Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 178: 117229, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096620

RESUMO

Enormous patients with gastric cancer (GC) are insensitive to chemotherapy and targeted therapy without the chance of radical surgery, so immunotherapy may supply a novel choice for them. Chimeric antigen receptor (CAR)-T cell therapy has the advantages of higher specificity, stronger lethality, and longer-lasting efficacy, and it has the potential for GC in the future. However, its application still faces numerous obstacles in terms of accuracy, efficacy, and safety. Cytokines can mediate the migration, proliferation, and survival of immune cells, regulate the duration and strength of immune responses, and are involved in the occurrence of severe side effects in CAR-T cell therapy. The expression levels of specific cytokines are associated with the genesis, invasion, metastasis, and prognosis of GC. Applications of cytokines and their receptors in CAR-T cell therapy have emerged, and various cytokines and their receptors have contributed to improving CAR-T cell anti-tumor capabilities. Large amounts of central cytokines in this therapy include chemokines, interleukins (ILs), transforming growth factor-ß (TGF-ß), and colony-stimulating factors (CSFs). Meanwhile, researchers have explored the combination therapy in treating GC, and several approaches applied to other malignancies can also be considered as references. Therefore, our review comprehensively outlines the biological functions and clinical significance of cytokines and summarizes current advances and innovative strategies for harnessing cytokines to optimize CAR-T cell therapy for GC.


Assuntos
Citocinas , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/terapia , Neoplasias Gástricas/imunologia , Citocinas/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Imunoterapia Adotiva/métodos , Animais , Linfócitos T/imunologia
2.
Cell Death Dis ; 14(12): 802, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062041

RESUMO

POU5F1 plays an important role in maintaining the cancer stem cell (CSC) -like properties of gastric cancer (GC) cells. The impact of POU5F1 on the proliferation and metastasis of GC was examined, along with the potential of ATRA as a specific therapeutic agent for GC. The dysregulation of POU5F1 expression in GC tissues was analyzed using public databases and bioinformatics techniques, and the disparity in POU5F1 expression between normal gastric tissues and GC tissues was further assessed through western blot, RT-qPCR, and immunohistochemistry. The present study aimed to investigate the impact of POU5F1 on the proliferation, migration, and invasion of GC cells through both in vivo and in vitro experiments. Additionally, the effects of ATRA on the proliferation, migration, and invasion of GC cells were examined using in vivo and in vitro approaches. Our findings revealed a significant upregulation of POU5F1 in GC tissues, which was found to be associated with a poorer prognosis in patients with GC. Moreover, POU5F1 was observed to enhance the proliferation, migration, and invasion of GC cells in vitro, as well as promote subcutaneous tumor growth and lung metastasis of GC cells in vivo. The overexpression of POU5F1 mechanistically triggers the process of Epithelial-mesenchymal transition (EMT) by down-regulating E-Cadherin and up-regulating N-Cadherin and VIM. POU5F1 hinders the ubiquitination of TRAF6 through negative regulation of TRIM59, thereby facilitating the activation of the NF-κB pathway. Furthermore, the administration of ATRA effectively impedes the proliferation, migration, and invasion of GC cells by suppressing the expression of POU5F1. The upregulation of POU5F1 elicits EMT, fosters the initiation of the NF-κB signaling pathway in GC cells, and stimulates the proliferation, invasion, and metastasis of GC cells. All-trans retinoic acid (ATRA) can impede these POU5F1-induced effects, thereby potentially serving as an adjunctive therapeutic approach for GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , NF-kappa B/metabolismo , Invasividade Neoplásica/genética , Proliferação de Células , Movimento Celular , Transição Epitelial-Mesenquimal , Ubiquitinação , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
3.
World J Gastroenterol ; 29(21): 3280-3291, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37377582

RESUMO

BACKGROUND: Fibroblast growth factor (FGF) 15/19, which is expressed in and secreted from the distal ileum, can regulate hepatic glucose metabolism in an endocrine manner. The levels of both bile acids (BAs) and FGF15/19 are elevated after bariatric surgery. However, it is unclear whether the increase in FGF15/19 is induced by BAs. Moreover, it remains to be understood whether FGF15/19 elevations contribute to improvements in hepatic glucose metabolism after bariatric surgery. AIM: To investigate the mechanism of improvement of hepatic glucose metabolism by elevated BAs after sleeve gastrectomy (SG). METHODS: By calculating and comparing the changes of body weight after SG with SHAM group, we examined the weight-loss effect of SG. The oral glucose tolerance test (OGTT) test and area under the curve of OGTT curves were used to assess the anti-diabetic effects of SG. By detecting the glycogen content, expression and activity of glycogen synthase as well as the glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (Pepck), we evaluated the hepatic glycogen content and gluconeogenesis activity. We examined the levels of total BA (TBA) together with the farnesoid X receptor (FXR)-agonistic BA subspecies in systemic serum and portal vein at week 12 post-surgery. Then the histological expression of ileal FXR and FGF15 and hepatic FGF receptor 4 (FGFR4) with its corresponding signal pathways involved in glucose metabolism were detected. RESULTS: After surgery, food intake and body weight gain of SG group was decreased compare with the SHAM group. The hepatic glycogen content and glycogen synthase activity was significantly stimulated after SG, while the expression of the key enzyme for hepatic gluconeogenesis: G6Pase and Pepck, were depressed. TBA levels in serum and portal vein were both elevated after SG, the FXR-agonistic BA subspecies: Chenodeoxycholic acid (CDCA), lithocholic acid (LCA) in serum and CDCA, DCA, LCA in portal vein were all higher in SG group than that in SHAM group. Consequently, the ileal expression of FXR and FGF15 were also advanced in SG group. Moreover, the hepatic expression of FGFR4 was stimulated in SG-operated rats. As a result, the activity of its corresponding pathway for glycogen synthesis: FGFR4-Ras-extracellular signal regulated kinase pathway was stimulated, while the corresponding pathway for hepatic gluconeogenesis: FGFR4- cAMP regulatory element-binding protein- peroxisome proliferator-activated receptor γ coactivator-1α pathway was suppressed. CONCLUSION: Elevated BAs after SG induced FGF15 expression in distal ileum by activating their receptor FXR. Furthermore, the promoted FGF15 partly mediated the improving effects on hepatic glucose metabolism of SG.


Assuntos
Fatores de Crescimento de Fibroblastos , Glucose , Ratos , Animais , Glucose/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Glicogênio Sintase/metabolismo , Glicogênio Hepático/metabolismo , Fígado/metabolismo , Peso Corporal , Ácidos e Sais Biliares/metabolismo , Gastrectomia
4.
Environ Res ; 224: 115476, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36805352

RESUMO

Composite pollutants are prevalent in wastewater, whereas, the simultaneous accomplishment of efficient nitrogen removal and resources recovery remains a challenge. In this study, a bioreactor was constructed to contain Pseudomonas sp. Y1 using polyester fiber wrapped with shell powder and iron carbon spheres, achieving ammonia nitrogen (NH4+-N) removal, phosphate (PO43--P) recovery, and nickel (Ni2+) immobilization. The optimal performance of bioreactor was average removal efficiencies of NH4+-N, PO43--P, calcium (Ca2+), and Ni2+ as 82.42, 96.67, 76.13, and 98.29% at a hydraulic retention time (HRT) of 6 h, pH of 7.0, and influent Ca2+ and Ni2+ concentrations of 100.0 and 3.0 mg L-1, respectively. The bioreactor could remove PO43--P, Ca2+, and Ni2+ by biomineralization, co-precipitation, adsorption, and lattice substitution. Moreover, microbial community analysis suggested that Pseudomonas was the predominant genus and had possessed tolerance to Ni2+ toxicity in wastewater. This study presented an effective method to synchronously remove NH4+-N, recover PO43--P, and fix heavy metals through microbially induced carbonate precipitation (MICP) and heterotrophic nitrification and aerobic denitrification (HNAD) technology.


Assuntos
Amônia , Águas Residuárias , Fosfatos , Desnitrificação , Níquel , Pós , Ferro , Carbono , Nitrogênio/metabolismo , Reatores Biológicos , Aerobiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA