Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Langmuir ; 40(37): 19799-19803, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39224945

RESUMO

Electrical double layer (EDL) plays a crucial role in colloidal chemistry, which can be modified by changing the pH and ionic strength of a solution. Even though EDL is well-recognized, there are limited studies exploring interactions between two-dimensional (2D) and zero-dimensional nanoparticles. Herein, we demonstrate a simple pH-based approach to control the EDL of boron nitride nanosheets (BNNSs) and gold nanoparticles (AuNPs) that plays a crucial role in their interaction, displaying a one-way gate effect. We observed that as the EDL decreases, AuNPs can come into closer interaction with BNNSs, and this also resulted in a deceleration of the aggregation process of AuNPs when functionalized with l-cysteine. This work provides a fundamental understanding of how modulation of the EDL of 2D nanomaterials can be achieved through functionalizing strategies.

2.
Mikrochim Acta ; 191(8): 477, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039391

RESUMO

A novel biofuel cell (BFC)-based self-powered electrochemical immunosensing platform was developed by integrating the target-induced biofuel release and biogate immunoassay for ultrasensitive 17ß-estradiol (E2) detection. The carbon nanocages/gold nanoparticle composite was employed in the BFCs device as the electrode material, through which bilirubin oxidase and glucose oxidase were wired to form the biocathode and bioanode, respectively. Positively charged mesoporous silica nanoparticles (PMSN) were encapsulated with glucose molecules as biofuel and subsequently coated by the negatively charged AuNPs-labelled anti-E2 antibody (AuNPs-Ab) serving as a biogate. The biogate could be opened efficiently and the trapped glucose released once the target E2 was recognized and captured by AuNPs-Ab due to the decreased adhesion between the antigen-antibody complex and PMSN. Then, glucose oxidase oxidized the glucose to produce a large number of electrons, resulting in significantly increased open-circuit voltage (EOCV). Promisingly, the proposed BFC-based self-powered immunosensor demonstrated exceptional sensitivity for the detection of E2 in the concentration range from 1.0 pg mL-1 to 10.0 ng mL -1, with a detection limit of 0.32 pg mL-1 (S/N = 3). Furthermore, the prepared BFC-based self-powered homogeneous immunosensor showed significant potential for implementation as a viable prototype for a mobile and an on-site bioassay system in food and environmental safety applications.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Estradiol , Glucose Oxidase , Ouro , Limite de Detecção , Nanopartículas Metálicas , Imunoensaio/métodos , Estradiol/química , Estradiol/análise , Ouro/química , Glucose Oxidase/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Humanos , Eletrodos , Glucose/análise , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Anticorpos Imobilizados/imunologia , Dióxido de Silício/química , Enzimas Imobilizadas/química
3.
Sci Technol Adv Mater ; 25(1): 2345041, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742153

RESUMO

Exosomes, a type of extracellular vesicles, have attracted considerable attention due to their ability to provide valuable insights into the pathophysiological microenvironment of the cells from which they originate. This characteristic implicates their potential use as diagnostic disease biomarkers clinically, including cancer, infectious diseases, neurodegenerative disorders, and cardiovascular diseases. Aptasensors, which are electrochemical aptamers based biosensing devices, have emerged as a new class of powerful detection technology to conventional methods like ELISA and Western analysis, primarily because of their capability for high-performance bioanalysis. This review covers the current research landscape on the detection of exosomes utilizing nanoarchitectonics strategy for the development of electrochemical aptasensors. Strategies involving signal amplification and biofouling prevention are discussed, with an emphasis on nanoarchitectonics-based bio-interfaces, showcasing their potential to enhance sensitivity and selectivity through optimal conduction and mass transport properties. The ongoing challenges to broaden the clinical applications of these biosensors are also highlighted.


This review emphasizes the significant impact of integrating nanoarchitectonics into aptamer-based electrochemical biosensors for exosome detection, thereby enhancing early disease detection and monitoring disease progression in clinical settings.

4.
Analyst ; 149(9): 2621-2628, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38546096

RESUMO

17ß-Estradiol (E2) is an important endogenous estrogen, which disturbs the endocrine system and poses a threat to human health because of its accumulation in the human body. Herein, a biofuel cell (BFC)-based self-powered electrochemical aptasensor was developed for E2 detection. Porous carbon nanocage/gold nanoparticle composite modified indium tin oxide (CNC/AuNP/ITO) and glucose oxidase modified CNC/AuNP/ITO were used as the biocathode and bioanode of BFCs, respectively. [Fe(CN)6]3- was selected as an electroactive probe, which was entrapped in the pores of positively charged magnetic Fe3O4 nanoparticles (PMNPs) and then capped with a negatively charged E2 aptamer to form a DNA bioconjugate. The presence of the target E2 triggered the entrapped [Fe(CN)6]3- probe release due to the removal of the aptamer via specific recognition, which resulted in the transfer of electrons produced by glucose oxidation at the bioanode to the biocathode and produced a high open-circuit voltage (EOCV). Consequently, a "signal-on" homogeneous self-powered aptasensor for E2 assay was realized. Promisingly, the BFC-based self-powered aptasensor has particularly high sensitivity for E2 detection in the concentration range of 0.5 pg mL-1 to 15 ng mL-1 with a detection limit of 0.16 pg mL-1 (S/N = 3). Therefore, the proposed BFC-based self-powered electrochemical aptasensor has great promise to be applied as a successful prototype of a portable and on-site bioassay in the field of environment monitoring and food safety.


Assuntos
Aptâmeros de Nucleotídeos , Fontes de Energia Bioelétrica , Carbono , Técnicas Eletroquímicas , Estradiol , Ouro , Nanopartículas Metálicas , Estradiol/química , Estradiol/análise , Aptâmeros de Nucleotídeos/química , Ouro/química , Nanopartículas Metálicas/química , Carbono/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/métodos , Limite de Detecção , Humanos , DNA/química , Glucose Oxidase/química , Compostos de Estanho/química
5.
Chem Soc Rev ; 53(8): 3656-3686, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38502089

RESUMO

Advancements in nanochemistry have led to the development of engineered gold nanostructures (GNSs) with remarkable potential for a variety of dental healthcare applications. These innovative nanomaterials offer unique properties and functionalities that can significantly improve dental diagnostics, treatment, and overall oral healthcare applications. This review provides an overview of the latest advancements in the design, synthesis, and application of GNSs for dental healthcare applications. Engineered GNSs have emerged as versatile tools, demonstrating immense potential across different aspects of dentistry, including enhanced imaging and diagnosis, prevention, bioactive coatings, and targeted treatment of oral diseases. Key highlights encompass the precise control over GNSs' size, crystal structure, shape, and surface functionalization, enabling their integration into sensing, imaging diagnostics, drug delivery systems, and regenerative therapies. GNSs, with their exceptional biocompatibility and antimicrobial properties, have demonstrated efficacy in combating dental caries, periodontitis, peri-implantitis, and oral mucosal diseases. Additionally, they show great promise in the development of advanced sensing techniques for early diagnosis, such as nanobiosensor technology, while their role in targeted drug delivery, photothermal therapy, and immunomodulatory approaches has opened new avenues for oral cancer therapy. Challenges including long-term toxicity, biosafety, immune recognition, and personalized treatment are under rigorous investigation. As research at the intersection of nanotechnology and dentistry continues to thrive, this review highlights the transformative potential of engineered GNSs in revolutionizing dental healthcare, offering accurate, personalized, and minimally invasive solutions to address the oral health challenges of the modern era.


Assuntos
Ouro , Ouro/química , Humanos , Propriedades de Superfície , Nanopartículas Metálicas/química , Odontologia , Sistemas de Liberação de Medicamentos , Nanotecnologia/métodos
6.
ACS Appl Mater Interfaces ; 16(7): 8442-8458, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335323

RESUMO

The disruption of host-microbe homeostasis and uncontrolled inflammatory response have been considered as vital causes for developing periodontitis, subsequently leading to an imbalance between the bone and immune system and the collapse of bone homeostasis. Consequently, strategies to modulate the immune response and bone metabolization have become a promising approach to prevent and treat periodontitis. In this study, we investigated the cooperative effects of Nel-like molecule type 1 (Nell-1) and gold nanoparticles (AuNPs) on macrophage polarization, osteoclast differentiation, and the corresponding functions in an experimental model of periodontitis in rats. Nell-1-combined AuNPs in in vitro studies were found to reduce the production of inflammatory factors (TNF-α, p < 0.0001; IL-6, p = 0.0012), modulate the ratio of M2/M1 macrophages by inducing macrophage polarization into the M2 phenotype, and inhibit cell fusion, maturation, and activity of osteoclasts. Furthermore, the local application of Nell-1-combined AuNPs in in vivo studies resulted in alleviation of damages to the periodontal and bone tissues, modulation of macrophage polarization and the activity of osteoclasts, and alteration of the periodontal microbiota, in which the relative abundance of the probiotic Bifidobacterium increased (p < 0.05). These findings reveal that Nell-1-combined AuNPs could be a promising drug candidate for the prevention and treatment of periodontitis. However, Nell-1-combined AuNPs did not show organ toxicity or impair the integrity of intestinal epithelium but alter the gut microbiota, leading to the dysbiosis of gut microbiota. The adverse impact of changes in gut microbiota needs to be further investigated. Nonetheless, this study provides a novel perspective and direction for the biological safety assessment of biomaterials in oral clinical applications.


Assuntos
Microbioma Gastrointestinal , Nanopartículas Metálicas , Periodontite , Ratos , Animais , Ouro/farmacologia , Osteogênese/genética , Nanopartículas Metálicas/uso terapêutico , Periodontite/tratamento farmacológico , Macrófagos
7.
Environ Res ; 236(Pt 1): 116540, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406725

RESUMO

The dual-signal probe utilizing functionalized silver nanoparticles (AgNPs) is a promising sensing tool. Herein, a novel colorimetric/fluorescent dual-signal probe (AgNPs-L-Cys-Rh6G2) was fabricated for copper ion (Cu2+) detection and cell imaging by using L-cysteine as a "bridge" to connect AgNPs and rhodamine 6G derivatives. The AgNPs-L-Cys-Rh6G2 probe exhibits a dual-signal response to Cu2+ due to Rh6G2 hydrolysis, resulting in a high fluorescence response and a significant change in color from light yellow to pink under sunlight. The linear detection ranges of the AgNPs-L-Cys-Rh6G2 probe for Cu2+ were 100-450 µM and 150-650 µM using fluorescent and colorimetry methods, respectively. The detection limits were as low as 0.169 µM and 1.36 µM, respectively. Meanwhile, the proposed probe was applied to detect Cu2+ in the actual sediment with satisfactory recovery and low relative standard deviation. Furthermore, the probe was further employed for fluorescence imaging in HeLa cells. In brief, the developed AgNPs-L-Cys-Rh6G2 sensing platform can be used for simultaneous Cu2+ determination and cell imaging.

8.
J Colloid Interface Sci ; 647: 354-363, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37267798

RESUMO

The development of electrocatalysts for N2 reduction reaction (NRR) is significant for scalable and renewable NH3 synthesis, but calls for a technology innovation to overcome the specific problems of low efficiency and poor selectivity. Herein, we prepare a core-shell nanostructure by coating polypyrrole (PPy) onto sulfur-doped iron oxide nanoparticles (denoted as S-Fe2O3@PPy) as the highly selective and durable electrocatalysts for NRR under ambient conditions. Sulfur doping and PPy coating remarkably improve the charge transfer efficiency of S-Fe2O3@PPy, and the interactions between PPy and Fe2O3 nanoparticles produce abundant oxygen vacancies as active sites for NRR. This catalyst achieves an NH3 production rate of 22.1 µg h-1 mgcat-1 and a very-high Faradic efficiency of 24.6%, surpassing other Fe2O3 based NRR catalysts. Density functional theory calculations show that the S-coordinated iron site can successfully activate the N2 molecule and optimize the energy barrier during the reduction process, resulting in a small theoretical limiting potential.

9.
Talanta ; 260: 124612, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141826

RESUMO

Protein kinase A (PKA) can regulate many cellular biological processes by phosphorylation substrate peptide or protein. Sensitive detection of PKA activity is critical for the PKA-related drug discovery and disease diagnosis. A new electrochemical biosensing method was developed for detection of PKA activity based on Zr4+-mediated DNAzyme-driven DNA walker signal amplification strategy. In this strategy, the special designed substrate peptide and a thiolated methylene blue-labeled hairpin DNA (MB-hpDNA) containing a single ribonucleic acid group (rA) could be anchored on the surface of gold electrode by Au-S bond. In the presence of adenosine triphosphate (ATP) and PKA, substrate peptide was phosphorylated and linked with walker DNA (WD) via the robust phosphate-Zr4+-phosphate chemistry. The linked WD hybridized with the loop region of MB-hpDNA to form a Mn2+-dependent deoxynuclease (DNAzyme), which cleaved the MB-hpDNA into MB-labeled fragment releasing away from electrode surface, resulting in a dramatic decrease of electrochemical signal and providing an electrochemical sensing platform for PKA activity detection. The response signal of the developed biosensor is proportional to the logarithm of PKA concentration in the range of 0.05 U mL-1 to 100 U mL-1, with a detection limit of 0.017 U mL-1 at a signal to noise ratio of 3. Furthermore, the proposed method can also be applied for the evaluation of PKA inhibition and PKA activity assay in cell samples. Therefore, the proposed biosensor shows great promise as a universal tool for diagnostics and drug discovery of PKA-related diseases.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Fosforilação , DNA Catalítico/química , DNA/genética , Técnicas Eletroquímicas , Peptídeos/química , Técnicas Biossensoriais/métodos , Ouro/química , Proteínas Quinases Dependentes de AMP Cíclico , Limite de Detecção
10.
Macromol Rapid Commun ; 44(2): e2200629, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36200608

RESUMO

Herein, the fabrication of reduced graphene oxide (RGO)-templated polymer composites for chemical removal of gaseous formaldehyde under ambient conditions is presented. The chemical removal of formaldehyde is achieved by a nucleophilic addition reaction between formaldehyde and aminooxy groups on the polymer chain ends to form the oxime bonds with the only byproduct of H2 O. RGO is essential since it not only has an ultralarge surface area but also can act as a perfect template for immobilizing pyrene-terminated and aminooxy-functionalized polymers via strong π-π stacking interactions, while melamine foam provides a three-dimensional skeleton for loading RGO/polymer composites to afford a porous 3D structure for efficient formaldehyde removal. Since the oxime bond can be cleaved into aminooxy group in acidic media, the RGO/polymer composite can be regenerated for repeatable usage, which shows an excellent performance of adsorbing 14 mg of formaldehyde by 100 mg of the polymer at ambient condition.


Assuntos
Carbono , Polímeros , Polímeros/química , Porosidade , Temperatura , Formaldeído/química , Oximas
11.
Chemosphere ; 303(Pt 2): 135174, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35649443

RESUMO

Mercury ion (Hg2+) is a heavy metal pollutant that can affect the safety of water environment and endanger human health. A novel detection strategy (GNPs-L-Cys-Rh6G2) for Hg2+ based on a fluorescence "OFF-ON" was proposed. Gold nanoparticles (GNPs) were assembled with l-cysteine (L-Cys), which was used as a "bridge" to link with rhodamine 6G derivatives (Rh6G2). The fluorescence state transition of GNPs-L-Cys-Rh6G2 switching from "OFF"-"ON" was observed because Hg2+ opened the spirolactam ring through a catalytic hydrolysis mechanism. The fluorescence signal of the GNPs-L-Cys-Rh6G2 system mixed with Hg2+ in the concentration range of 10-100 µM was analyzed and determined with a limit of detection (LOD) of 2 µM (S/N = 3). Moreover, the spiked Hg2+ concentration in real water samples were successfully quantified by GNPs-L-Cys-Rh6G2, which was in line with the ideal average recovery rate and relative standard deviation. The proposed strategy exhibited high specificity, sensitivity and stability, providing a novel sensing platform for heavy metal ions detection in water environment.


Assuntos
Mercúrio , Nanopartículas Metálicas , Cisteína , Corantes Fluorescentes , Ouro , Humanos , Íons , Limite de Detecção , Água
12.
Talanta ; 241: 123272, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121542

RESUMO

An ultrasensitive electrochemical detection of the activity and inhibition of T4 polynucleotide kinase (T4 PNK) was developed by using magnetic Fe3O4@TiO2 core-shell nanoparticles, which was triggered by a rolling circle amplification strategy (Fe3O4@TiO2-RCA). We used Fe3O4@TiO2 as a substrate to anchor a DNA primer. DNA S1 with 5'-OH termini was phosphorylated in the presence of T4 PNK and ATP, which was adsorbed on the surface of Fe3O4@TiO2 NPs and served as the primer for subsequent RCA reactions. After adding circular template DNA S2, RCA was initiated in the presence of phi29 DNA polymerase and dNTPs. Then, Fc-labeled DNA S3 (Fc-S3) was hybridized with RCA. The obtained Fe3O4@TiO2-RCA was adsorbed on the surface of a magnetic gold electrode (MGE) by magnetic enrichment, resulting in an enhanced electrochemical signal. The T4 PNK activity can be monitored by measuring the electrochemical signal generated. This electrochemical assay is sensitive to the activity of T4 PNK with a dynamic linear range of 0.00001-20 U/mL and a low detection limit of 3.0 × 10-6 U/mL. The proposed strategy can be used to screen the T4 PNK inhibitors, so it has great potential in the discovery of nucleotide kinase-target drug and early clinical diagnosis of cancer.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Bacteriófago T4/genética , Técnicas Biossensoriais/métodos , Fenômenos Magnéticos , Técnicas de Amplificação de Ácido Nucleico , Polinucleotídeo 5'-Hidroxiquinase , Titânio
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120458, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34619508

RESUMO

Near-infrared (NIR) photothermal therapy is an effective partner to the chemotherapy of tumors with the merits of high therapeutic ability and slight side effect on normal tissues. Herein, we synthesized gold nanorods and assembled them with L-cysteine reduced graphene oxide (AuNR@Lcyst-rGO) for efficient photothermal therapy. The high therapeutic efficacy of AuNR@Lcyst-rGO can be due to the high photothermal effect of gold nanorods and reduced graphene oxide, and the synergistic effect of them. The nontoxicity of L-cysteine also guarantees the comfortable biocompatibility of reduced graphene oxide, which is essential for the photothermal absorber used in human tissue. The results demonstrate that assembly of gold nanorods with reduced graphene oxide (AuNR@Lcyst-rGO) is a promising photothermal agent with high efficient NIR-triggered photothermal therapy efficiency, excellent stability, superior biocompatibility.


Assuntos
Grafite , Nanotubos , Neoplasias , Linhagem Celular Tumoral , Cisteína , Ouro , Humanos , Neoplasias/terapia , Fototerapia , Terapia Fototérmica
14.
Biomed Eng Online ; 20(1): 115, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819109

RESUMO

BACKGROUND: Nanomaterials of biomedicine and tissue engineering have been proposed for the treatment of periodontitis in recent years. This study aimed to investigate the effects of gold nanoparticles (AuNPs) combined with human ß-defensin 3 (hBD3) on the repair of the alveolar bones of experimental periodontitis in rats. METHODS: A model of experimental periodontitis was established by ligation of the maxillary second molars with silk thread in rats, which were treated with or without AuNPs combined with hBD3. Micro-computerized tomography (micro-CT) scanning, enzyme-linked immunosorbent assay, and histological and immunohistochemical staining, including alkaline phosphatase (ALP), osteoprotegerin (OPG), tartrate-resistant acid phosphatase (TRAP), and receptor activator of NF-κB ligand (RANKL), were used to analyze the samples. RESULTS: Micro-CT demonstrated that the alveolar bone resorption was significantly reduced after the treatment with AuNPs combined with hBD3. Levels of TNF-α and IL-6 were decreased markedly compared with the ligation group. H&E and Masson staining showed that AuNPs combined with hBD3 group had less inflammatory cell infiltration, collagen fibrosis and fracture, but higher calcification in the new bone tissue. Moreover, the administration of AuNPs combined with hBD3 increased the expression levels of ALP and OPG (related to bone formation) while decreasing the expression levels of TRAP and RANKL (related to bone resorption) expression. CONCLUSIONS: AuNPs combined with hBD3 had a protective effect on the progression of experimental periodontitis in rats and played a certain role in suppressing osteoclastogenesis and alleviating the inflammatory destruction of periodontitis along with the promotion of bone repair.


Assuntos
Perda do Osso Alveolar , Nanopartículas Metálicas , Periodontite , beta-Defensinas , Perda do Osso Alveolar/diagnóstico por imagem , Animais , Ouro , Humanos , Osteoprotegerina , Periodontite/diagnóstico por imagem , Ratos
15.
Adv Healthc Mater ; 10(22): e2101215, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34586717

RESUMO

Periodontal defect regeneration in severe periodontitis relies on the differentiation and proliferation of periodontal ligament cells (PDLCs). Recently, an emerging 2D nanomaterial, MXene (Ti3 C2 Tx ), has gained more and more attention due to the extensive antibacterial and anticancer activity, while its potential biomedical application on tissue regeneration remains unclear. Through a combination of experimental and multiscale simulation schemes, Ti3 C2 Tx has exhibited satisfactory biocompatibility and induced distinguish osteogenic differentiation of human PDLCs (hPDLCs), with upregulated osteogenesis-related genes. Ti3 C2 Tx manages to activate the Wnt/ß-catenin signaling pathway by enhancing the Wnt-Frizzled complex binding, thus stabilizing HIF-1α and altering metabolic reprogramming into glycolysis. In vivo, hPDLCs pretreated by Ti3 C2 Tx display excellent performance in new bone formation and osteoclast inhibition with enhanced RUNX2, HIF-1α, and ß-catenin in an experimental rat model of periodontal fenestration defects, indicating that this material has high efficiency of periodontal regeneration promotion. It is demonstrated in this work that Ti3 C2 Tx has highly efficient therapeutic effects in osteogenic differentiation and periodontal defect repairment.


Assuntos
Osteogênese , Titânio , Animais , Células Cultivadas , Ligamento Periodontal , Ratos
16.
Bioact Mater ; 6(10): 3288-3299, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33778205

RESUMO

Gold nanoparticles (AuNPs) with surface-anchored molecules present tremendous potential in tissue regeneration. However, little is known about chiral-modified AuNPs. In this study, we successfully prepared L/D-cysteine-anchored AuNPs (L/D-Cys-AuNPs) and studied the effects of chiral-modified AuNPs on osteogenic differentiation and autophagy of human periodontal ligament cells (hPDLCs) and periodontal tissue regeneration. In vitro, more L-Cys-AuNPs than D-Cys-AuNPs tend to internalize in hPDLCs. L-Cys-AuNPs also significantly increased the expression of alkaline phosphatase, collagen type 1, osteocalcin, runt-related transcription factor 2, and microtubule-associated protein light chain 3 II and decreased the expression of sequestosome 1 in hPDLCs compared to the expression levels in the hPDLCs treated by D-Cys-AuNPs. In vivo tests in a rat periodontal-defect model showed that L-Cys-AuNPs had the greatest effect on periodontal-tissue regeneration. The activation of autophagy in L-Cys-AuNP-treated hPDLCs may be responsible for the cell differentiation and tissue regeneration. Therefore, compared to D-Cys-AuNPs, L-Cys-AuNPs show a better performance in cellular internalization, regulation of autophagy, cell osteogenic differentiation, and periodontal tissue regeneration. This demonstrates the immense potential of L-Cys-AuNPs for periodontal regeneration and provides a new insight into chirally modified bioactive nanomaterials.

17.
J Colloid Interface Sci ; 592: 455-467, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33711647

RESUMO

In this work, MgCo2O4@NiMn layered double hydroxide (LDH) core-shell structured nanocomposites on Ni foam (NF) are synthesized by facile hydrothermal and calcination methods. MgCo2O4/NF is synthesized first via a hydrothermal reaction and annealing treatment, and then utilized to prepare MgCo2O4@NiMn-LDH/NF core-shell structured nanocomposites via the second hydrothermal process. It is found that the MgCo2O4@NiMn-LDH/NF nanocomposite prepared from 6 h hydrothermal reaction (MC@NM-LDH-2) exhibits an excellent specific capacitance of 3757.2 F g-1 (at 1 A g-1). Moreover, a high capacitance retention (86.9% after 6000 cycles) and a low internal resistance (Rs) (0.565 Ω) can be achieved. Furthermore, an all-solid-state asymmetric supercapacitor (ASC) is assembled using MgCo2O4@NiMn-LDH/NF-2 as positive electrode and activated carbon (AC) as negative electrode. The as-fabricated MgCo2O4@NiMn-LDH/NF-2//AC ASC shows a high energy density of 62.33 Wh kg-1 at 750 W kg-1. Meanwhile, the MgCo2O4@NiMn-LDH/NF-2//AC ASC device possesses an outstanding cycling stability of 93.7% retention of the initial capacitance after 6000 cycles and three ASC devices connected in series can light up a LED bulb for 15 min. Our results manifest that these core-shell structure MgCo2O4@NiMn-LDH nanocomposites could envision huge potential application in energy storage devices.

18.
Front Bioeng Biotechnol ; 9: 631191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33585435

RESUMO

Periodontitis is a chronic inflammatory disease with plaques as the initiating factor, which will induce the destruction of periodontal tissues. Numerous studies focused on how to obtain periodontal tissue regeneration in inflammatory environments. Previous studies have reported adenovirus-mediated human ß-defensin 3 (hBD3) gene transfer could potentially enhance the osteogenic differentiation of human periodontal ligament cells (hPDLCs) and bone repair in periodontitis. Gold nanoparticles (AuNPs), the ideal inorganic nanomaterials in biomedicine applications, were proved to have synergetic effects with gene transfection. To further observe the potential promoting effects, AuNPs were added to the transfected cells. The results showed the positive effects of osteogenic differentiation while applying AuNPs into hPDLCs transfected by adenovirus encoding hBD3 gene. In vivo, after rat periodontal ligament cell (rPDLC) transplantation into SD rats with periodontitis, AuNPs combined hBD3 gene modification could also promote periodontal regeneration. The p38 mitogen-activated protein kinase (MAPK) pathway was demonstrated to potentially regulate both the in vitro and in vivo processes. In conclusion, AuNPs can promote the osteogenic differentiation of hBD3 gene-modified hPDLCs and periodontal regeneration via the p38 MAPK pathway.

19.
Int J Nanomedicine ; 16: 61-73, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33442250

RESUMO

OBJECTIVE: Cell sheet technology (CST) is advantageous for repairing alveolar bone defects in clinical situations, and osteogenic induction before implantation may result in enhanced bone regeneration. Herein, we observed the effect of gold nanoparticles (AuNPs) on osteogenic differentiation of periodontal ligament stem cell (PDLSC) sheets and explored their potential mechanism of action. METHODS: PDLSCs were cultured in cell sheet induction medium to obtain cell sheets. PDLSC sheets were treated with or without AuNPs. Alkaline phosphatase, alizarin red S, von Kossa, and immunofluorescence staining were used to observe the effects of AuNPs on the osteogenic differentiation of PDLSC sheets. Western blotting was performed to evaluate the osteogenic effects and autophagy activity. The cell sheets were transplanted into the dorsa of nude mice, and bone regeneration was analyzed by micro-CT and histological staining. RESULTS: AuNPs could promote the osteogenic differentiation of PDLSC sheets by upregulating bone-related protein expression and mineralization. The 45-nm AuNPs were more effective than 13-nm AuNPs. Additional analysis demonstrated that their ability to promote differentiation could depend on activation of the autophagy pathway through upregulation of microtubule-associated protein light chain 3 and downregulation of sequestosome 1/p62. Furthermore, AuNPs significantly promoted the bone regeneration of PDLSC sheets in ectopic models. CONCLUSION: AuNPs enhance the osteogenesis of PDLSC sheets by activating autophagy, and 45-nm AuNPs were more effective than 13-nm AuNPs. This study may provide an AuNP-based pretreatment strategy for improving the application of CST in bone repair and regeneration.


Assuntos
Autofagia/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Ouro/farmacologia , Nanopartículas Metálicas/química , Ligamento Periodontal/fisiologia , Células-Tronco/citologia , Fosfatase Alcalina/metabolismo , Animais , Fosfatos de Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Masculino , Nanopartículas Metálicas/ultraestrutura , Camundongos Nus , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Osteopontina/metabolismo , Osteoprotegerina/metabolismo , Ligamento Periodontal/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Microtomografia por Raio-X
20.
Water Res ; 188: 116538, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33125993

RESUMO

The elevated cases of arsenic contamination reported across the globe have made its early detection and remediation an active area of research. Although, the World Health Organisation has set the maximum provisional value for arsenic in drinking water at 10 parts per billion, yet concentrations as high as 5000 parts per billion are still reported. In human beings, chronic arsenic exposure can culminate into lethal diseases such as cancer. Thus, there is a need for urgent emergence of efficient and reliable detection system. This paper offers an overview of the state-of-art knowledge on current arsenic detection mechanisms. The central agenda of this paper is to develop an understanding into the nano-enabled methods for arsenic detection with an emphasis on strategic fabrication of nanostructures and the modulation of nanomaterial chemistry in order to strengthen the knowledge into novel nano-enabled solutions for arsenic contamination. Towards the end prospects for arsenic detection in water are also prompted.


Assuntos
Arsênio , Água Potável , Nanoestruturas , Poluentes Químicos da Água , Arsênio/análise , Água Potável/análise , Humanos , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA