Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Am J Transl Res ; 16(5): 2132-2146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883382

RESUMO

Among the three most prevalent cancers affecting the female reproductive system, ovarian cancer (OV) ranks as the second most frequently diagnosed. It is important to investigate the genomic complexity of OV to develop diagnostic and therapeutic strategies. Through the utilization of bioinformatics analysis, it was determined that RacGTPase Activating Protein 1 (RACGAP1) holds significant significance in the field of OV chemotherapeutics, an aspect that has not been thoroughly explored in prior investigations. In our study, a notable increase in RACGAP1 expression was detected in ovarian cancer, demonstrating a robust association with clinicopathological features and patient prognosis. In vivo and in vitro testing revealed that RACGAP1 acts synergistically with chemotherapeutics to enhance their effects on ovarian cancer. Furthermore, an interaction between RACGAP1 and the subunit G2 of the condensin II complex, known as non-SMC condensin II complex subunit G2 (NCAPG2), has been identified. Our findings may provide new insight for improving therapeutic strategies for OV.

2.
iScience ; 26(11): 108226, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37953947

RESUMO

Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel activated by various stimuli, such as heat. A recent study reported that high expression of TRPV4 predicted a poor prognosis in ovarian cancer patients. This study demonstrated that TRPV4 was highly expressed in ovarian cancer and had the ability to promote proliferation and migration. Through RNA-seq and related experiments, we confirmed that the oncogenic pathway of TRPV4 in ovarian cancer may be related to the fatty acid synthesis. By correlation analysis and RNA-seq, we demonstrated that SREBP1 and mTORC1 were inseparably related to that. Therefore, we used inhibitors to perform experiments. Calcium fluorescent probe experiments suggest that the change of calcium content in ovarian cancer cells was related to the downstream mTORC1 signaling pathway and fatty acid synthesis. These results confirmed that TRPV4 affected the fatty acid synthesis through the calcium-mTOR/SREBP1 signaling pathway, thereby promoting ovarian cancer progression.

3.
Cell Oncol (Dordr) ; 46(5): 1473-1492, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37246171

RESUMO

PURPOSE: Transglutaminases (TGs) are multifunctional enzymes exhibiting transglutaminase crosslinking, as well as atypical GTPase/ATPase and kinase activities. Here, we used an integrated comprehensive analysis to assess the genomic, transcriptomic and immunological landscapes of TGs across cancers. METHODS: Gene expression and immune cell infiltration patterns across cancers were obtained from The Cancer Genome Atlas (TCGA) database and Gene Set Enrichment Analysis (GSEA) datasets. Western blotting, immunofluorescence staining, enzyme-linked immunosorbent assays, and orthotopic xenograft models were used to validate our database-derived results. RESULTS: We found that the overall expression of TGs (designated as the TG score) is significantly upregulated in multiple cancers and related to a worse patient survival. The expression of TG family members can be regulated through multiple mechanisms at the genetic, epigenetic and transcriptional levels. The expression of transcription factors crucial for epithelial-to-mesenchymal transition (EMT) is commonly correlated with the TG score in many cancer types. Importantly, TGM2 expression displays a close connection with chemoresistance to a wide range of chemotherapeutic drugs. We found that TGM2 expression, F13A1 expression and the overall TG score were positively correlated with the infiltration of immune cells in all cancer types tested. Functional and clinical verification revealed that a higher TGM2 expression is linked with a worse patient survival, an increased IC50 value of gemcitabine, and a higher abundance of tumor-infiltrating macrophages in pancreatic cancer. Mechanistically, we found that increased C-C motif chemokine ligand 2 (CCL2) release mediated by TGM2 contributes to macrophage infiltration into the tumor microenvironment. CONCLUSIONS: Our results reveal the relevance and molecular networks of TG genes in human cancers and highlight the importance of TGM2 in pancreatic cancer, which may provide promising directions for immunotherapy and for addressing chemoresistance.


Assuntos
Neoplasias Pancreáticas , Transglutaminases , Humanos , Transglutaminases/genética , Transglutaminases/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Biomarcadores , Macrófagos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Gastroenterology ; 165(3): 629-646, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37247644

RESUMO

BACKGROUND & AIMS: Hyperactivation of ribosome biogenesis leads to hepatocyte transformation and plays pivotal roles in hepatocellular carcinoma (HCC) development. We aimed to identify critical ribosome biogenesis proteins that are overexpressed and crucial in HCC progression. METHODS: HEAT repeat containing 1 (HEATR1) expression and clinical correlations were analyzed using The Cancer Genome Atlas and Gene Expression Omnibus databases and further evaluated by immunohistochemical analysis of an HCC tissue microarray. Gene expression was knocked down by small interfering RNA. HEATR1-knockdown cells were subjected to viability, cell cycle, and apoptosis assays and used to establish subcutaneous and orthotopic tumor models. Chromatin immunoprecipitation and quantitative polymerase chain reaction were performed to detect the association of candidate proteins with specific DNA sequences. Endogenous coimmunoprecipitation combined with mass spectrometry was used to identify protein interactions. We performed immunoblot and immunofluorescence assays to detect and localize proteins in cells. The nucleolus ultrastructure was detected by transmission electron microscopy. Click-iT (Thermo Fisher Scientific) RNA imaging and puromycin incorporation assays were used to measure nascent ribosomal RNA and protein synthesis, respectively. Proteasome activity, 20S proteasome foci formation, and protein stability were evaluated in HEATR1-knockdown HCC cells. RESULTS: HEATR1 was the most up-regulated gene in a set of ribosome biogenesis mediators in HCC samples. High expression of HEATR1 was associated with poor survival and malignant clinicopathologic features in patients with HCC and contributed to HCC growth in vitro and in vivo. HEATR1 expression was regulated by the transcription factor specificity protein 1, which can be activated by insulin-like growth factor 1-mammalian target of rapamycin complex 1 signaling in HCC cells. HEATR1 localized predominantly in the nucleolus, bound to ribosomal DNA, and was associated with RNA polymerase I transcription/processing factors. Knockdown of HEATR1 disrupted ribosomal RNA biogenesis and impaired nascent protein synthesis, leading to reduced cytoplasmic proteasome activity and inhibitory-κB/nuclear factor-κB signaling. Moreover, HEATR1 knockdown induced nucleolar stress with increased nuclear proteasome activity and inactivation of the nucleophosmin 1-MYC axis. CONCLUSIONS: Our study revealed that HEATR1 is up-regulated by insulin-like growth factor 1-mammalian target of rapamycin complex 1-specificity protein 1 signaling in HCC and functions as a crucial regulator of ribosome biogenesis and proteome homeostasis to promote HCC development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Homeostase , Temperatura Alta , Fator de Crescimento Insulin-Like I/genética , Neoplasias Hepáticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteoma/metabolismo , Ribossomos/metabolismo , Ribossomos/patologia , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
5.
Matrix Biol ; 117: 31-45, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36849082

RESUMO

The extracellular matrix (ECM), as an important component of the tumor microenvironment, exerts various roles in tumor formation. Mitochondrial dynamic disorder is closely implicated in tumorigenesis, including hyperfission in HCC. We aimed to determine the influence of the ECM-related protein CCBE1 on mitochondrial dynamics in HCC. Here, we found that CCBE1 was capable of promoting mitochondrial fusion in HCC. Initially, CCBE1 expression was found to be significantly downregulated in tumors compared with nontumor tissues, which resulted from hypermethylation of the CCBE1 promoter in HCC. Furthermore, CCBE1 overexpression or treatment with recombinant CCBE1 protein dramatically inhibited HCC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, CCBE1 functioned as an inhibitor of mitochondrial fission by preventing the location of DRP1 on mitochondria through inhibiting its phosphorylation at Ser616 by directly binding with TGFßR2 to inhibit TGFß signaling activity. In addition, a higher percentage of specimens with higher DRP1 phosphorylation was present in patients with lower CCBE1 expression than in patients with higher CCBE1 expression, which further confirmed the inhibitory effect of CCBE1 on DRP1 phosphorylation at Ser616. Collectively, our study highlights the crucial roles of CCBE1 in mitochondrial homeostasis, suggesting strong evidence for this process as a potential therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Dinâmica Mitocondrial , Neoplasias Hepáticas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proliferação de Células , Microambiente Tumoral , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Supressoras de Tumor
6.
iScience ; 25(9): 104936, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36072549

RESUMO

Bone cancer pain is a common symptom in cancer patients with bone metastases and its underlying mechanisms remain unknown. Here, we report that Runx1 directly upregulates the transcriptional activity of P2X3 receptor (P2X3R) gene promoter in PC12 cells. Knocking down Runx1 in dorsal root ganglion (DRG) neurons suppresses the functional upregulation of P2X3R, attenuates neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats, whereas overexpressing Runx1 promotes P2X3R gene transcription in DRG neurons, induces neuronal hyperexcitability and pain hypersensitivity in naïve rats. Activation of GDNF-GFRα1-Ret-ERK signaling is required for Runx1-mediated P2X3R gene transcription in DRG neurons, and contributes to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. These findings indicate that the Runx1-mediated P2X3R gene transcription resulted from activation of GDNF-GFRα1-Ret-ERK signaling contributes to the sensitization of DRG neurons and pathogenesis of bone cancer pain. Our findings identify a potentially targetable mechanism that may cause bone metastasis-associated pain in cancer patients.

7.
BMC Pharmacol Toxicol ; 23(1): 54, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35864505

RESUMO

BACKGROUND: Liver fibrosis is a wound-healing response to chronic injury, featuring with excess accumulation of extracellular matrix secreted by the activated hepatic stellate cells (HSC). Disulfiram (DSF), also known as Antabuse, has been used for the treatment of alcohol addiction and substance abuse. Recently, overwhelming studies had revealed anti-cancer effects of DSF in multiple cancers, including liver cancer. But the actual effects of DSF on liver fibrosis and liver function remain unknown. METHODS: In this study, we evaluated the effects of low-dose DSF in CCl4- and Bile Duct Ligation (BDL)-induced hepatic fibrosis rat models. Cell proliferation was detected by using the Cell-Light™ EdU Apollo®567 Cell Tracking Kit. Cell apoptosis was analyzed using a TdT-mediated dUTP nick end labeling (TUNEL) kit, viability was measured with Cell Counting Kit-8(CCK8). Relative mRNA expression of pro-fibrogenic was assessed using quantitative RT-PCR. The degree of liver fibrosis, activated HSCs, were separately evaluated through Sirius Red-staining, immunohistochemistry and immunofluorescence. Serum alanine aminotransferase (ALT) and asparagine aminotransferase (AST) activities were detected with ALT and AST detecting kits using an automated analyzer. RESULTS: Liver fibrosis was distinctly attenuated while liver functions were moderately ameliorated in the DSF-treated group. Activation and proliferation of primary rat HSCs isolated from rat livers were significantly suppressed by low-dose DSF. DSF also inhibited the viability of in vitro cultured rat or human HSC cells dose-dependently but had no repressive role on human immortalized hepatocyte THLE-2 cells. Interestingly, upon DSF treatment, the viability of LX-2 cells co-cultured with THLE-2 was significantly inhibited, while that of THLE-2 co-cultured with LX-2 was increased. Further study indicated that HSCs apoptosis was increased in DSF/CCl4-treated liver samples. These data indicated that DSF has potent anti-fibrosis effects and protective effects toward hepatocytes and could possibly be repurposed as an anti-fibrosis drug in the clinic. CONCLUSIONS: DSF attenuated ECM remodeling through suppressing the transformation of quiet HSCs into proliferative, fibrogenic myofibroblasts in hepatic fibrosis rat models. DSF provides a novel approach for the treatment of liver fibrosis.


Assuntos
Dissulfiram , Células Estreladas do Fígado , Animais , Ductos Biliares/metabolismo , Proliferação de Células , Dissulfiram/metabolismo , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Fígado , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Ratos
8.
Altern Ther Health Med ; 28(7): 26-33, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35648694

RESUMO

Context: Stroke is an acute cerebrovascular disease and a neurological disorder that occurs due to a cerebral arterial embolism and rupture. Acute stroke is often accompanied by dysphagia, which reduces patients' intake of food and nutrients, decreases their nutritional status, and affects their quality of life. Objective: The study intended to identify the demographic and clinical characteristics of stroke patients with dysphagia and to explore the relationship of those characteristics to nutritional status and prognosis. Methods: The research team retrospectively collected the clinical data of patients to compare the nutritional status and prognoses of patients with different demographic and clinical characteristics. Setting: The study took place in the Department of Neurology at the First People's Hospital of Shenyang in Shenyang, China. Participants: Participants were 789 stroke patients with dysphagia who had been admitted to the general ward of the neurology departments of hospitals of Grade 3 or higher in Northeast China between January 2019 and September 2020. Based on the results of the Nutrition Risk Screening (NRS-2002) and Subjective Global Assessment (SGA) scales at baseline, participants were enrolled in this study. Outcome Measures: The outcomes were the correlations between participants' demographic and clinical characteristics and their nutritional statuses and prognoses. The Modified Rankin Scale (mRS) was used to evaluate the prognosis of the patients at seven days and three months after participants' enrollment in the study. Using the SPSS 26.0, a t test, chi-square test, and F test were performed to analyze and verify the presence of fundamental differences in baseline characteristics between participants with good nutrition and those with poor nutrition. Also, a statistical correlation analysis was performed. Results: The study showed that participants with different nutritional levels had statistically significant differences in the presence or absence of infections and body temperature and scores on the Standardized Swallowing Assessment (SSA) and National Institutes of Health Stroke Scale (NIHSS), with all P < .001. At baseline seven days after enrollment, the prognoses of participants were significantly different for different previous histories of stroke (P < .001), family history of stroke (P = .005), presence or absence of infections (P < .001), body temperature (P < .001), and SSA (P < .001) and NIHSS (P < .001) scale scores. At three months after enrollment, the prognoses of participants were significantly different for previous history of stroke (P = .003), different body temperatures (P < .001), presence or absence of infections(P < .001), and SSA (P < .001) and NIHSS (P < .001) scale scores. Age, gender, family history of stroke, smoking, alcohol consumption, previous history of stroke, education level, SSA scale score, NIHSS scale score, body mass index (BMI), body temperature, and infection were adjusted in the model. Nutritional status as classified by NRS-2002 and SGA was significantly correlated with prognosis (P < .001). The prognosis of stroke patients with dysphagia was associated with nutritional status by unconditional logistic regression. Conclusion: The prognosis of stroke patients with dysphagia is related to their nutritional status. A better nutritional status indicates the better prognosis, and vice versa. In clinical treatment, attention should be paid to use of a nutritional intervention.


Assuntos
Transtornos de Deglutição , Acidente Vascular Cerebral , Transtornos de Deglutição/complicações , Transtornos de Deglutição/terapia , Humanos , Estado Nutricional , Prognóstico , Qualidade de Vida , Estudos Retrospectivos , Acidente Vascular Cerebral/complicações
9.
Oncogene ; 41(8): 1203-1215, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35082383

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), cancer with a high mortality rate and the highest rate of KRAS mutation, reportedly internalizes proteins via macropinocytosis to adapt to low amino acid levels in the tumor microenvironment. Here, we aimed to identify a key regulator of macropinocytosis for the survival of tumor cells in a low amino acid environment in PDAC. FYVE, RhoGEF, and PH domain-containing protein 6 (FGD6) were identified as key regulators of macropinocytosis. FGD6 promoted PDAC cell proliferation, macropinocytosis, and tumor growth both in vitro and in vivo. The macropinocytosis level was decreased with FGD6 knockdown in PDAC cell lines. Moreover, FGD6 promoted macropinocytosis by participating in the trans-Golgi network and enhancing the membrane localization of growth factor receptors, especially the TGF-beta receptor. TGF-beta enhanced macropinocytosis in PDAC cells. Additionally, YAP nuclear translocation induced by a low amino acid tumor environment initiated FGD6 expression by coactivation with YY1. Clinical data analysis based on TCGA and GEO datasets showed that FGD6 expression was upregulated in PDAC tissue, and high FGD6 expression was correlated with poor prognosis in patients with PDAC. In tumor tissue from KrasG12D/+/Trp53R172H/-/Pdx1-Cre (KPC) mice, FGD6 expression escalated during PDAC development. Our results uncover a previously unappreciated mechanism of macropinocytosis in PDAC. Strategies to target FGD6 and growth factors membrane localization might be developed for the treatment of PDAC.


Assuntos
Carcinoma Ductal Pancreático
10.
Cancer Sci ; 112(11): 4515-4525, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34490691

RESUMO

We aimed to identify whether Rho GTPase activating proteins (RhoGAPs) were downregulated in cervical cancers and might be targeted to reduce the growth of cervical cancer using the GEO database and immunohistochemical analysis to identified changes in transcription and protein levels. We analyzed their proliferation, clone formation ability, and their growth as subcutaneous tumors in mice. To detect ARHGAP30 localization in cells, immunofluorescence assays were conducted. Mass spectrometry combined with immunoprecipitation experiments were used to identify binding proteins. Protein interactions were validated with co-immunoprecipitation assays. Western-blot and q-PCR were applied to analyze candidate binding proteins that were associated with ribosome biogenesis. Puromycin incorporation assay was used to detect the global protein synthesis rate. We identified that ARHGAP30 was the only downregulated RhoGAP and was related to the survival of cervical cancer patients. Overexpression of ARHGAP30 in cervical cancer cells inhibited cell proliferation and migration. ARHGAP30 immunoprecipitated proteins were enriched in the ribosome biogenesis process. ARHGAP30 was located in the nucleous and interacted with nucleolin (NCL). Overexpression of ARHGAP30 inhibited rRNA synthesis and global protein synthesis. ARHGAP30 overexpression induced the ubiquitination of NCL and decreased its protein level in Hela cells. The function of ARHGAP30 on cervical cancer cell ribosome biogenesis and proliferation was independent of its RhoGAP activity as assessed with a RhoGAP-deficient plasmid of ARHGAP30R55A . Overall, the findings revealed that ARHGAP30 was frequently downregulated and associated with shorter survival of cervical cancer patients. ARHGAP30 may suppress growth of cervical cancer by reducing ribosome biogenesis and protein synthesis through promoting ubiquitination of NCL.


Assuntos
Proliferação de Células , Proteínas Ativadoras de GTPase/metabolismo , Ribossomos/metabolismo , Neoplasias do Colo do Útero/metabolismo , Animais , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Regulação para Baixo , Feminino , Células HeLa , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , RNA Ribossômico/biossíntese , Proteínas de Ligação a RNA/metabolismo , Ensaio Tumoral de Célula-Tronco , Ubiquitinação , Neoplasias do Colo do Útero/mortalidade , Neoplasias do Colo do Útero/patologia , Nucleolina
11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(4): 1065-1070, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34362483

RESUMO

OBJECTIVE: To investigate the expression of peptidylarginine deiminase 4 (PADI4) during the process of differentiation into granulocyte of NB4 cells induced by all-trans-retinoic acid (ATRA) and whether PADI4 is involved in the inflammatory cytokines expression. METHODS: Granulocyte differentiation model of NB4 cells induced by ATRA was established. The cell morphology changes were observed by Wright-Giemsa staining. The expression of cell differentiation marker CD11b was analyzed by flow cytometry. The mRNA and protein expression of PADI4 was detected by RT-PCR and Western blot, respectively. The expression of tumor necrosis factor (TNF) α and interleukin (IL) 1ß was analyzed by ELISA, and also examined with the knockdown of PADI4 expression by siRNA. RESULTS: After NB4 cells induced by ATRA, the cytoplasm increased and the ratio of nuclear to cytoplasmic was reduced. Nuclear dented, and rod-shaped nucleus, lobulated phenomenon increased (P<0.05). Flow cytometry analysis results showed that the cell surface molecule CD11b expression increased (P<0.01). RT-PCR and Western blot showed the expression of PADI4 increased at both transcriptional and translational levels during the process of the differentiation. ELISA showed TNF-α and IL-1ß secretion increased in differentiated macrophages, while they could be inhibited by PADI4-specific siRNA. CONCLUSION: During the differentiation into granulocyte of NB4 cells induced by ATRA, PADI4 expression increased. Furthermore, PADI4 appeared to play a critical role in inflammatory cytokines secretion.


Assuntos
Diferenciação Celular , Citocinas/metabolismo , Leucemia Promielocítica Aguda , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Linhagem Celular Tumoral , Granulócitos , Humanos , Tretinoína/farmacologia
12.
J Neurosci ; 41(34): 7278-7299, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34272314

RESUMO

Comorbid anxiety and depressive symptoms in chronic pain are a common health problem, but the underlying mechanisms remain unclear. Previously, we have demonstrated that sensitization of the CeA neurons via decreased GABAergic inhibition contributes to anxiety-like behaviors in neuropathic pain rats. In this study, by using male Sprague Dawley rats, we reported that the CeA plays a key role in processing both sensory and negative emotional-affective components of neuropathic pain. Bilateral electrolytic lesions of CeA, but not lateral/basolateral nucleus of the amygdala (LA/BLA), abrogated both pain hypersensitivity and aversive and depressive symptoms of neuropathic rats induced by spinal nerve ligation (SNL). Moreover, SNL rats showed structural and functional neuroplasticity manifested as reduced dendritic spines on the CeA neurons and enhanced LTD at the LA/BLA-CeA synapse. Disruption of GluA2-containing AMPAR trafficking and endocytosis from synapses using synthetic peptides, either pep2-EVKI or Tat-GluA2(3Y), restored the enhanced LTD at the LA/BLA-CeA synapse, and alleviated the mechanical allodynia and comorbid aversive and depressive symptoms in neuropathic rats, indicating that the endocytosis of GluA2-containing AMPARs from synapses is probably involved in the LTD at the LA/BLA-CeA synapse and the comorbid aversive and depressive symptoms in neuropathic pain in SNL-operated rats. These data provide a novel mechanism for elucidating comorbid aversive and depressive symptoms in neuropathic pain and highlight that structural and functional neuroplasticity in the amygdala may be important as a promising therapeutic target for comorbid negative emotional-affective disorders in chronic pain.SIGNIFICANCE STATEMENT Several studies have demonstrated the high comorbidity of negative affective disorders in patients with chronic pain. Understanding the affective aspects related to chronic pain may facilitate the development of novel therapies for more effective management. Here, we unravel that the CeA plays a key role in processing both sensory and negative emotional-affective components of neuropathic pain, and LTD at the amygdaloid LA/BLA-CeA synapse mediated by GluA2-containing AMPAR endocytosis underlies the comorbid aversive and depressive symptoms in neuropathic pain. This study provides a novel mechanism for elucidating comorbid aversive and depressive symptoms in neuropathic pain and highlights that structural and functional neuroplasticity in the amygdala may be important as a promising therapeutic target for comorbid negative emotional-affective disorders in chronic pain.


Assuntos
Ansiedade/fisiopatologia , Aprendizagem da Esquiva/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Núcleo Central da Amígdala/fisiopatologia , Depressão/fisiopatologia , Hiperalgesia/fisiopatologia , Depressão Sináptica de Longo Prazo/fisiologia , Neuralgia/fisiopatologia , Receptores de AMPA/fisiologia , Animais , Ansiedade/etiologia , Comorbidade , Condicionamento Clássico , Depressão/etiologia , Emoções , Endocitose , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Comportamento Exploratório , Preferências Alimentares , Vetores Genéticos/administração & dosagem , Vetores Genéticos/farmacologia , Lentivirus/genética , Ligadura , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Neuralgia/psicologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/genética , Teste de Desempenho do Rota-Rod , Método Simples-Cego , Nervos Espinhais/lesões , Natação
13.
Oncogene ; 40(23): 3959-3973, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33986509

RESUMO

Metastasis is a major cause of cancer-related deaths. Tumor-intrinsic properties can determine whether tumor metastasis occurs or not. Here, by comparing the gene expression patterns in primary colorectal cancer (CRC) patients with or without metastasis, we found that Collagen Triple Helix Repeat Containing 1 (CTHRC1) in primary CRC served as a metastasis-associated gene. Animal experiments verified that CTHRC1 secreted by CRC cells promoted hepatic metastasis, which was closely correlated with macrophage infiltration. Depletion of macrophages by liposomal clodronate largely abolished the promoting effect of CTHRC1 on CRC liver metastasis. Furthermore, we demonstrated that CTHRC1 modulated macrophage polarization to M2 phenotypes through TGF-ß signaling. A mechanistic study revealed that CTHRC1 bound directly to TGF-ß receptor II and TGF-ß receptor III, stabilized the TGF-ß receptor complex, and activated TGF-ß signaling. The combination treatment of CTHRC1 monoclonal antibody and anti-PD-1 blocking antibody effectively suppressed CRC hepatic metastasis. Taken together, our data demonstrated that CTHRC1 is an intrinsic marker of CRC metastasis and further revealed that CTHRC1 promoted CRC liver metastasis by reshaping infiltrated macrophages through TGF-ß signaling, suggesting that CTHRC1 could be a potential biomarker for the early prediction of and a therapeutic target of CRC hepatic metastasis.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias Colorretais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Neoplasias Hepáticas/secundário , Macrófagos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/antagonistas & inibidores , Proteínas da Matriz Extracelular/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estadiamento de Neoplasias , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Taxa de Sobrevida , Resultado do Tratamento
14.
Theranostics ; 11(8): 3898-3915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664869

RESUMO

Prolactin binding to the prolactin receptor exerts pleiotropic biological effects in vertebrates. The prolactin receptor (PRLR) has multiple isoforms due to alternative splicing. The biological roles and related signaling of the long isoform (PRLR-LF) have been fully elucidated. However, little is known about the short isoform (PRLR-SF), particularly in cancer development and metabolic reprogramming, a core hallmark of cancer. Here, we reveal the role and underlying mechanism of PRLR-SF in pancreatic ductal adenocarcinoma (PDAC). Methods: A human PDAC tissue array was used to investigate the clinical relevance of PRLR in PDAC. The in vivo implications of PRLR-SF in PDAC were examined in a subcutaneous xenograft model and an orthotopic xenograft model. Immunohistochemistry was performed on tumor tissue obtained from genetically engineered KPC (KrasG12D/+; Trp53R172H/+; Pdx1-Cre) mice with spontaneous tumors. 13C-labeled metabolite measures, LC-MS, EdU incorporation assays and seahorse analyses were used to identify the effects of PRLR-SF on the pentose phosphate pathway and glycolysis. We identified the molecular mechanisms by immunofluorescence, coimmunoprecipitation, proximity ligation assays, chromatin immunoprecipitation and promoter luciferase activity. Public databases (TCGA, GEO and GTEx) were used to analyze the expression and survival correlations of the related genes. Results: We demonstrated that PRLR-SF is predominantly expressed in spontaneously forming pancreatic tumors of genetically engineered KPC mice and human PDAC cell lines. PRLR-SF inhibits the proliferation of PDAC cells (AsPC-1 and BxPC-3) in vitro and tumor growth in vivo. We showed that PRLR-SF reduces the expression of genes in the pentose phosphate pathway (PPP) and nucleotide biosynthesis by activating Hippo signaling. TEAD1, a downstream transcription factor of Hippo signaling, directly regulates the expression of G6PD and TKT, which are PPP rate-limiting enzymes. Moreover, NEK9 directly interacts with PRLR-SF and is the intermediator between PRLR and the Hippo pathway. The PRLR expression level is negatively correlated with overall survival and TNM stage in PDAC patients. Additionally, pregnancy and lactation increase the ratio of PRLR-SF:PRLR-LF in the pancreas of wild-type mice and subcutaneous PDAC xenograft tumors. Conclusion: Our characterization of the relationship between PRLR-SF signaling, the NEK9-Hippo pathway, PPP and nucleotide synthesis explains a mechanism for the correlation between PRLR-SF and metabolic reprogramming in PDAC progression. Strategies to alter this pathway might be developed for the treatment or prevention of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores da Prolactina/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Glucosefosfato Desidrogenase/genética , Xenoenxertos , Via de Sinalização Hippo , Humanos , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Nucleotídeos/biossíntese , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Via de Pentose Fosfato , Medicina de Precisão , Prognóstico , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores da Prolactina/química , Receptores da Prolactina/genética , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo , Transcetolase/genética
15.
J Orthop Surg Res ; 16(1): 10, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407691

RESUMO

BACKGROUND: Osteoporosis (OP) is an age-related systemic bone disease. MicroRNAs (miRNAs) are involved in the regulation of osteogenic differentiation. The purpose of this study was to explore the role and mechanism of miR-1249-5p for promoting osteogenic differentiation of adipose-derived stem cells (ADSCs). METHODS: GSE74209 dataset was retrieved from NCBI Gene Expression Omnibus (GEO) database and performed bioinformatic analyses. OP tissue and healthy control tissues were obtained and used for RT-PCR analyses. ADSCs were incubated with miR-1249-5p mimic, inhibitor and corresponding negative control (NC), alkaline phosphatase (ALP) staining, and Alizarin Red Staining (ARS) were then performed to assess the role of miR-1249-5p for osteogenesis of ADSCs. Targetscan online website and dual-luciferase reporter assay were performed to verify that the 3'-UTR of PDX1 mRNA is a direct target of miR-1249-5p. RT-PCR and western blot were also performed to identify the mechanism of miR-1249-5p for osteogenesis of ADSCs. RESULTS: A total of 170 differentially expressed miRNAs were selected, among which, 75 miRNAs were downregulated and 95 miRNAs were upregulated. Moreover, miR-1249-5p was decreased in OP patients, while showed a gradual increase with the extension of induction time. miR-1249-5p mimic significantly increased osteogenic differentiation capacity and p-PI3K and p-Akt protein levels. Luciferase activity in ADSCs co-transfected of miR-1249-5p mimic with PDX1-WT reporter plasmids was remarkably decreased, but there was no obvious change in miR-1249-5p mimic with PDX1-MUT reporter plasmids co-transfection group. Overexpression PDX1 could partially reverse the promotion effects of miR-1249-5p on osteogenesis of ADSCs. CONCLUSION: In conclusion, miR-1249-5p promotes osteogenic differentiation of ADSCs by targeting PDX1 through the PI3K/Akt signaling pathway.


Assuntos
Adipócitos/fisiologia , Tecido Adiposo/citologia , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , MicroRNAs/fisiologia , Osteogênese/genética , Células-Tronco/fisiologia , Transativadores/genética , Transativadores/metabolismo , Regiões 3' não Traduzidas , Células Cultivadas , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
16.
Life Sci ; 271: 119127, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33515561

RESUMO

Gene mutations play important roles in tumour development. In this study, we identified a functional histone H2B mutation H2BL-T11C, causing an amino acid variation from Leu to Pro (L3P, H2BL-L3P). Cells overexpressing H2BL-L3P showed stronger proliferation, colony formation, tumourigenic abilities, and a different cell cycle distribution. Meanwhile, the c-Myc expression was elevated as evident by RNA-seq. We further revealed that an H2BK5ac-H2BK120ubi crosstalk which regulates gene transcription. Moreover, EdU staining demonstrated an important role of c-Myc in accelerating cell cycle progression through the G1/S checkpoint, while treatment with 10058-F4, an inhibitor of the c-Myc/MAX interaction, alleviated the abnormal cell proliferation and cell cycle distribution in vitro and partially inhibited tumour growth in vivo. The mutation of amino acid L3P is associated with tumour progression, suggesting patients carrying this SNP may have higher risk of tumour development.


Assuntos
Proliferação de Células/fisiologia , Variação Genética/genética , Histonas/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas c-myc/genética , Regulação para Cima/fisiologia , Animais , Linhagem Celular Tumoral , Células HEK293 , Histonas/metabolismo , Humanos , Lentivirus , Leucina/genética , Camundongos , Camundongos Nus , Mutação/genética , Neoplasias/metabolismo , Neoplasias/patologia , Nucleotídeos/genética , Prolina/genética , Proteínas Proto-Oncogênicas c-myc/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
Acta Pharmacol Sin ; 42(2): 301-310, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32699265

RESUMO

Sorafenib is the first-line medication for advanced hepatocellular carcinoma (HCC), but it can only extend limited survival. It is imperative to find a combination strategy to increase sorafenib efficacy. Artesunate is such a preferred candidate, because artesunate is clinically well-tolerated and more importantly both drugs can induce ferroptosis through different mechanisms. In this study we investigated the combined effect of sorafenib and artesunate in inducing ferroptosis of HCC and elucidated the involved molecular mechanisms. We showed that artesunate greatly enhanced the anticancer effects of low dose of sorafenib against Huh7, SNU-449, and SNU-182 HCC cell lines in vitro and against Huh7 cell xenograft model in Balb/c nude mice. The combination index method confirmed that the combined effect of sorafenib and artesunate was synergistic. Compared with the treatment with artesunate or sorafenib alone, combined treatment induced significantly exacerbated lipid peroxidation and ferroptosis, which was blocked by N-acetyl cysteine and ferroptosis inhibitors liproxstatin-1 and deferoxamine mesylate, but not by inhibitors of other types of cell death (z-VAD, necrostatin-1 and belnacasan). In Huh7 cells, we demonstrated that the combined treatment induced oxidative stress and lysosome-mediated ferritinophagy, two essential aspects of ferroptosis. Sorafenib at low dose mainly caused oxidative stress through mitochondrial impairments and SLC7A11-invovled glutathione depletion. Artesunate-induced lysosome activation synergized with sorafenib-mediated pro-oxidative effects by promoting sequential reactions including lysosomal cathepsin B/L activation, ferritin degradation, lipid peroxidation, and consequent ferroptosis. Taken together, artesunate could be repurposed to sensitize sorafenib in HCC treatment. The combined treatment can be easily translated into clinical applications.


Assuntos
Artesunato/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Sorafenibe/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Artesunato/administração & dosagem , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Ferroptose/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estresse Oxidativo/efeitos dos fármacos , Sorafenibe/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Immunol Res ; 2020: 7263602, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062724

RESUMO

Serine/threonine protein kinase-3 (STK3) is a critical molecule of the Hippo pathway but little is known about its biological functions in the ovarian cancer development. We demonstrated the roles of STK3 in ovarian cancer. Existing databases were used to study the expression profile of STK3. STK3 was significantly downregulated in OC patients, and the low STK3 expression was correlated with a poor prognosis. In vitro cell proliferation, apoptosis, and migration assays, and in vivo subcutaneous xenograft tumor models were used to determine the roles of STK3. The overexpression of STK3 significantly inhibited cell proliferation, apoptosis, and migration of ovarian cancer cells in vitro and tumor growth in vivo. Bisulfite sequencing PCR analysis was performed to validate the methylation of STK3 in ovarian cancer. RNA sequencing and gene set enrichment analysis (GSEA) were used to compare the transcriptome changes in the STK3 overexpression ovarian cancer and control cells. The signaling pathway was analyzed by western blotting. STK3 promoted the migration of CD8+ T-cells by activating nuclear transcription factor κB (NF-κB) signaling. STK3 is a potential predictor of OC. It plays an important role in suppressing tumor growth of ovarian cancer and in chemotaxis of CD8+ T-cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Inibidores do Crescimento/metabolismo , Neoplasias Ovarianas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Carcinogênese , Linhagem Celular Tumoral , Quimiotaxia , Citotoxicidade Imunológica , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Inibidores do Crescimento/genética , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/metabolismo , Neoplasias Ovarianas/mortalidade , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinase 3 , Transdução de Sinais , Análise de Sobrevida
19.
FASEB J ; 34(3): 3943-3955, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31944405

RESUMO

Mangrove-derived actinobacteria strains are well-known for producing novel secondary metabolites. The polycyclic tetramate macrolactam (PTM), ikarugamycin (IKA) isolated from Streptomyces xiamenensis 318, exhibits antiproliferative activities against pancreatic ductal adenocarcinoma (PDAC) in vitro. However, the protein target for bioactive IKA is unclear. In this study, whole transcriptome-based profiling revealed that the glycolysis pathway is significantly affected by IKA. Metabolomic studies demonstrated that IKA treatment induces a significant drop in glucose-6-phosphate and a slight increase in intracellular glucose level. Analysis of glucose consumption, lactate production, and the extracellular acidification rate confirmed the inhibitory role of IKA on the glycolytic flux in PDAC cells. Surface plasmon resonance (SPR) experiments and docking studies identified the key enzyme of glycolysis, hexokinase 2 (HK2), as a molecular target of IKA. Moreover, IKA reduced tumor size without overt cytotoxicity in mice with PDAC xenografts and increased chemotherapy response to gemcitabine in PDAC cells in vitro. Taken together, IKA can block glycolysis in pancreatic cancer by targeting HK2, which may be a potential drug candidate for PDAC treatment.


Assuntos
Hexoquinase/metabolismo , Lactamas/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Ácido Láctico/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Reação em Cadeia da Polimerase em Tempo Real , Ressonância de Plasmônio de Superfície
20.
Cell Death Differ ; 27(5): 1660-1676, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31685978

RESUMO

Cancer cells reprogram their energy metabolic system from the mitochondrial oxidative phosphorylation (OXPHOS) pathway to a glucose-dependent aerobic glycolysis pathway. This metabolic reprogramming phenomenon is known as the Warburg effect, a significant hallmark of cancer. However, the detailed mechanisms underlying this event or triggering this reprogramming remain largely unclear. Here, we found that histone H2B monoubiquitination (H2Bub1) negatively regulates the Warburg effect and tumorigenesis in human lung cancer cells (H1299 and A549 cell lines) likely through controlling the expression of multiple mitochondrial respiratory genes, which are essential for OXPHOS. Moreover, our work also suggested that pyruvate kinase M2 (PKM2), the rate-limiting enzyme of glycolysis, can directly interact with H2B in vivo and in vitro and negatively regulate the level of H2Bub1. The inhibition of cell proliferation and nude mice xenograft of human lung cancer cells induced by PKM2 knockdown can be partially rescued through lowering H2Bub1 levels, which indicates that the oncogenic function of PKM2 is achieved, at least partially, through the control of H2Bub1. Furthermore, PKM2 and H2Bub1 levels are negatively correlated in cancer specimens. Therefore, these findings not only provide a novel mechanism triggering the Warburg effect that is mediated through an epigenetic pathway (H2Bub1) but also reveal a novel metabolic regulator (PKM2) for the epigenetic mark H2Bub1. Thus, the PKM2-H2Bub1 axis may become a promising cancer therapeutic target.


Assuntos
Epigênese Genética , Histonas/metabolismo , Ubiquitinação , Efeito Warburg em Oncologia , Animais , Carcinogênese/genética , Carcinogênese/patologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Respiração Celular/genética , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/genética , Simulação de Acoplamento Molecular , Ligação Proteica , Hormônios Tireóideos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA