Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Digit Imaging ; 36(5): 2088-2099, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37340195

RESUMO

Segmentation is a crucial step in extracting the medical image features for clinical diagnosis. Though multiple metrics have been proposed to evaluate the segmentation performance, there is no clear study on how or to what extent the segmentation errors will affect the diagnostic related features used in clinical practice. Therefore, we proposed a segmentation robustness plot (SRP) to build the link between segmentation errors and clinical acceptance, where relative area under the curve (R-AUC) was designed to help clinicians to identify the robust diagnostic related image features. In experiments, we first selected representative radiological series from time series (cardiac first-pass perfusion) and spatial series (T2 weighted images on brain tumors) of magnetic resonance images, respectively. Then, dice similarity coefficient (DSC) and Hausdorff distance (HD), as the widely used evaluation metrics, were used to systematically control the degree of the segmentation errors. Finally, the differences between diagnostic related image features extracted from the ground truth and the derived segmentation were analyzed, using the statistical method large sample size T-test to calculate the corresponding p values. The results are denoted in the SRP, where the x-axis indicates the segmentation performance using the aforementioned evaluation metric, and the y-axis shows the severity of the corresponding feature changes, which are expressed in either the p values for a single case or the proportion of patients without significant change. The experimental results in SRP show that when DSC is above 0.95 and HD is below 3 mm, the segmentation errors will not change the features significantly in most cases. However, when segmentation gets worse, additional metrics are required for further analysis. In this way, the proposed SRP indicates the impact of the segmentation errors on the severity of the corresponding feature changes. By using SRP, one could easily define the acceptable segmentation errors in a challenge. Additionally, the R-AUC calculated from SRP provides an objective reference to help the selection of reliable features in image analysis.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Radiografia , Processamento de Imagem Assistida por Computador/métodos , Coração
2.
Biomaterials ; 287: 121686, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35926357

RESUMO

Renal ischemia-reperfusion (IR) injury (RIRI) is the leading cause of acute kidney injury (AKI), a common disease with high morbidity and mortality. However, due to the lack of effective diagnostic and therapeutic tools, patients have to resort to conservative treatment. To address this issue, we have developed a novel prophylactic strategy that involves the pre-treatment use of ceria nanoparticles (CNPs) before surgery. Based on our careful study of the three different sizes of CNPs that we synthesized, 46 nm (NP46), 81 nm (NP81), and 118 nm (NP118), we have found that NP118 can be used as effective prophylactic agents against RIRI and subsequent renal fibrosis. In our experiments, the CNPs exhibited excellent antioxidant and anti-inflammatory activities in vitro and effectively protected the kidney against RIRI and renal fibrosis in vivo, as proved by the decreases in renal lesions, serum creatinine, blood urea nitrogen, apoptotic cell, KIM-1 expression, and fibrotic area in CNPs treated samples relative to RIRI group. Mechanistically, not only did the CNPs reduce oxidative stress by regulating the Nrf2 pathway, but they also attenuated RIRI induced inflammatory response by decreasing macrophage infiltration and polarization to M1 phenotype, and reducing pro-inflammatory cytokine and chemokine production. In vitro results further confirmed that CNPs pre-treatment not only dramatically decreased intracellular ROS production in renal tubular epithelial cells and vascular endothelial cells, but also effectively attenuated lipopolysaccharide-induced inflammation in RAW264.7 cells. In addition, we found that one fourth of the NP118 persisted for more than 21 days in IR kidneys, and that out of the three sizes of CNPs, NP118 achieved the best results in all our experiments. Our study provides new insights into the usage and majorization of CNPs as a potential therapy to treat or prevent RIRI and renal fibrosis.

3.
Small ; 18(34): e2202728, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35796192

RESUMO

Cancer phototherapy activates immunogenic cell death (ICD) and elicits a systemic antitumor immune response, which is an emerging approach for tumor treatment. Most available photosensitizers require a combination of immune adjuvants or checkpoint inhibitors to trigger antitumor immunity because of the immunosuppressive tumor microenvironment and the limited phototherapeutic effect. A class of tumor-targeting heptamethine cyanine photosensitizers modified with an endoplasmic reticulum (ER)-targeting group (benzenesulfonamide) are synthesized. Phototherapy of tumor cells markedly amplifies ER stress and promotes tumor antigen release, as the ER is required for protein synthesis, secretion, and transport. More importantly, different electron-donating or -withdrawing substitutions are introduced into benzenesulfonamide to modulate the nonradiative decay pathways through intramolecular charge transfer, including singlet-triplet intersystem crossing (photodynamic effect) and internal thermal conversion (photothermal effect). Thus, a heptamethine cyanine photosensitizer containing a binitro-substituted benzenesulfonamide (ER-Cy-poNO2 ) is identified that preferentially accumulates in the ER of tumor cells. It significantly enhances the phototherapeutic effect by inducing excessive ER stress and robust ICD. Consequently, this small molecular photosensitizer triggers a sufficient antitumor immune response and effectively suppresses the growth of both primary and distant metastatic tumors, whereas no apparent toxicity is observed. This heptamethine cyanine photosensitizer has the potential to enhance cancer-targeted immunotherapy.


Assuntos
Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Corantes , Estresse do Retículo Endoplasmático , Humanos , Imunoterapia , Neoplasias/terapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia , Microambiente Tumoral
4.
Bioact Mater ; 6(12): 4697-4706, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34095626

RESUMO

Antiresorptive drugs are widely used for treatment of osteoporosis and cancer bone metastasis, which function mainly through an overall inhibition of osteoclast. However, not all osteoclasts are "bone eaters"; preosteoclasts (pOCs) play anabolic roles in bone formation and angiogenesis through coupling with osteoblasts and secreting platelet derived growth factor-BB (PDGF-BB). In this study, a bone-targeted pH-responsive nanomaterial was designed for selectively eliminating mature osteoclasts (mOCs) without affecting pOCs. Biocompatible cerium nano-system (CNS) was guided to the acidic extracellular microenvironment created by mOCs and gained oxidative enzymatic activity. Oxidative CNS decreased the viability of mOCs through accumulating intracellular reactive oxygen species and enhancing calcium oscillation. Non-acid secreting anabolic pOCs were thus preserved and kept producing PDGF-BB, which lead to mesenchymal stem cell osteogenesis and endothelial progenitor cell angiogenesis via PI3K-Akt activated focal adhesion kinase. In treating osteoporotic ovariectomized mice, CNS showed better protective effects compare with the current first line antiresorptive drug due to the better anabolic effects marked by higher level of bone formation and vascularization. We provided a novel anabolic therapeutic strategy in treating bone disorders with excessive bone resorption.

5.
Clin Transl Med ; 10(8): e240, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33377656

RESUMO

BACKGROUND: Inflammatory osteolysis is a severe infectious bone disorder that occurs during orthopaedic surgery and is caused by disruptions in the dynamic balance of bone matrix homeostasis, which makes this condition a burden on surgical procedures. Developing novel therapeutic drugs about inhibiting excessive osteoclastogenesis acts as an efficient approach to preventing inflammatory bone destruction. METHODS: To study this, we explored the potential effects and mechanisms of compound 17 on inflammatory osteolysis in vitro. Meanwhile, a lipopolysaccharide (LPS)-induced calvarial osteolysis mouse model was used to evaluate the protective effect of compound 17 on inflammatory bone destruction in vivo. RESULTS: In our study, we found that compound 17 could inhibit osteoclast (OC) differentiation and bone resorption during RANKL and LPS stimulation in a time- and dose-dependent manner, while compounds 5 and 13 did not have the same effects. Mechanistically, compound 17 promoted phosphatase and tensin homologue (PTEN) activity by reducing PTEN ubiquitination, thereby restraining the RANKL-induced NF-κB pathway, resulting in the inhibition of the expression of osteoclastogenesis-related genes and the formation of the NLRP3 inflammasome. Additionally, we also investigated whether compound 17 could negatively modulate macrophage polarization and repolarization due to its anti-inflammatory effects. Moreover, compound 17 also plays an important role in osteoblast differentiation and mineralization. In vivo experiments showed that compound 17 could effectively protect mice from LPS-induced inflammatory bone destruction by inhibiting osteoclastogenesis and inflammation. CONCLUSIONS: Taken together, these results show that compound 17 might play protective role in inflammatory bone destruction through inhibiting osteoclastogenesis and inflammation. These findings imply a possible role of compound 17 in inflammatory osteolysis-related diseases.

6.
Biomater Sci ; 7(6): 2533-2544, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30968875

RESUMO

Cytotoxic CD8+ T cells (CTLs) are crucial for controlling intracellular pathogens as well as cancer. However, how to promote the cytotoxic activity of CTL cells in vitro and in vivo remains largely unknown. On the other hand, ceria nanoparticles (CNPs) are widely used in biomedical fields, but the role of CNPs in CTL cells is still unclear. In this study, we found that the activated antigen-specific (P14) and nonspecific CD8+ T cells with CNP treatment both produced more cytokines, including interleukin-2 (IL-2) and tumor necrosis factor-α (TNF-α), and released more effector molecules, such as granzyme B and perforin, and then exhibited higher killing activity of P14 cells in vitro and stronger viral clearance capacity of CTL cells in vivo. Mechanistically, the activated P14 cells with CNP treatment inhibited the production of reactive oxygen species, and therefore promoted the activity of NF-κB signaling. Importantly, while the P14 cells were simultaneously treated by IMD-0354, a specific inhibitor of NF-κB signaling, the increases of IL-2 and TNF-α productions and granzyme B and perforin releases were remedied, and the P14 cells eventually exhibited the natural killing activity in vitro. Thus, our results demonstrated that CNP treatment promoted the cytotoxic activity of CTL cells and provide new ideas in the usage of CNPs and fascinating pharmacological potentials for clinical application, especially cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Cério/química , Cério/farmacologia , Nanopartículas Metálicas/química , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/biossíntese , Feminino , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
7.
FASEB J ; 33(5): 6378-6389, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30776318

RESUMO

Central ischemic necrosis is one of the biggest obstacles in the clinical application of traditional tissue-engineered bone (TEB) in critical-sized bone defect regeneration. Because of its ability to promote vascular invasion, endochondral ossification-based TEB has been applied for bone defect regeneration. However, inadequate chondrocyte hypertrophy can hinder vascular invasion and matrix mineralization during endochondral ossification. In light of recent studies suggesting that ceria nanoparticles (CNPs) improve the blood vessel distribution within TEB, we modified TEB scaffold surfaces with CNPs and investigated the effect and mechanism of CNPs on endochondral ossification-based bone regeneration. The CNPs used in this study were synthesized by the microemulsion method and modified with alendronate-anchored polyethylene glycol 600. We showed that CNPs accelerated new bone formation and enhanced endochondral ossification-based bone regeneration in both a subcutaneous ectopic osteogenesis model and a mouse model of critical-sized bone defects. Mechanistically, CNPs significantly promoted endochondral ossification-based bone regeneration by ensuring sufficient hypertrophic differentiation via the activation of the RNA helicase, DEAH (Asp-Glu-Ala-His) box helicase 15, and its downstream target, p38 MAPK. These results suggested that CNPs could be applied as a biomaterial to improve the efficacy of endochondral ossification-based bone regeneration in critical-sized bone defects.-Li, J., Kang, F., Gong, X., Bai, Y., Dai, J., Zhao, C., Dou, C., Cao, Z., Liang, M., Dong, R., Jiang, H., Yang, X., Dong, S. Ceria nanoparticles enhance endochondral ossification-based critical-sized bone defect regeneration by promoting the hypertrophic differentiation of BMSCs via DHX15 activation.


Assuntos
Células da Medula Óssea/metabolismo , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Cério , Fêmur , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Osteogênese/efeitos dos fármacos , RNA Helicases/metabolismo , Animais , Células da Medula Óssea/patologia , Cério/química , Cério/farmacologia , Fêmur/lesões , Fêmur/metabolismo , Fêmur/patologia , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
8.
Cell Physiol Biochem ; 46(1): 401-417, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29590659

RESUMO

BACKGROUND/AIMS: In the process of bone development and remodeling, the vasculature is regarded as the communicative network between the bone and neighboring tissues. Recently, it has been reported that the processes of angiogenesis and osteogenesis are coupled temporally and spatially. However, few studies reported the relationship and relevant mechanism between osteoclastogenesis and vasculogenesis. METHODS: Arraystar Mouse lncRNA microarray V3.0 was firstly used to analyze the differentially expressed lncRNA genes in osteoclast different stages during osteoclastogenesis. Cell counting kit 8 (CCK-8) analysis, quantitative real-time polymerase chain reaction (qRT-PCR) analysis, migration and tube formation assays were used to detect impact of osteoclast different stages on the proliferation, differentiation, migration and tube formation of endothelial progenitor cells (EPCs), respectively. Finally, transfection of AK131850 shRNA, miR-93-5p mimic and miR-93-5p inhibitor, qRT-PCR, western blotting, enzyme-linked immunosorbent assay (ELISA), fluorescence in situ hybridization (FISH) and luciferase reporter assay were carried out to dissect molecular mechanisms. RESULTS: In this study, we found that newborn OCs (N-OC) and mature OCs (M-OC) during osteoclastogenesis significantly promoted proliferation, differentiation, migration and tube formation of endothelial progenitor cells (EPCs). Through lncRNA microarray and GO&pathway analysis, we found that AK131850 and co-expressed gene, vascular endothelial growth factor a (VEGFa), were significantly up-regulated in N-OC and M-OC. After inhibition of AK131850 the promoting effect of N-OC and M-OC on EPCs was reversed. Furthermore, we found that AK131850 directly competed miR-93-5p in N-OC and M-OC through sponge, thereby increasing VEGFa transcription, expression and secretion through derepressing of miR-93-5p on VEGFa. CONCLUSION: Our results provided the first finding that lncRNA-AK131850 sponged miR-93-5p in N-OC and M-OC during osteoclastogenesis to enhance the secretion of VEGFa, thus promoting vasculogenesis of EPCs.


Assuntos
MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Sequência de Bases , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Osteoclastos/citologia , Osteoclastos/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , Alinhamento de Sequência , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Int J Nanomedicine ; 12: 1815-1825, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28331307

RESUMO

Tumors are one of the most serious human diseases and cause numerous global deaths per year. In spite of many strategies applied in tumor therapy, such as radiation therapy, chemotherapy, surgery, and a combination of these treatments, tumors are still the foremost killer worldwide among human diseases, due to their specific limitations, such as multidrug resistance and side effects. Therefore, it is urgent and necessary to develop new strategies for tumor therapy. Recently, the fast development of nanoscience has paved the way for designing new strategies to treat tumors. Nanomaterials have shown great potential in tumor therapy, due to their unique properties, including passive targeting, hyperthermia effects, and tumor-specific inhibition. This review summarizes the recent progress using the innate antitumor properties of metallic and nonmetallic nanomaterials to treat tumors, and related challenges and prospects are discussed.


Assuntos
Nanoestruturas/uso terapêutico , Nanotecnologia/tendências , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Nanoestruturas/ultraestrutura
10.
Cancer Med ; 6(2): 374-381, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28070935

RESUMO

Previous work has suggested that ceria nanoparticles (CNPs) have regenerative antioxidant properties, which have motivated researchers to consider CNPs as therapeutic agents for treating a number of diseases, including cancer. Recent studies have shown CNPs to be toxic to cancer cells, to inhibit invasion and sensitize cancer cells to radiotherapy. In addition, several hydrophilic polymers have been used to coat the CNP surface in order to enhance its properties of extensive biocompatibility and systemic nontoxicity to normal cells and tissues. However, the results of previous studies were based on high CNP doses (10 µg/mL or more), and these doses may cause serious side effects in clinical applications. The impact of low CNP doses on tumor cells remains unknown. In this study, we report experiments indicating that CNPs-AL- polyethylene glycol (PEG)600, a type of surface-modified CNP that is more stable and less toxic than traditional CNPs could promote proliferation of hepatoma cells in a dose-dependent manner. In addition, further research showed that a low dose (0.01 µg/mL) of CNPs-AL-PEG600 could reduce hepatoma cell apoptosis and activate AKT/ERK signaling pathways. These results may provide information that is important for using CNPs-AL-PEG600 as a therapeutic agent in clinical cancer treatments.


Assuntos
Alendronato/administração & dosagem , Carcinoma Hepatocelular/genética , Cério/química , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Alendronato/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Camundongos , Camundongos Nus , Nanopartículas/química , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Polietilenoglicóis/química
11.
Int J Mol Sci ; 17(9)2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27657047

RESUMO

The healthy skeleton requires a perfect coordination of the formation and degradation of bone. Metabolic bone disease like osteoporosis is resulted from the imbalance of bone formation and/or bone resorption. Osteoporosis also reflects lower level of bone matrix, which is contributed by up-regulated osteoclast-mediated bone resorption. It is reported that monocytes/macrophage progenitor cells or either hematopoietic stem cells (HSCs) gave rise to multinucleated osteoclasts. Thus, inhibition of osteoclastic bone resorption generally seems to be a predominant therapy for treating osteoporosis. Recently, more and more natural compounds have been discovered, which have the ability of inhibiting osteoclast differentiation and fusion. Alliin (S-allyl-l-cysteine sulfoxides, SACSO) is the major component of aged garlic extract (AGE), bearing broad-spectrum natural antioxidant properties. However, its effects on bone health have not yet been explored. Hence, we designed the current study to explore its effects and role in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast fusion and differentiation. It was revealed that alliin had an inhibitory effect in osteoclasteogenesis with a dose-dependent manner via blocking the c-Fos-NFATc1 signaling pathway. In addition, alliin decreased the generation of reactive oxygen species (ROS) and down-regulated the expression of NADPH oxidase 1 (Nox1). The overall results revealed that alliin could be a potential therapeutic agent in the treatment of osteoporosis.

12.
Int J Nanomedicine ; 11: 3023-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486320

RESUMO

Gastric cancer is one of the leading causes of tumor-related deaths in the world. Current treatment options do not satisfy doctors and patients, and new therapies are therefore needed. Cerium oxide nanoparticles (CNPs) have been studied as a potential therapeutic approach for treating many diseases. However, their effects on human gastric cancer are currently unknown. Therefore, in this study, we aimed to characterize the effects of CNPs on human gastric cancer cell lines (MKN28 and BGC823). Gastric cancer cells were cocultured with different concentrations of CNPs, and proliferation and migration were measured both in vitro and in vivo. We found that CNPs inhibited the migration of gastric cancer cells when applied at different concentrations, but only a relatively high concentration (10 µg/mL) of CNPs suppressed proliferation. Furthermore, we found that CNPs increased the expression of DHX15 and its downstream signaling pathways. We therefore provide evidence showing that CNPs may be a promising approach to suppress malignant activity of gastric cancer by increasing the expression of DHX15.


Assuntos
Cério/química , Nanopartículas/química , Neoplasias Gástricas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Nus , Nanopartículas/ultraestrutura , Metástase Neoplásica , RNA Helicases/genética , RNA Helicases/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/ultraestrutura
13.
Nutrients ; 8(4): 231, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27104563

RESUMO

Cordycepin was previously reported to have anti-tumor, anti-inflammatory and anti-oxidant activity. However, the potential role of cordycepin in bone metabolism and cell biology of osteoclasts remains unclear. In our study, we focused on the in vitro effects of cordycepin on osteoclastogenesis and its in vivo effects in ovariectomized (OVX) mice. Osteoclast differentiation, formation and fusion were evaluated by Tartrate-resistant acid phosphatase (TRAP) stain, focal adhesion stain and fusion assay, respectively. Osteoclastic bone resorption was evaluated by pit formation assay. Reactive oxygen species (ROS) generation and removal were detected by the ROS assay. OVX mice were orally administered with 10 mg/kg of cordycepin daily for four weeks. In vitro results revealed that cordycepin inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, formation, fusion and bone resorption activity. We further proved that cordycepin treatments scavenged the generation of ROS, upregulated interferon regulatory factor 8 (IRF-8) and suppressed the activity of nuclear factor of activated T cells c1 (NFATc1) during osteoclastogenesis. In vivo results indicated cordycepin prevents bone loss, rescues bone microarchitecture, and restores bone mineralization in OVX mice. Our observations strongly suggested that cordycepin is an efficient osteoclast inhibitor and hold potential therapeutic value in preventing bone loss among postmenopausal osteoporosis patients.


Assuntos
Densidade Óssea/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Sequestradores de Radicais Livres/farmacologia , Osteoclastos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Adesão Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desoxiadenosinas/administração & dosagem , Desoxiadenosinas/química , Relação Dose-Resposta a Droga , Feminino , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/química , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Osteoclastos/fisiologia , Ovariectomia , Ligante RANK/genética , Ligante RANK/metabolismo , Células RAW 264.7
14.
Am J Physiol Cell Physiol ; 310(10): C780-7, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26962001

RESUMO

The bone-resorbing osteoclast (OC) is essential for bone homeostasis, yet deregulation of OCs contributes to diseases such as osteoporosis, osteopetrosis, and rheumatoid arthritis. Here we show that histone deacetylase 2 (HDAC2) is a key positive regulator during receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and bone resorption. Bone marrow macrophages (BMMs) showed increased HDAC2 expression during osteoclastogenesis. HDAC2 overexpression enhanced, whereas HDAC2 deletion suppressed osteoclastogenesis and bone resorption using lentivirus infection. Mechanistically, upon RANKL activation, HDAC2 activated Akt; Akt directly phosphorylates and abrogates Forkhead box protein O1 (FoxO1), which is a negative regulator during osteoclastogenesis through reducing reactive oxygen species. HDAC2 deletion in BMMs resulted in decreased Akt activation and increased FoxO1 activity during osteoclastogenesis. In conclusion, HDAC2 activates Akt thus suppresses FoxO1 transcription results in enhanced osteoclastogenesis. Our data imply the potential value of HDAC2 as a new target in regulating osteoclast differentiation and function.


Assuntos
Proteína Forkhead Box O1/metabolismo , Histona Desacetilase 2/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoclastos/metabolismo , Osteogênese/fisiologia , Ligante RANK/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia
15.
Sci Rep ; 6: 21499, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26856880

RESUMO

Bone is a dynamic organ continuously undergoing shaping, repairing and remodeling. The homeostasis of bone is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. Osteoclasts (OCs) are specialized multinucleated cells derived from hematopoietic stem cells (HSCs) or monocytes/macrophage progenitor cells. There are different stages during osteoclastogenesis, and one of the most important steps to form functional osteoclasts is realized by cell-cell fusion. In our study, microarray was performed to detect the expression profiles of lncRNA, mRNA, circRNA and miRNA at different stages during osteoclastogenesis of RAW264.7 cells. Often changed RNAs were selected and clustered among the four groups with Venn analysis. The results revealed that expressions of 518 lncRNAs, 207 mRNAs, 24 circRNAs and 37 miRNAs were often altered at each stage during OC differentiation. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analysis were performed to predict the functions of differentially expressed lncRNAs and co-expressed potential targeting genes. Co-expression networks of lncRNA-mRNA and circRNA-miRNA were constructed based on the correlation analysis between the differentially expressed RNAs. The present study provided a systematic perspective on the potential function of non-coding RNAs (ncRNAs) during osteoclastogenesis.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , MicroRNAs , Osteoclastos/metabolismo , RNA Longo não Codificante , RNA Mensageiro , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Camundongos , MicroRNAs/biossíntese , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Osteoclastos/citologia , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
16.
ACS Appl Mater Interfaces ; 8(7): 4489-99, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26824825

RESUMO

Insufficient blood perfusion is one of the critical problems that hamper the clinical application of tissue engineering bone (TEB). Current methods for improving blood vessel distribution in TEB mainly rely on delivering exogenous angiogenic factors to promote the proliferation, migration, differentiation, and vessel formation of endothelial cells (ECs) and/or endothelial progenitor cells (EPCs). However, obstacles including limited activity preservation, difficulty in controlled release, and high cost obstructed the practical application of this strategy. In this study, TEB scaffold were modified with cerium oxide nanoparticles (CNPs) and the effects of CNPs existed at the scaffold surface on the growth and paracrine behavior of mesenchymal stem cells (MSCs) were investigated. The CNPs could improve the proliferation and inhibit the apoptosis of MSCs. Meanwhile, the interaction between the cell membrane and the nanoparticle surface could activate the calcium channel of MSCs leading to the rise of intracellular free Ca(2+) level, which subsequently augments the stability of HIF-1α. These chain reactions finally resulted in high expression of angiogenic factor VEGF. The improved paracrine of VEGF could thereby promote the proliferation, differentiation, and tube formation ability of EPCs. Most importantly, in vivo ectopic bone formation experiment demonstrated this method could significantly improve the blood vessel distribution inside of TEB.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Transplante Ósseo/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Canais de Cálcio/genética , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cério/administração & dosagem , Cério/química , Células Endoteliais/efeitos dos fármacos , Glicosaminoglicanos , Humanos , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Engenharia Tecidual , Alicerces Teciduais/química
17.
Curr Med Chem ; 23(5): 483-97, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26695513

RESUMO

The development of multifunctional theranostic agents has become an intriguing venture for personalized oncology, because they can integrate tumor diagnosis and therapy. One approach explored to obtain such multifunctional theranostic agents is through the chemical conjugation of anticancer drugs and contrast agents with various cancer-targeted ligands. The other approach is based on the nanoplatform, in which cancer-targeted nanostructures achieve simultaneous cancer specific detection and therapeutics either by EPR effect or by conjugation of target ligands. Interestingly, a newly emerging strategy from multifunctional small molecules to develop cancertargeted theranostic agents has been reported recently. In consideration of the urgent need and rapid development of theranostic agents in cancer therapy, herein we review the currently adopted and newly emerging approaches for their preparation, and highlight the promises and challenges in each approach, hoping to offer useful insights in developing more specific and efficient cancer theranostic agents suitable for clinical use.


Assuntos
Antineoplásicos/uso terapêutico , Diagnóstico por Imagem , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Humanos
18.
J Cell Physiol ; 231(3): 558-67, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25545964

RESUMO

Bone homeostasis is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. Osteoclasts are multinucleated cells derived from hematopoietic stem cells (HSCs) or monocyte/macrophage progenitor cells and formed by osteoclasts precursors (OCPs) fusion. Cyanidin is an anthocyanin widely distributed in food diet with novel antioxidant activity. However, the effect of cyanidin on osteoclasts is still unknown. We investigated the effect of cyanidin on RANKL-induced osteoclasts differentiation and cell fusion. The results showed that cyanidin had a dual effect on RANKL-induced osteoclastogenesis. Lower dosage of cyanidin (< 1 µg/ml) has a promoting effect on osteoclastogenesis while higher dosage of cyanidin (> 10 µg/ml) has an inhibitory effect. Fusogenic genes like CD9, ATP6v0d2, DC-STAMP, OC-STAMP, and osteoclasts related genes like NFATc1, mitf, and c-fos were all regulated by cyanidin consistent to its dual effect. Further exploration showed that low concentration of cyanidin could increase osteoclasts fusion whereas higher dosage of cyanidin lead to the increase of LXR-ß expression and activation which is suppressive to osteoclasts differentiaton. All these results showed that cyanidin exhibits therapeutic potential in prevention of osteoclasts related bone disorders.


Assuntos
Antocianinas/farmacologia , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Ligante RANK/efeitos dos fármacos , Animais , Antocianinas/metabolismo , Células da Medula Óssea/citologia , Reabsorção Óssea , Fusão Celular , Células Cultivadas , Camundongos , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Ligante RANK/metabolismo , Transdução de Sinais
19.
Biochim Biophys Acta ; 1839(11): 1084-96, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25123438

RESUMO

DC-STAMP is a key regulating molecule of osteoclastogenesis and osteoclast precursor (OCP) fusion. Emerging lines of evidence showed that microRNAs play crucial roles in bone metabolism and osteoclast differentiation, but no microRNA has yet been reported to be directly related to OCPs fusion. Through a microarray, we found that the expression of miR-7b in RAW264.7 cells was significantly decreased after induction with M-CSF and RANKL. The overexpression of miR-7b in RAW264.7 cells attenuated the number of TRAP-positive cells number and the formation of multinucleated cells, whereas the inhibition of miR-7b enhanced osteoclastogenesis. Through a dual luciferase reporter assay, we confirmed that miR-7b directly targets DC-STAMP. Other fusogenic molecules, such as CD47, ATP6v0d2, and OC-STAMP, were detected to be down-regulated in accordance with the inhibition of DC-STAMP. Because DC-STAMP also participates in osteoclast differentiation through the ITAM-ITIM network, multiple osteoclast-specific genes in the ITAM-ITIM network were detected to identify how DC-STAMP is involved in this process. The results showed that molecules associated with the ITAM-ITIM network, such as NFATc1 and OSCAR, which are crucial in osteoclastogenesis, were consistently altered due to DC-STAMP inhibition. These findings suggest that miR-7b inhibits osteoclastogenesis and cell-cell fusion by directly targeting DC-STAMP. In addition, the inhibition of DC-STAMP and its downstream signals changed the expression of other fusogenic genes and key regulating genes, such as Nfatc1, c-fos, Akt, Irf8, Mapk1, and Traf6. In conclusion, our findings indicate that miR-7b may be a potential therapeutic target for the treatment of osteoclast-related bone disorders.


Assuntos
Diferenciação Celular/genética , Genes fos , Proteínas de Membrana/genética , MicroRNAs/fisiologia , Fatores de Transcrição NFATC/genética , Proteínas do Tecido Nervoso/genética , Osteoclastos/fisiologia , Animais , Fusão Celular , Células Cultivadas , Regulação para Baixo/genética , Genes fos/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Interferência de RNA/fisiologia , Transdução de Sinais/genética
20.
J Am Chem Soc ; 132(8): 2642-5, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20131834

RESUMO

Gold nanoparticles were coated with a short peptide to promote intracellular delivery of membrane-impermeable proteins. Through microscopy and enzyme assays, we demonstrated the particles were able to transport functional enzymes into a variety of cell lines. Significantly, the transported proteins were able to escape from endosomes. Moreover, these particles showed no apparent cytotoxicity.


Assuntos
Ouro/química , Nanopartículas/química , Peptídeos/química , beta-Galactosidase/administração & dosagem , Animais , Morte Celular , Linhagem Celular , Permeabilidade da Membrana Celular , Células HeLa , Humanos , Peptídeos/metabolismo , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA