Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Cell Commun Signal ; 22(1): 278, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762737

RESUMO

BACKGROUND: While de novo cholesterol biosynthesis plays a crucial role in chemotherapy resistance of colorectal cancer (CRC), the underlying molecular mechanism remains poorly understood. METHODS: We conducted cell proliferation assays on CRC cells with or without depletion of squalene epoxidase (SQLE), with or without 5-fluorouracil (5-FU) treatment. Additionally, a xenograft mouse model was utilized to explore the impact of SQLE on the chemosensitivity of CRC to 5-FU. RNA-sequencing analysis and immunoblotting analysis were performed to clarify the mechanism. We further explore the effect of SQLE depletion on the ubiquitin of NF-κB inhibitor alpha (IκBα) and (S)-2,3-epoxysqualene on the binding of IκBα to beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) by using immunoprecipitation assay. In addition, a cohort of 272 CRC patients were selected for our clinical analyses. RESULTS: Mechanistically, (S)-2,3-epoxysqualene promotes IκBα degradation and subsequent NF-κB activation by enhancing the interaction between BTRC and IκBα. Activated NF-κB upregulates the expression of baculoviral IAP repeat containing 3 (BIRC3), sustains tumor cell survival after 5-FU treatment and promotes 5-FU resistance of CRC in vivo. Notably, the treatment of terbinafine, an inhibitor of SQLE commonly used as antifungal drug in clinic, enhances the sensitivity of CRC to 5-FU in vivo. Additionally, the expression of SQLE is associated with the prognosis of human CRC patients with 5-FU-based chemotherapy. CONCLUSIONS: Thus, our finding not only demonstrates a new role of SQLE in chemoresistance of CRC, but also reveals a novel mechanism of (S)-2,3-epoxysqualene-dependent NF-κB activation, implicating the combined potential of terbinafine for 5-FU-based CRC treatment.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Fluoruracila , NF-kappa B , Esqualeno Mono-Oxigenase , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Esqualeno Mono-Oxigenase/metabolismo , Esqualeno Mono-Oxigenase/genética , NF-kappa B/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Camundongos Endogâmicos BALB C , Feminino , Masculino , Proliferação de Células/efeitos dos fármacos , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Ren Fail ; 46(1): 2334396, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38570195

RESUMO

OBJECTIVES: Calcium oxalate (CaOx) crystal deposition in acute kidney injury (AKI) patients is under recognized but impacts renal outcomes. This study investigates its determinants and effects. METHODS: We studied 814 AKI patients with native kidney biopsies from 2011 to 2020, identifying CaOx crystal deposition severity (mild: <5, moderate: 5-10, severe: >10 crystals per section). We assessed factors like urinary oxalate, citrate, urate, electrolytes, pH, tubular calcification index, and SLC26A6 expression, comparing them with creatinine-matched AKI controls without oxalosis. We analyzed how these factors relate to CaOx severity and their impact on renal recovery (eGFR < 15 mL/min/1.73 m2 at 3-month follow-up). RESULTS: CaOx crystal deposition was found in 3.9% of the AKI cohort (32 cases), with 72% due to nephrotoxic medication-induced tubulointerstitial nephritis. Diuretic use, higher urinary oxalate-to-citrate ratio induced by hypocitraturia, and tubular calcification index were significant contributors to moderate and/or severe CaOx deposition. Poor baseline renal function, low urinary chloride, high uric acid and urea nitrogen, tubular SLC26A6 overexpression, and glomerular sclerosis were also associated with moderate-to-severe CaOx deposition. Kidney recovery was delayed, with 43.8%, 31.2%, and 18.8% of patients having eGFR < 15 mL/min/1.73 m2 at 4, 12, and 24-week post-injury. Poor outcomes were linked to high urinary α1-microglobulin-to-creatinine (α1-MG/C) ratios and active tubular injury scores. Univariate analysis showed a strong link between this ratio and poor renal outcomes, independent of oxalosis severity. CONCLUSIONS: In AKI, CaOx deposition is common despite declining GFR. Factors worsening tubular injury, not just oxalate-to-citrate ratios, are key to understanding impaired renal recovery.


Assuntos
Injúria Renal Aguda , Calcinose , Hiperoxalúria , Humanos , Oxalato de Cálcio/química , Creatinina/metabolismo , Rim/patologia , Hiperoxalúria/complicações , Oxalatos/metabolismo , Injúria Renal Aguda/patologia , Citratos/metabolismo , Ácido Cítrico
3.
Metabolites ; 14(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38535331

RESUMO

Metabolic reprogramming has emerged as a prominent hallmark of cancer, characterized by substantial alterations in nutrient uptake and intracellular metabolic pathways. Consequently, intracellular metabolite concentrations undergo significant changes which can contribute to tumorigenesis through diverse mechanisms. Beyond their classical roles in regulating metabolic pathway flux, metabolites exhibit noncanonical functions that play a crucial role in tumor progression. In this review, we delve into the nonclassical functions of metabolites in the context of tumor progression, with a particular focus on their capacity to modulate gene expression and cell signaling. Furthermore, we discuss the potential exploitation of these nonclassical functions in the enhancement of cancer therapy.

4.
Talanta ; 273: 125856, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442565

RESUMO

Simultaneous detection of multiple tumor biomarkers with a simple and low-cost assay is crucial for early cancer detection and diagnosis. Herein, we presented a low-cost and simple assay for multiplexed detection of tumor biomarkers using a spatially separated electrodes strategy. The sensor is fabricated based on a metal-free thiol-yne click reaction, which is mediated by visible light, on commercially available indium tin oxide (ITO) electrodes. Four biomarkers, including p53 DNA, Brca2 DNA, K-ras DNA, and MicroRNA-204 RNA, were used as model analytes, and the corresponding oligonucleotide probes were modified on the desired electrode units sequentially with 530 nm irradiation light in the presence of photosensitizer Eosin Y. By this visible light-mediated coupling reaction, oligonucleotide probe densities of up to 9.2 ± 0.7 × 1010 molecules/cm2 were readily obtained on the ITO electrode surface. The proposed multiplexed E-NA sensor could detect four different nucleic acid targets concurrently without crosstalk among adjacent electrodes and was also successfully applied for detecting targets in a 20% fetal calf serum sample. The detection limits for p53 DNA, Brca2 DNA, K-ras DNA, and MicroRNA-204 RNA were 0.72 nM, 0.97 nM, 2.15 nM, and 1.73 nM, respectively. The developed approach not only has a great potential for developing cost-effective biosensors on affordable substrates for nucleic acid target detection, but also be easily extended to detect other targets by modifying the specific oligonucleotide probes anchored on the electrode.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Ácidos Nucleicos , Sondas de Oligonucleotídeos , Compostos de Sulfidrila , Proteína Supressora de Tumor p53/genética , DNA , Eletrodos , Ouro , Biomarcadores Tumorais , Luz , Técnicas Eletroquímicas
5.
Ecotoxicol Environ Saf ; 272: 116094, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364759

RESUMO

Exposure to benzo[a]pyrene (B[a]P) has been linked to lung injury and carcinogenesis. Airway epithelial cells express the B[a]P receptor AHR, so B[a]P is considered to mainly target airway epithelial cells, whereas its potential impact on alveolar cells remains inadequately explored. Metformin, a first-line drug for diabetes, has been shown to exert anti-inflammatory and tissue repair-promoting effects under various injurious conditions. Here, we explored the effect of chronic B[a]P exposure on alveolar cells and the impact of metformin on B[a]P-induced lung injury by examining the various parameters including lung histopathology, inflammation, fibrosis, and related signal pathway activation. MLKL knockout (Mlkl-/-) and AT2-lineage tracing mice (SftpcCre-ERT2;LSL-tdTomatoflox+/-) were used to delineate the role of necroptosis in B[a]P-induced alveolar epithelial injury and repair. Mice receiving weekly administration of B[a]P for 6 weeks developed a significant alveolar damaging phenotype associated with pulmonary inflammation, fibrosis, and activation of the necroptotic cell death pathway. These effects were significantly relieved in MLKL null mice. Furthermore, metformin treatment, which were found to promote AMPK phosphorylation and inhibit RIPK3, as well as MLKL phosphorylation, also significantly alleviated B[a]P-induced necroptosis and lung injury phenotype. However, the protective efficacy of metformin was rendered much less effective in Mlkl null mice or by blocking the necroptotic pathway with RIPK3 inhibitor. Our findings unravel a potential protective efficacy of metformin in mitigating the detrimental effects of B[a]P exposure on lung health by inhibiting necroptosis and protecting AT2 cells.


Assuntos
Benzo(a)pireno , Lesão Pulmonar , Proteína Vermelha Fluorescente , Camundongos , Animais , Benzo(a)pireno/toxicidade , Proteínas Quinases/metabolismo , Necroptose , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/prevenção & controle , Fibrose
6.
iScience ; 27(2): 109011, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38357662

RESUMO

Loss of Protocadherin 9 (PCDH9) is associated with the metastasis and the prognosis of gastric cancer patients, while the molecular mechanism of PCDH9-impaired gastric cancer metastasis remains unclear. Here we show that PCDH9 is cleaved in gastric cancer cells. Intracellular domain of PCDH9 translocates into nucleus, where it interacts with DNA methyltransferase 1 (DNMT1) and increases DNMT1 activity. Activated DNMT1 downregulates cadherin 2 (CDH2) expression by increasing DNA methylation at its promoter, thereby dampening the migration and in vivo metastasis of gastric cancer cells. In addition, the levels of nuclear PCDH9 correlate with CDH2 expression, lymph node metastasis, and the prognosis of gastric cancer patients. Our finding demonstrates a unique mechanism of nuclear PCDH9-impaired gastric cancer metastasis by promoting DNA methylation of CDH2 promoter.

7.
EMBO Mol Med ; 16(2): 334-360, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177537

RESUMO

Cancer immunotherapies have achieved unprecedented success in clinic, but they remain largely ineffective in some major types of cancer, such as colorectal cancer with microsatellite stability (MSS CRC). It is therefore important to study tumor microenvironment of resistant cancers for developing new intervention strategies. In this study, we identify a metabolic cue that determines the unique immune landscape of MSS CRC. Through secretion of distal cholesterol precursors, which directly activate RORγt, MSS CRC cells can polarize T cells toward Th17 cells that have well-characterized pro-tumor functions in colorectal cancer. Analysis of large human cancer cohorts revealed an asynchronous pattern of the cholesterol biosynthesis in MSS CRC, which is responsible for the abnormal accumulation of distal cholesterol precursors. Inhibiting the cholesterol biosynthesis enzyme Cyp51, by pharmacological or genetic interventions, reduced the levels of intratumoral distal cholesterol precursors and suppressed tumor progression through a Th17-modulation mechanism in preclinical MSS CRC models. Our study therefore reveals a novel mechanism of cancer-immune interaction and an intervention strategy for the difficult-to-treat MSS CRC.


Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Humanos , Neoplasias Colorretais/genética , Microambiente Tumoral
8.
Adv Biol (Weinh) ; 8(2): e2300451, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38015093

RESUMO

Polycystic ovary syndrome (PCOS) is a common gynecological endocrine disease with a certain degree of chronic inflammation and abnormal ovarian angiogenesis in reproductive women. Mesenchymal stem cells (MSCs) have potent immunomodulatory properties to regulate ovarian function, while thrombospondin 1 (TSP1) improves the abnormal formation of ovarian vessels. The present study investigated the efficacy of the combined use of adipose-derived mesenchymal stem cells (ADSCs) and TSP1 in PCOS mice. The PCOS model is established using dehydroepiandrosterone (DHEA) by subcutaneous injection. Ovarian apoptosis is assessed using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Real-time quantitative PCR (RT-PCR) and western blotting are used to detect the expression of inflammatory factors and the levels of angiogenesis-related factors in ovarian tissues. Inflammatory cells count and ovarian angiogenesis are evaluated by immunofluorescence staining. This research shows that TSP1 and ADSCs treatment can significantly reduce the inflammatory state of PCOS mice, relieve the degree of ovarian cell apoptosis, optimize the ovarian histological manifestations, and restore the levels of related hormones. The proportion of CD31-positive cells in PCOS mice returned to near-normal levels. The synergistic use of ADSCs and TSP1 therapy can exert a more impressive effect by inhibiting the ovarian inflammatory response and regulating the balance of angiogenesis than the single application in PCOS mice.


Assuntos
Síndrome do Ovário Policístico , Humanos , Camundongos , Feminino , Animais , Síndrome do Ovário Policístico/terapia , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Trombospondina 1 , Hormônios , Inflamação/terapia , Inflamação/metabolismo
9.
J Colloid Interface Sci ; 656: 15-23, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37980720

RESUMO

The low-cost transition metal oxides have drawn widespread interest as alternatives to noble metal-based electrocatalysts for oxygen evolution reaction (OER). Transition metal oxides usually undergo surface reconstruction during electrochemical reaction to form the actual active species. However, in-depth understanding and regulating of the surface reconstruction of active phases for oxides in OER remains an onerous challenge. Herein, we report a simple Fe element substitution strategy to facilitate the surface reconstruction of spinel oxide NiCr2O4 to generate active (oxy)hydroxides. The activated Fe-doped NiCr2O4 (Act-Fe-NCO) exhibits a lower OER overpotential of 259 mV at 10 mA cm-2 than activated NiCr2O4 (Act-NCO, 428 mV), and shows excellent stability for 120 h. The electrochemically activated CV measurement and nanostructure characterizations reveal that Fe substitution could promote the consumption of lattice oxygen during electrochemical activation to induce the leaching of soluble Cr cations, thereby facilitating the reconstruction of remaining Ni cations on the surface into (oxy)hydroxide active species. Moreover, theoretical calculations further demonstrate that the O 2p band center of NiCr2O4 moves towards the Fermi level due to Fe substitution, thus promoting lattice oxygen oxidation and providing greater structural flexibility for surface reconstruction. This work shows a promising way to regulate the surface reconstruction kinetics and OER electrocatalytic activity of transition metal oxides.

10.
STAR Protoc ; 5(1): 102802, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159272

RESUMO

Locomotion through spatially confining spaces is an important in vivo migration mode. Here, we present a protocol for in situ visualization of mitochondrial reactive oxygen species and apoptosis in cancer cells during confined migration. We then detail sample preparation of confined cells for transcriptome and immunoblotting analysis by using transwell chambers. This approach allows in situ evaluation of a variety of cellular functions during confined migration and preparation of the samples of confined cells for further biochemical analysis. For complete details on the use and execution of this protocol, please refer to Cai et al.1.


Assuntos
Apoptose , Mitocôndrias , Espécies Reativas de Oxigênio , Immunoblotting , Locomoção
11.
J Mol Cell Biol ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38059855

RESUMO

Mutations or dysregulated expression of NF-kappaB activating protein (NKAP) family genes have been found in human cancers. How NKAP family gene mutations promote tumor initiation and progression remains to be determined. Here, we characterized dNKAP, the Drosophila homolog of NKAP, and showed that impaired dNKAP function causes genome instability and tumorigenic growth in a Drosophila epithelial tumor model. dNKAP-knockdown wing imaginal discs exhibit tumorigenic characteristics, including tissue overgrowth, cell invasive behavior, abnormal cell polarity, and cell adhesion defects. dNKAP knockdown causes both R-loop accumulation and DNA damage, indicating the disruption of genome integrity. Further analysis showed that dNKAP knockdown induces c-Jun N-terminal kinase (JNK)-dependent apoptosis and causes changes in cell proliferation in distinct cell populations. Activation of the Notch and JAK/STAT signaling pathways contributes to the tumorigenic growth of dNKAP-knockdown tissues. Furthermore, JNK signaling is essential for dNKAP depletion-mediated cell invasion. Transcriptome analysis of dNKAP-knockdown tissues confirmed the misregulation of signaling pathways involved in promoting tumorigenesis and revealed abnormal regulation of metabolic pathways. dNKAP knockdown and oncogenic Ras, Notch, or Yki mutations show synergies in driving tumorigenesis, further supporting the tumor-suppressive role of dNKAP. In summary, this study demonstrates that dNKAP plays a tumor-suppressive role by preventing genome instability in Drosophila epithelia and thus provides novel insights into the roles of human NKAP family genes in tumor initiation and progression.

12.
Aging (Albany NY) ; 15(18): 9408-9425, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37768206

RESUMO

BACKGROUND: Cervical cancer (CC) is highly lethal and aggressive with an increasing trend of mortality for females. Molecular characterization-based methods hold great promise for improving the diagnostic accuracy and for predicting treatment response. METHODS: The mRNAs expression data of CC patients and cellular senescence-related genes were obtained from the Cancer Genome Atlas (TCGA) and CellAge databases, respectively. Differentially expressed genes (DEGs) of senescence related genes between tumor and normal tissues were used for Least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model. Univariate and LASSO regression analyses were applied to establish a predictive nomogram. The performance of the nomogram were evaluated by Kaplan-Meier curve, receiver operating characteristic (ROC), Harrell's concordance index (C-index), and calibration curve. GSE44001 and GSE52903 were used for external validation. RESULTS: We established a cellular senescence-related genes-based stratified model, and a multivariable-based nomogram, which could accurately predict the prognosis of CC patients in the TCGA database. The Kaplan-Meier curve indicated that patients in the low-risk group had considerably better overall survival (OS, P =2.021e-05). The area under the ROC curve (AUC) of this model was 0.743 for OS. Multivariate analysis found that the 6-gene risk signature (HR=3.166, 95%CI: 1.660-6.041, P<0.001) was an independent risk factor for CC patients. We then designed an OS-associated nomogram that included the risk signature and clinicopathological factors. The AUC reached 0.860 for predicting 5-year OS. The nomogram showed excellent consistency between the predictions and actual survival observations. Two external GEO validations were corresponding to the gene expression pattern in TCGA. CONCLUSIONS: Our results suggested a six-senescence related signature and established a prognostic nomogram that reliably predicted the overall survival for CC. These findings may be beneficial to personalized treatment and medical decision-making.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/terapia , Prognóstico , Nomogramas , Senescência Celular/genética , Biologia Computacional
13.
Cell Rep Med ; 4(9): 101162, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37597521

RESUMO

Metabolic reprogramming is known as an emerging mechanism of chemotherapy resistance, but the metabolic signatures of pancreatic ductal adenocarcinomas (PDACs) remain unclear. Here, we characterize the metabolomic profile of PDAC organoids and classify them into glucomet-PDAC (high glucose metabolism levels) and lipomet-PDAC (high lipid metabolism levels). Glucomet-PDACs are more resistant to chemotherapy than lipomet-PDACs, and patients with glucomet-PDAC have a worse prognosis. Integrated analyses reveal that the GLUT1/aldolase B (ALDOB)/glucose-6-phosphate dehydrogenase (G6PD) axis induces chemotherapy resistance by remodeling glucose metabolism in glucomet-PDAC. Increased glycolytic flux, G6PD activity, and pyrimidine biosynthesis are identified in glucomet-PDAC with high GLUT1 and low ALDOB expression, and these phenotypes could be reversed by inhibiting GLUT1 expression or by increasing ALDOB expression. Pharmacological inhibition of GLUT1 or G6PD enhances the chemotherapy response of glucomet-PDAC. Our findings uncover potential metabolic heterogeneity related to differences in chemotherapy sensitivity in PDAC and develop a promising pharmacological strategy for patients with chemotherapy-resistant glucomet-PDAC through the combination of chemotherapy and GLUT1/ALDOB/G6PD axis inhibitors.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Frutose-Bifosfato Aldolase , Glucose , Transportador de Glucose Tipo 1/genética , Glucosefosfato Desidrogenase , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas
14.
Foodborne Pathog Dis ; 20(9): 398-404, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37486675

RESUMO

Cherry tomatoes are highly well-liked and have a lot of nutritional value. However, the edible value of cherry tomatoes rapidly declines as their storage duration is extended. Pleurotus citrinopileatus polysaccharide (PCP) is a kind of polysaccharide obtained from P. citrinopileatus by water extraction. The effects of PCP were investigated to identify a way to maximally postpone cherry tomato degradation. The results showed that PCP had inhibitory effects on all 10 tested strains, and the inhibitory effect on Pseudomonas aeruginosa was the strongest. PCP could effectively reduce the weight loss rate and malondialdehyde accumulation of cherry tomatoes during storage, weaken the activity of polyphenol oxidase, and delay the decline of hardness, titratable acid content, and VC content compared with untreated cherry tomatoes. PCP solution at a concentration of 2 g/L exerted the best preservation effects. Therefore, PCP can potentially contribute to the preservation of vegetables and fruits.


Assuntos
Pleurotus , Solanum lycopersicum , Polissacarídeos/farmacologia
15.
J Orthop Surg Res ; 18(1): 439, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37328786

RESUMO

BACKGROUND: Knee Osteoarthritis (KOA) is one of the main causes of disability in the elderly and with limited treatment options. Swimming was considered as an ideal form of non-surgical management of KOA. Nevertheless, the mechanism of swimming intervene OA remains unclear. ACLT induced OA model was often used to study the pathogenesis and treatment of OA. Thus, we evaluated the protective effect of swimming on KOA mouse and tried to explore the underlying mechanism. METHODS: Forty C57BL/6 mice were randomly divided into five groups: Blank group, ACLT group, ACLT + Swim group, Sham group and Sham + Swim group (n = 8). OA model was established by Anterior Cruciate Ligament Transection surgery (ACLT). After modeling, mice in ACLT + Swim and Sham + Swim groups were trained with a moderate swimming program, 5 d/week, for 6 weeks. HE and Safranin-O/fast staining, Immunohistochemistry, TUNEL assay and Western blot were used to detect the effect of swimming on pathological changes, cell death and the mechanism in KOA mouse. RESULTS: Swimming significantly enhanced CoII expression and suppressed ADAMTS5 expression in cartilage of KOA mouse, thus ameliorated KOA development. Apoptotic and autophagic processes were enhanced in OA cartilage, which might be caused by down-regulation of PI3K/AKT pathway; swimming could activate PI3K/AKT pathway and thus regulate apoptosis and autophagy processes of chondrocytes. CONCLUSION: Swimming could prevent cell death of chondrocytes via PI3K/AKT pathways, thus delayed the progression of KOA in an experimental model.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Camundongos , Animais , Condrócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Natação , Cartilagem Articular/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Osteoartrite do Joelho/patologia , Apoptose
16.
Adv Sci (Weinh) ; 10(21): e2206540, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37296072

RESUMO

Cell migration is a pivotal step in metastatic process, which requires cancer cells to navigate a complex spatially-confined environment, including tracks within blood vessels and in the vasculature of target organs. Here it is shown that during spatially-confined migration, the expression of insulin-like growth factor-binding protein 1 (IGFBP1) is upregulated in tumor cells. Secreted IGFBP1 inhibits AKT1-mediated phosphorylation of mitochondrial superoxide dismutase (SOD2) serine (S) 27 and enhances SOD2 activity. Enhanced SOD2 attenuates mitochondrial reactive oxygen species (ROS) accumulation in confined cells, which supports tumor cell survival in blood vessels of lung tissues, thereby accelerating tumor metastasis in mice. The levels of blood IGFBP1 correlate with metastatic recurrence of lung cancer patients. This finding reveals a unique mechanism by which IGFBP1 sustains cell survival during confined migration by enhancing mitochondrial ROS detoxification, thereby promoting tumor metastasis.


Assuntos
Neoplasias Pulmonares , Animais , Camundongos , Sobrevivência Celular , Neoplasias Pulmonares/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo
17.
J Colloid Interface Sci ; 648: 701-708, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321089

RESUMO

Transition metal oxides have been extensively investigated for oxygen evolution reaction (OER). While the introduction of oxygen vacancies (Vo) was found to be an effective way to enhance the electrical conductivity and the OER electrocatalytic activity of transition metal oxides, the oxygen vacancies are easily damaged during the long-term catalytic process, resulting in rapid decay of the electrocatalytic activity. Herein, we proposed the strategy of dual-defect engineering to enhance the catalytic activity and stability of NiFe2O4 by filling the oxygen vacancies of NiFe2O4 with phosphorus atoms. The filled P atoms could form coordination with iron and nickel ions to compensate the coordination number and optimize the local electronic structure, which not only enhances the electrical conductivity but also improves the intrinsic activity of the electrocatalyst. Meanwhile, the filling of P atoms could stabilize the Vo and thus improving the cycling stability of the material. The theoretical calculation further demonstrates that the improvement in conductivity and intermediate binding by P refilling remarkably contributes to enhancing the OER activity of NiFe2O4-Vo-P. Benefiting from the synergistic effect of filled P atoms and Vo, the derived NiFe2O4-Vo-P exhibits fascinating activity with ultra-low OER overpotentials of 234 and 306 mV at 10 and 200 mA cm-2, together with the good durability for 120 h at relatively high current density of 100 mA cm-2. This work sheds light on the design of high-performance transition metal oxide catalysts through defect regulation in the future.

18.
Cancer Cell ; 41(7): 1276-1293.e11, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37244259

RESUMO

The concept of targeting cholesterol metabolism to treat cancer has been widely tested in clinics, but the benefits are modest, calling for a complete understanding of cholesterol metabolism in intratumoral cells. We analyze the cholesterol atlas in the tumor microenvironment and find that intratumoral T cells have cholesterol deficiency, while immunosuppressive myeloid cells and tumor cells display cholesterol abundance. Low cholesterol levels inhibit T cell proliferation and cause autophagy-mediated apoptosis, particularly for cytotoxic T cells. In the tumor microenvironment, oxysterols mediate reciprocal alterations in the LXR and SREBP2 pathways to cause cholesterol deficiency of T cells, subsequently leading to aberrant metabolic and signaling pathways that drive T cell exhaustion/dysfunction. LXRß depletion in chimeric antigen receptor T (CAR-T) cells leads to improved antitumor function against solid tumors. Since T cell cholesterol metabolism and oxysterols are generally linked to other diseases, the new mechanism and cholesterol-normalization strategy might have potential applications elsewhere.


Assuntos
Antineoplásicos , Neoplasias , Oxisteróis , Humanos , Colesterol/metabolismo , Ativação Linfocitária , Imunoterapia Adotiva , Microambiente Tumoral
19.
Int Wound J ; 20(9): 3540-3549, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37218367

RESUMO

This study comprehensively assessed the effect of enhanced recovery after surgery (ERAS) on wound infection and postoperative complications in patients undergoing liver surgery. The PubMed, EMBASE, MEDLINE, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP, and Wanfang electronic databases were searched to collect published studies on the use of ERAS in liver surgery until December 2022. Literature selection was performed independently by two investigators according to the inclusion and exclusion criteria, and quality evaluation and data extraction were performed. RevMan 5.4 software was used in this study. Compared with the control group, the ERAS group showed a significantly lower incidence of postoperative wound infection (odds ratio [OR]: 0.59, 95% confidence interval [CI]: 0.41-0.84, P = .004) and overall postoperative complication rate (OR: 0.43, 95% CI: 0.33-0.57, P < .001) and significantly shorter postoperative hospital stay (mean difference: -2.30, 95% CI: -2.92 to -1.68, P < .001). Therefore, ERAS was safe and feasible when applied to liver resection, reducing the incidence of wound infection and total postoperative complications, and shortening the length of hospital stay. However, further studies are required to investigate the impact of ERAS protocols on clinical outcomes.


Assuntos
Recuperação Pós-Cirúrgica Melhorada , Infecção da Ferida Cirúrgica , Humanos , Hepatectomia/efeitos adversos , Tempo de Internação , Fígado , Complicações Pós-Operatórias/etiologia , Infecção da Ferida Cirúrgica/prevenção & controle
20.
Acta Pharmacol Sin ; 44(10): 2004-2018, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37225844

RESUMO

Doxorubicin is a common chemotherapeutic agent in clinic, but myocardial toxicity limits its use. Fibroblast growth factor (FGF) 10, a multifunctional paracrine growth factor, plays diverse roles in embryonic and postnatal heart development as well as in cardiac regeneration and repair. In this study we investigated the role of FGF10 as a potential modulator of doxorubicin-induced cardiac cytotoxicity and the underlying molecular mechanisms. Fgf10+/- mice and an inducible dominant negative FGFR2b transgenic mouse model (Rosa26rtTA; tet(O)sFgfr2b) were used to determine the effect of Fgf10 hypomorph or blocking of endogenous FGFR2b ligands activity on doxorubicin-induced myocardial injury. Acute myocardial injury was induced by a single injection of doxorubicin (25 mg/kg, i.p.). Then cardiac function was evaluated using echocardiography, and DNA damage, oxidative stress and apoptosis in cardiac tissue were assessed. We showed that doxorubicin treatment markedly decreased the expression of FGFR2b ligands including FGF10 in cardiac tissue of wild type mice, whereas Fgf10+/- mice exhibited a greater degree of oxidative stress, DNA damage and apoptosis as compared with the Fgf10+/+ control. Pre-treatment with recombinant FGF10 protein significantly attenuated doxorubicin-induced oxidative stress, DNA damage and apoptosis both in doxorubicin-treated mice and in doxorubicin-treated HL-1 cells and NRCMs. We demonstrated that FGF10 protected against doxorubicin-induced myocardial toxicity via activation of FGFR2/Pleckstrin homology-like domain family A member 1 (PHLDA1)/Akt axis. Overall, our results unveil a potent protective effect of FGF10 against doxorubicin-induced myocardial injury and identify FGFR2b/PHLDA1/Akt axis as a potential therapeutic target for patients receiving doxorubicin treatment.


Assuntos
Fator 10 de Crescimento de Fibroblastos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Animais , Camundongos , Doxorrubicina , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA