Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 459: 132295, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37597397

RESUMO

Expanded polystyrene (EPS), also known as Styrofoam, is a widespread global pollutant, and its lightweight floating property increases its chances of weathering by abrasion and ultraviolet (UV) irradiation, resulting in microplastics. Herein, we investigated the effects of particle size ((1 µm versus 10 µm), UV irradiation (pristine versus UV oxidation), and origin (secondary versus primary) on the toxicity of Styrofoam microplastics. The target cells used in this study were selected based on human exposure-relevant cell lines: differentiated THP-1 cells for macrophages, Caco-2 for enterocytes, HepG2 for hepatocytes, and A549 for alveolar epithelial cells. In the differentiated THP-1 cells, the levels of cytotoxicity and inflammatory cytokines showed size- (1 µm > 10 µm), UV oxidation- (UV > pristine), and origin- (secondary > primary) dependency. Furthermore, the intrinsic oxidative potential of the test particles was positively correlated with cellular oxidative levels and toxicity endpoints, suggesting that the toxicity of Styrofoam microplastics also follows the oxidative stress paradigm. Additionally, all microplastics induced the activation of the pyrin domain-containing protein 3 (NLRP3) inflammasome and the release of interleukin-1ß (IL-1ß). These results imply that weathering process can aggravate the toxicity of Styrofoam microplastics due to the increased oxidative potential and decreased particle size.


Assuntos
Microplásticos , Poliestirenos , Humanos , Poliestirenos/toxicidade , Microplásticos/toxicidade , Plásticos , Células CACO-2 , Macrófagos
2.
Environ Pollut ; 281: 117006, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33812130

RESUMO

The presence of microplastics in the various food web raised concerns on human health, but little is known about the target cells and mechanism of toxicity of microplastics. In this study, we evaluated the toxicity of microplastics using relevant cell lines to the oral route of exposure. Approximately 100 µm-sized fragment-type polypropylene (PP) and polystyrene (PS) particles were prepared by sieving after pulverization and further applied the accelerated weathering using ultraviolet and heat. Thus, the panel of microplastics includes fresh PP (f-PP), fresh PS (f-PS), weathered PP (w-PP), and weathered PS (w-PS). The spherical PS with a similar size was used as a reference particle. Treatment of all types of PP and PS did not show any toxic effects to the Caco-2 cells and HepG2 cells. However, the treatment of microplastics to THP-1 macrophages showed significant toxicity in the order of f-PS > f-PP > w-PS > w-PP. The weathering process significantly reduced the reactive oxygen species (ROS) generation potential of both microplastics because the weathered microplastics have an increased affinity to bind serum protein which acts as a ROS scavenger. The intrinsic ROS generation potential of microplastics showed a good correlation with the toxicity endpoints including cytotoxicity and pro-inflammatory cytokines in THP-1 macrophages. In conclusion, the results of this study suggest that the target cell type of microplastics via oral administration can be macrophages and the pathogenic factor to THP-1 macrophages is the intrinsic ROS generation potential of microplastics. Nevertheless, the toxic effect of microplastics tested in this study was much less than that of nano-sized particles.


Assuntos
Microplásticos , Poluentes Químicos da Água , Células CACO-2 , Humanos , Macrófagos , Plásticos/toxicidade , Poliestirenos/toxicidade , Espécies Reativas de Oxigênio , Fatores de Virulência , Poluentes Químicos da Água/análise
3.
Aquat Toxicol ; 205: 130-139, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30384194

RESUMO

Zinc oxide nanoparticles (ZnO NPs) are increasingly used in various products as coating and additive materials for household goods, personal-care products, and drug delivery systems. Because of their broad applications, the potential risks to nontarget organisms associated with their input into aquatic environments have generated much concern. We investigated the acute toxicity, morphological responses, and potential impact on physiology and metabolism in polyps exposed to spherical ZnO NPs of either 20 nm (ZnO NP20) or 100 nm (ZnO NP100). The median lethal concentrations (LC50) of ZnO NP20 were 55.3, 8.7, and 7.0 µg/mL after exposure for 48, 72, and 96 h, respectively; and those of ZnO NP100 were 262.0, 14.9, and 9.9 µg/mL, respectively. The morphological responses of the hydra polyps to a range of ZnO NP concentrations suggest that ZnO NPs may negatively affect neurotransmission in Hydra. ZnO NPs may also induce abnormal regeneration in the polyps by affecting the expression of several genes related to the Wnt signaling pathway. The presence of ZnO NP20 in the hydra tissue was confirmed with electron microscopy. A Gene Ontology analysis of the genes differentially expressed in hydra polyps after exposure to ZnO NP20 for 12 or 24 h revealed changes in various processes, including cellular and metabolic process, stress response, developmental process, and signaling. A KEGG pathway analysis of hydra polyps after exposure of ZnO NP20 or ZnO NP100 for 12 or 24 h demonstrated various changes, including in the DNA replication and repair, endocytosis, lysosomes, Wnt signaling, and natural killer-cell-mediated cytotoxicity pathways, suggesting the mechanisms that maintain cellular homeostasis in response to ZnO NPs. Progesterone-mediated oocyte maturation was also affected by the ZnO NPs nanoparticles, suggesting that they are potential endocrine disruptors. This study should increase our concern regarding the dispersal of ZnO NPs in aquatic environments.


Assuntos
Hydra/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Óxido de Zinco/toxicidade , Animais , DNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA