocytes/macrophages, has been observed for the prognostic implications in different types of tumors. However, studies about the explicit applicative scenarios and mechanisms for tumor progression are still quite limited, especially for HCC. Here, based on the proteomic molecular classification data of early-stage HCC, we revealed that the LYZ level was elevated significantly in the most malignant HCC subtype and could serve as an independent prognostic predictor for HCC patients. Molecular profiles of LYZ-high HCCs were typical of those for the most malignant HCC subtype, with impaired metabolism, along with promoted proliferation and metastasis characteristics. Further studies demonstrated that LYZ tended to be aberrantly expressed in poorly differentiated HCC cells, which was regulated by STAT3 activation. LYZ promoted HCC proliferation and migration in both autocrine and paracrine manners independent of the muramidase activity through the activation of downstream protumoral signaling pathways via cell surface GRP78. Subcutaneous and orthotopic xenograft tumor models indicated that targeting LYZ inhibited HCC growth markedly in NOD/SCID mice. These results propose LYZ as a prognostic biomarker and therapeutic target for the subclass of HCC with an aggressive phenotype.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Muramidase/metabolismo , Proteômica , Linhagem Celular Tumoral , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Processos Neoplásicos , Biomarcadores Tumorais/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
2.
Br J Pharmacol ; 178(21): 4389-4407, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34233013

RESUMO

BACKGROUND AND PURPOSE: The multikinase inhibitor sorafenib is a first-line drug for advanced hepatocellular carcinoma. The response to sorafenib varies among hepatocellular carcinoma patients and many of the responders suffer from reduced sensitivity after long-term treatment. This study aims to explore a novel strategy to potentiate or maximize the anti-hepatocellular carcinoma effects of sorafenib. EXPERIMENTAL APPROACH: We used hepatocellular carcinoma cell lines, western blotting, various antagonists, siRNA and tumour xenografts mouse model to determine the anti- hepatocellular carcinoma effects of sorafenib in combination with berbamine or other Na+ /K+ -ATPase ligands. KEY RESULTS: Berbamine and the cardiotonic steroid, ouabain, synergize with sorafenib to inhibit hepatocellular carcinoma cells growth. Mechanistically, berbamine induces Src phosphorylation in Na+ /K+ -ATPase-dependent manner, leading to the activation of p38MAPK and EGFR-ERK pathways. The Na+ /K+ -ATPase ligand ouabain also induces Src, EGFR, type I insulin-like growth factor receptor, ERK1/2 and p38MAPK phosphorylation in hepatocellular carcinoma cells. Treatment of hepatocellular carcinoma cells with Src or EGFR inhibitor inhibits the induction of ERK1/2 phosphorylation by berbamine. Moreover, sorafenib inhibits the induction of Src, p38MAPK, EGFR and ERK1/2 phosphorylation by berbamine and ouabain. Importantly, combination of sorafenib with berbamine or ouabain synergistically inhibits both sorafenib-naïve and sorafenib-resistant hepatocellular carcinoma cells growth. Co-treatment of hepatocellular carcinoma cells with berbamine and sorafenib significantly induces cell death and significantly inhibits hepatocellular carcinoma xenografts growth in vivo. CONCLUSION AND IMPLICATIONS: Berbamine or other Na+ /K+ -ATPase ligands have a potential for improving sorafenib responsiveness in hepatocellular carcinoma. Targeting Na+ /K+ -ATPase represents a novel strategy to potentiate the anti- hepatocellular carcinoma effects of sorafenib.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Benzilisoquinolinas , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Ouabaína/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Sorafenibe/farmacologia , Quinases da Família src/metabolismo
3.
Cancers (Basel) ; 13(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917483

RESUMO

Aspirin can prevent or inhibit inflammation-related cancers, such as colorectal cancer and hepatocellular carcinoma (HCC). However, the effectiveness of chemotherapy may be compromised by activating oncogenic pathways in cancer cells. Elucidation of such chemoresistance mechanisms is crucial to developing novel strategies to maximize the anti-cancer effects of aspirin. Here, we report that aspirin markedly induces CREB/ATF1 phosphorylation in HCC cells, which compromises aspirin's anti-HCC effect. Inhibition of AMP-activated protein kinase (AMPK) abrogates the induction of CREB/ATF1 phosphorylation by aspirin. Mechanistically, activation of AMPK by aspirin results in decreased expression of the urea cycle enzyme carbamoyl-phosphate synthase 1 (CPS1) in HCC cells and xenografts. Treatment with aspirin or CPS1 knockdown stimulates soluble adenylyl cyclase expression, thereby increasing cyclic AMP (cAMP) synthesis and stimulating PKA-CREB/ATF1 signaling. Importantly, abrogation of aspirin-induced CREB/ATF1 phosphorylation could sensitize HCC to aspirin. The bis-benzylisoquinoline alkaloid berbamine suppresses the expression of cancerous inhibitor of protein phosphatase 2A (CIP2A), leading to protein phosphatase 2A-mediated downregulation of CREB/ATF1 phosphorylation. The combination of berbamine and aspirin significantly inhibits HCC in vitro and in vivo. These data demonstrate that the regulation of cAMP-PKA-CREB/ATF1 signaling represents a noncanonical function of CPS1. Targeting the PKA-CREB/ATF1 axis may be a strategy to improve the therapeutic effects of aspirin on HCC.

4.
Mol Oncol ; 15(5): 1543-1565, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33605506

RESUMO

Early and accurate diagnosis of prostate cancer (PCa) is extremely important, as metastatic PCa remains hard to treat. EWI-2, a member of the Ig protein subfamily, is known to inhibit PCa cell migration. In this study, we found that EWI-2 localized on both the cell membrane and exosomes regulates the distribution of miR-3934-5p between cells and exosomes. Interestingly, we observed that EWI-2 is localized not only on the plasma membrane but also on the nuclear envelope (nuclear membrane), where it regulates the nuclear translocation of signaling molecules and miRNA. Collectively, these functions of EWI-2 found in lipid bilayers appear to regulate PCa cell metastasis through the epidermal growth factor receptor-mitogen-activated protein kinase-extracellular-signal-regulated kinase (EGFR-MAPK-ERK) pathway. Our research provides new insights into the molecular function of EWI-2 on PCa metastasis, and highlights EWI-2 as a potential PCa biomarker.


Assuntos
Adenocarcinoma/patologia , Antígenos CD/fisiologia , Proteínas de Membrana/fisiologia , MicroRNAs/metabolismo , Neoplasias da Próstata/patologia , Transporte Ativo do Núcleo Celular/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Antígenos CD/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Receptores ErbB/metabolismo , Exossomos/metabolismo , Exossomos/fisiologia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transporte de RNA/genética , Transdução de Sinais/genética
5.
J Biol Chem ; 294(15): 5945-5955, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30782845

RESUMO

GADD34 (growth arrest and DNA damage-inducible gene 34) plays a critical role in responses to DNA damage and endoplasmic reticulum stress. GADD34 has opposing effects on different stimuli-induced cell apoptosis events, but the reason for this is unclear. Here, using immunoblotting analyses and various molecular genetic approaches in HepG2 and SMMC-7721 cells, we demonstrate that GADD34 protects hepatocellular carcinoma (HCC) cells from tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by stabilizing a BCL-2 family member, myeloid cell leukemia 1 (MCL-1). We found that GADD34 knockdown decreased MCL-1 levels and that GADD34 overexpression up-regulated MCL-1 expression in HCC cells. GADD34 did not affect MCL-1 transcription but enhanced MCL-1 protein stability. The proteasome inhibitor MG132 abrogated GADD34 depletion-induced MCL-1 down-regulation, suggesting that GADD34 inhibits the proteasomal degradation of MCL-1. Furthermore, GADD34 overexpression promoted extracellular signal-regulated kinase (ERK) phosphorylation through a signaling axis that consists of the E3 ubiquitin ligase tumor necrosis factor receptor-associated factor 6 (TRAF6) and transforming growth factor-ß-activated kinase 1 (MAP3K7)-binding protein 1 (TAB1), which mediated the up-regulation of MCL-1 by GADD34. Of note, TRAIL up-regulated both GADD34 and MCL-1 levels, and knockdown of GADD34 and TRAF6 suppressed the induction of MCL-1 by TRAIL. Correspondingly, GADD34 knockdown potentiated TRAIL-induced apoptosis, and MCL-1 overexpression rescued TRAIL-treated and GADD34-depleted HCC cells from cell death. Taken together, these findings suggest that GADD34 inhibits TRAIL-induced HCC cell apoptosis through TRAF6- and ERK-mediated stabilization of MCL-1.


Assuntos
Apoptose , Carcinoma Hepatocelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína Fosfatase 1/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas de Neoplasias/genética , Proteína Fosfatase 1/genética , Estabilidade Proteica , Fator 6 Associado a Receptor de TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA