Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 18(6): 1335-1350, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37188336

RESUMO

Mammalian DNA methyltransferases (DNMTs), including DNMT1, DNMT3A, and DNMT3B, are key DNA methylation enzymes and play important roles in gene expression regulation. Dysregulation of DNMTs is linked to various diseases and carcinogenesis, and therefore except for the two approved anticancer azanucleoside drugs, various non-nucleoside DNMT inhibitors have been identified and reported. However, the underlying mechanisms for the inhibitory activity of these non-nucleoside inhibitors still remain largely unknown. Here, we systematically tested and compared the inhibition activities of five non-nucleoside inhibitors toward the three human DNMTs. We found that harmine and nanaomycin A blocked the methyltransferase activity of DNMT3A and DNMT3B more efficiently than resveratrol, EGCG, and RG108. We further determined the crystal structure of harmine in complex with the catalytic domain of the DNMT3B-DNMT3L tetramer revealing that harmine binds at the adenine cavity of the SAM-binding pocket in DNMT3B. Our kinetics assays confirm that harmine competes with SAM to competitively inhibit DNMT3B-3L activity with a Ki of 6.6 µM. Cell-based studies further show that harmine treatment inhibits castration-resistant prostate cancer cell (CRPC) proliferation with an IC50 of ∼14 µM. The CPRC cells treated with harmine resulted in reactivating silenced hypermethylated genes compared to the untreated cells, and harmine cooperated with an androgen antagonist, bicalutamide, to effectively inhibit the proliferation of CRPC cells. Our study thus reveals, for the first time, the inhibitory mechanism of harmine on DNMTs and highlights new strategies for developing novel DNMT inhibitors for cancer treatment.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Masculino , Animais , Humanos , Metilação de DNA , Harmina/farmacologia , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação da Expressão Gênica , Transformação Celular Neoplásica/genética , Inibidores Enzimáticos/farmacologia , Antineoplásicos/farmacologia , DNA/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
3.
Chem Sci ; 11(36): 9904-9909, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34094251

RESUMO

We present a near-term treatment strategy to tackle pandemic outbreaks of coronaviruses with no specific drugs/vaccines by combining evolutionary and physical principles to identify conserved viral domains containing druggable Zn-sites that can be targeted by clinically safe Zn-ejecting compounds. By applying this strategy to SARS-CoV-2 polyprotein-1ab, we predicted multiple labile Zn-sites in papain-like cysteine protease (PLpro), nsp10 transcription factor, and nsp13 helicase. These are attractive drug targets because they are highly conserved among coronaviruses and play vital structural/catalytic roles in viral proteins indispensable for virus replication. We show that five Zn-ejectors can release Zn2+ from PLpro and nsp10, and clinically-safe disulfiram and ebselen can not only covalently bind to the Zn-bound cysteines in both proteins, but also inhibit PLpro protease. We propose combining disulfiram/ebselen with broad-spectrum antivirals/drugs to target different conserved domains acting at various stages of the virus life cycle to synergistically inhibit SARS-CoV-2 replication and reduce the emergence of drug resistance.

4.
RNA ; 25(6): 737-746, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30926754

RESUMO

Human RNA exoribonuclease 2 (Rexo2) is an evolutionarily conserved 3'-to-5' DEDDh-family exonuclease located primarily in mitochondria. Rexo2 degrades small RNA oligonucleotides of <5 nucleotides (nanoRNA) in a way similar to Escherichia coli Oligoribonuclease (ORN), suggesting that it plays a role in RNA turnover in mitochondria. However, how Rexo2 preferentially binds and degrades nanoRNA remains elusive. Here, we show that Rexo2 binds small RNA and DNA oligonucleotides with the highest affinity, and it is most robust in degrading small nanoRNA into mononucleotides in the presence of magnesium ions. We further determined three crystal structures of Rexo2 in complex with single-stranded RNA or DNA at resolutions of 1.8-2.2 Å. Rexo2 forms a homodimer and interacts mainly with the last two 3'-end nucleobases of substrates by hydrophobic and π-π stacking interactions via Leu53, Trp96, and Tyr164, signifying its preference in binding and degrading short oligonucleotides without sequence specificity. Crystal structure of Rexo2 is highly similar to that of the RNA-degrading enzyme ORN, revealing a two-magnesium-ion-dependent hydrolysis mechanism. This study thus provides the molecular basis for human Rexo2, showing how it binds and degrades nanoRNA into nucleoside monophosphates and plays a crucial role in RNA salvage pathways in mammalian mitochondria.


Assuntos
Proteínas 14-3-3/química , Biomarcadores Tumorais/química , DNA de Cadeia Simples/química , Exorribonucleases/química , Magnésio/química , Proteínas Mitocondriais/química , Oligorribonucleotídeos/química , RNA/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sítios de Ligação , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Cátions Bivalentes , Clonagem Molecular , Cristalografia por Raios X , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Magnésio/metabolismo , Mitocôndrias/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , RNA/genética , RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Structure ; 25(3): 469-481, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28238534

RESUMO

CshA is a dimeric DEAD-box helicase that cooperates with ribonucleases for mRNA turnover. The molecular mechanism for how a dimeric DEAD-box helicase aids in RNA decay remains unknown. Here, we report the crystal structure and small-angle X-ray scattering solution structure of the CshA from Geobacillus stearothermophilus. In contrast to typical monomeric DEAD-box helicases, CshA is exclusively a dimeric protein with the RecA-like domains of each protomer forming a V-shaped structure. We show that the C-terminal domains protruding outward from the tip of the V-shaped structure is critical for mediating strong RNA binding and is crucial for efficient RNA-dependent ATP hydrolysis. We also show that RNA remains bound with CshA during ATP hydrolysis cycles and thus bulk RNAs could be unwound and degraded in a processive manner through cooperation between exoribonucleases and CshA. A dimeric helicase is hence preserved in RNA-degrading machinery for efficient RNA turnover in prokaryotes and eukaryotes.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Geobacillus stearothermophilus/metabolismo , RNA/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Exorribonucleases/metabolismo , Hidrólise , Modelos Moleculares , Multimerização Proteica , Estabilidade de RNA , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA