Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 171772, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38499106

RESUMO

The application of soil amendment (SA) and the cultivation of low Cd-accumulating varieties have been a widely favored strategy to enable the safe utilization of Cd-contaminated arable land. However, little has been reported on the reciprocal effects of SA on the Cd mitigation and nutritional quality of different wheat varieties. In this study, we evaluated the impact of an SA on agronomic traits, Cd accumulation, translocation and mineral nutrition of 12 wheat varieties in an acidic field with a Cd concentration of 0.46 mg/kg. The results showed that the SA significantly reduced soil DTPA Cd (42.3 %) and resulted in a slight decrease in wheat grain yield (4.24-9.72 %, average 7.62 %). Similarly, the SA significantly reduced grain Cd concentrations (average 61.65 %) while increased the concentrations of beneficial elements such as Mo and Se in all wheat varieties. However, this intervention also led to a reduction in the concentration of essential mineral elements (such as Ca, Fe, and Mn) in whole wheat grain and starchy endosperm, as well as a reduction in their proportion in the bran. Based on genotypic differences, Huaimai 33, Zhenmai 168, Sumai 188 and Yangmai 28 were considered to be the relatively most promising wheat varieties for achieving a balance among food safety, nutritional quality, and economic yield in this region. Taken together, this study highlights the varietal differences in Cd mitigation and mineral accumulation in different wheat varieties in response to the SA, offering new perspectives for phytoremediation and biofortification strategies for Cd-contaminated farmland.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Solo , Triticum , Biofortificação , Poluentes do Solo/análise , Minerais , Grão Comestível/química
2.
Sci Total Environ ; 926: 171915, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522551

RESUMO

Foliar application has been reported as an effective method to facilitate plant growth and mitigate cadmium (Cd) accumulation. However, the application of foliar fertilizers on plant production, Cd uptake and health risks of Solanaceae family remains unknown. In this study, four foliar fertilizers were applied to investigate their effects on the production, Cd accumulation and human health risk assessment of two varieties of pepper (Capsicum annuum L.) and eggplant (Solanum melongena L.), respectively. Compared with CK, the foliar application increased vegetable production to 104.16 %-123.70 % in peppers, and 100.83 %-105.17 % in eggplants, accordingly. The application of foliar fertilizers largely decreased Cd TF (transportation factor) by up to 23.32 % in JY, 18.37 % in GJ of pepper varieties, and up to 14.47 % in ZL, 15.24 % in HGR of eggplant varieties. Moreover, Cd BAF (bioaccumulation factor) also declined to different extents after the application of foliar fertilizers. As for human health risk assessments, foliar application diminished the hazard index (HI) and carcinogenic risk (CR) of both pepper and eggplant varieties. The results concluded that the application of composed foliar fertilizers was most effective, and could be a promising alternative for the improvement of vegetable production and mitigation of vegetable Cd accumulation and human health risks as well. The results further highlighted the understanding of foliar fertilizer application on vegetable production and health risks, which benefited better vegetable safe production and further guaranteed human health.


Assuntos
Venenos , Poluentes do Solo , Humanos , Cádmio/análise , Verduras , Fertilizantes/análise , Solo , Poluentes do Solo/análise
3.
J Hazard Mater ; 468: 133822, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387179

RESUMO

Foliar application of zinc (Zn) or silicon nanoparticles (Si-NPs) may exert regulatory effects on cadmium (Cd) accumulation in rice grains, however, their impact on Cd bioavailability during human rice consumption remains elusive. This study comprehensively investigated the application of Zn with or without Si-NPs in reducing Cd accumulation in rice grains as well to exactly evaluate the potential risk of Cd exposure resulting from the rice consumption by employing field experiment as well laboratory bioaccessibility and bioavailability assay. Sole Zn (ZnSO4) or in combination with Si (ZnSO4 +Si and ZnO+Si) efficiently lowered the Cd concentration in rice grains. However, the impact of bioaccessible (0.1215-0.1623 mg kg-1) and bioavailable Cd (0.0245-0.0393 mg kg-1) during simulated human rice consumption depicted inconsistent trend. The straw HCl-extractable fraction of Cd (FHCl-Cd) exhibited a significant correlation with total, bioaccessible, and bioavailable Cd in grains, indicating the critical role of FHCl-Cd in Cd accumulation and translocation from grains to human. Additionally, foliar spraying of Zn+Si raised the nutritional value of rice grains, leading to increased protein content and reduced phytic acid concentration. Overall, this study demonstrates the potential of foliar application of ZnSO4 +Si in mitigating the Cd levels in rice grains and associated health risks upon consumption.


Assuntos
Oryza , Poluentes do Solo , Humanos , Zinco/metabolismo , Silício/farmacologia , Cádmio/metabolismo , Oryza/metabolismo , Disponibilidade Biológica , Digestão , Poluentes do Solo/metabolismo , Solo
4.
Environ Sci Pollut Res Int ; 30(38): 88986-88997, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37450188

RESUMO

Modeling plants for biomass production and metal uptake from surrounding environment is strongly dependent on the moisture content of soil. Therefore, experiments were conducted to find out how soil moisture affects the phenotypic traits, photosynthetic efficiency, metabolic profile, and metal accumulation in the hyperaccumulating ecotype of Sedum alfredii (S. alfredii). A total of six water potential gradients were set: 0 ~ -15 kPa (T1), -15 ~ -30 kPa (T2), -30 ~ -45 kPa (T3), -45 ~ -60 kPa (T4), -60 ~ -75 kPa (T5), and -75 ~ -90 kPa (T6). Different water potential treatments had a significant effect on plant growth and metal uptake efficiency. Compared to T3, T2 was more effective in promoting plant growth and development, with an increase in biomass of 23% and 17% in both fresh weight (FW) and dry weight (DW), respectively. T2 and T3 had the highest cadmium (Cd) content in the shoot (280.2 mg/kg) and (283.3 mg/kg), respectively, whereas T1 had the lowest values (204.7 mg/kg). Cd availability for plants in the soil was affected by moving soil moisture cycles. Changes in soil moisture that were either too high or too low compared to the ideal soil water content for S. alfredii growth resulted in a significant reduction in Cd accumulation in shoots. Tryptophan, phenylalanine, and other amino acids were accumulated in T5, whereas only tryptophan and phenylalanine slightly increased in T1. Sugars and alcohols such as sucrose, trehalose, mannitol, galactinol, and mannobiose increased in T5, while they decreased significantly in T1. Interestingly, in contrast to T1, the two impaired metabolic pathways in T5 (galactose and starch metabolism) were identified to be glucose metabolic pathways. These findings provide scientific information (based on experiments) to improve biomass production and metal uptake efficiency in hyperaccumulating ecotype of S. alfredii for phytoremediation-contaminated agricultural fields.


Assuntos
Sedum , Poluentes do Solo , Cádmio/análise , Sedum/metabolismo , Ecótipo , Solo/química , Desidratação/metabolismo , Triptofano , Poluentes do Solo/análise , Raízes de Plantas/metabolismo , Fotossíntese , Biodegradação Ambiental
5.
J Environ Sci (China) ; 128: 117-128, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36801027

RESUMO

Cadmium (Cd) bioavailability in the rhizosphere makes an important difference in grain Cd accumulation in wheat. Here, pot experiments combined with 16S rRNA gene sequencing were conducted to compare the Cd bioavailability and bacterial community in the rhizosphere of two wheat (Triticum aestivum L.) genotypes, a low-Cd-accumulating genotype in grains (LT) and a high-Cd-accumulating genotype in grains (HT), grown on four different soils with Cd contamination. Results showed that there was non-significant difference in total Cd concentration among four soils. However, except for black soil, DTPA-Cd concentrations in HT rhizospheres were higher than those of LT in fluvisol, paddy soil and purple soil. Results of 16S rRNA gene sequencing showed that soil type (52.7%) was the strongest determinant of root-associated community, while there were still some differences in rhizosphere bacterial community composition between two wheat genotypes. Taxa specifically colonized in HT rhizosphere (Acidobacteria, Gemmatimonadetes, Bacteroidetes and Deltaproteobacteria) could participate in metal activation, whereas LT rhizosphere was highly enriched by plant growth-promoting taxa. In addition, PICRUSt2 analysis also predicted high relative abundances of imputed functional profiles related to membrane transport and amino acid metabolism in HT rhizosphere. These results revealed that the rhizosphere bacterial community may be an important factor regulating Cd uptake and accumulation in wheat and indicated that the high Cd-accumulating cultivar might improve Cd bioavailability in the rhizosphere by recruiting taxa related to Cd activation, thus promoting Cd uptake and accumulation.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/metabolismo , Triticum , Rizosfera , Solo/química , RNA Ribossômico 16S/genética , Poluentes do Solo/análise , Bactérias/metabolismo , Genótipo
6.
Sci Total Environ ; 867: 161556, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640888

RESUMO

In recent decades, China has devoted significant attention to the heavy metals pollution in particulate matter. However, the majority of studies have only focused on the field monitoring in relatively remote areas, which may not be representative of air quality across the country. This study reevaluated the characteristics, temporal and spatial changes, and health concerns associated with heavy metal pollution in atmospheric particulates on a national scale by coupling Meta-analysis and Monte Carlo simulation analysis. In terms of spatial distribution, the heavy metals pollution levels in the northern coast and northeastern regions are relatively high, whereas it is low along the middle Yellow River, middle Yangtze River, as well as Southwest. With the exception of Cu, the distribution of all elements in PM2.5 steadily decreased over time Moreover, PM10 and PM2.5 performed similar where Cd and Ni both first increased followed by a decline while, Cr displayed a decrease before it showed an increment. And since the implementation of prevention and control policies about the atmospheric release, the focus of industrial emission has gradually shifted from energy production and processing to living products manufacturing. Moreover, the carcinogenic risk was shown to be Cr > As, Pb > Ni, Cd, while the non-carcinogenic risk was as follows: As, Ni > Cr, Cd. Among all contaminants, Cd, As, and Cr in PM2.5 and PM10 exceeded the WHO standard in the cities with worst air quality. It was observed that As posed the largest non-carcinogenic risk to adults while, Cr caused the most carcinogenic risk to adults and children, where the carcinogenic risk of children remains higher than that of adults. Therefore, the findings of this study may offer data support to the China's heavy metal pollution standards in airborne particles and offer theoretical data support for pollution management.


Assuntos
Cádmio , Metais Pesados , Adulto , Criança , Humanos , Cádmio/análise , Material Particulado/análise , China , Metais Pesados/análise , Medição de Risco , Carcinógenos/análise , Monitoramento Ambiental
7.
Sci Total Environ ; 867: 161564, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640893

RESUMO

Humans are mainly exposed to cadmium (Cd) due to the rice consumption, however there exist considerable differences across rice cultivars in terms of Cd absorption and accumulation in the grains, and subsequent release after digestion (bioaccessibility), as well as uptake by Caco-2 cells of humans (bioavailability). This study comprised of field and lab simulation trials where in the field, firstly 39 mid-rice cultivars were screened for their phytoremediation potential coupled with safe production in relation to uptake and translocation of Cd. Lower Cd concentrations (˂0.2 mg kg-1) in polished rice of 74 % cultivars were ascribed to the increased root to straw translocation indicating that straw may acquire higher accumulation of Cd. Furthermore, the ionomic profile demonstrated that the spatial distribution of metals in different rice organs corresponds to the plant growth morphology. In the second year, in vitro-in vivo assay model was employed to assess the bioaccessibility and bioavailability of Cd in polished rice and to further estimate the daily Cd intake by humans through rice grains. The results of bioaccessibility and bioavailability assays and daily estimated Cd intake presented the corresponding values of 39.02-59.76 %, 8.69-24.26 %, and 0.0185-0.9713 µg kg-1 body weight day-1, respectively. There exists a strong connection between total Cd and bioaccessible Cd to humans (R2 = 0.94, P < 0.01). Polynomial fitting (R2 = 0.91, P < 0.01) showed a better statistically significant correlation between total Cd contents and bioavailable levels, suggesting that in vitro-in vivo assays should be considered in future studies. The results of field experiments and in vitro-in vivo assays recommended the Tianyouhuazhan (MR-29), Heliangyou1hao (MR-17), and Yongyou15 (MR-1) as suitable mid-rice cultivars for the phytoremediation of slightly Cd contaminated soils coupled with rice agro-production due to their high nutritional value and low total and bioavailable Cd for human.


Assuntos
Oryza , Poluentes do Solo , Humanos , Solo , Cádmio/análise , Disponibilidade Biológica , Células CACO-2 , Poluentes do Solo/análise , Medição de Risco , Biodegradação Ambiental
8.
Food Chem ; 402: 134290, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36148764

RESUMO

Sustainable strategies are essential for zinc (Zn) biofortification and cadmium (Cd) reduction in staple food crops. Herein, we evaluated the phytotoxicity of Glyzinc under foliar and root application (FA&RA) in a lab-scale experiment, and then investigated its Zn efficiency and Cd reduction through foliar application on wheat (Triticum aestivum L.) under field conditions. Compared to RA, FA of Glyzinc exhibited no adverse effect on wheat growth and oxidative stresses at all doses. In field conditions, FA of Glyzinc remarkably increased Zn (28.7 %), S (10.4 %), Cu (17.3 %) and crude protein (9.1 %) content in wheat grain at 100 mg/L without damaging wheat yield. Furthermore, FA of Glyzinc significantly reduced the grain phytic acid (PA) (23.7 %) and Cd level (19.5 %), as well as PA to Zn molar ratio (32.3 %). Overall, our results indicate that Glyzinc has great potential as a high-efficiency foliar fertilizer for Zn biofortification and safe crop production in nano-enabled agriculture.


Assuntos
Poluentes do Solo , Triticum , Triticum/metabolismo , Fertilizantes , Zinco/análise , Cádmio/análise , Biofortificação , Poluentes do Solo/análise , Solo , Ácido Fítico/metabolismo , Grão Comestível/química
9.
Front Bioeng Biotechnol ; 10: 1023693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338132

RESUMO

Continuous cropping obstacle (CCO) in tobacco is a prevalent and intractable issue and has not yet been effectively solved. Many researchers have favored exploring environmentally friendly and sustainable solutions to CCO (e.g, the application of (bio-) organic fertilizers). Therefore, to study the effects of functional organic fertilizers (FOFs) on tobacco CCO, we applied five types of fertilizers in a tobacco continuous cropping field with red soil (i.e., CF: tobacco-special chemical fertilizers; VOF: vermicompost-based FOF; HOF: humic acid-based FOF; WOF: wood biochar-based FOF; COF: compound FOF). The tobacco plant agronomic traits, leaf yield, economic value, and chemical quality (nicotine, total sugar, K2O, Cl contents, etc.) were evaluated via the continuous flow method. Meanwhile, we determined rhizosphere soil physicochemical properties, phenolic acids content, and bacterial community diversity by high-throughput sequencing. The results show that FOFs improved the tobacco plant agronomic traits, leaf yield (by 2.9-42.8%), value (by 1.2-47.4%), and chemical quality when compared with CF. More content of NH4 +-N, available P, and available K were discovered in the rhizosphere soil in VOF, HOF, and WOF. The rhizosphere sinapic acid and total phenolic acids content declined in the FOF treatments (1.23-1.56 and 7.95-8.43 mg kg-1 dry soil, respectively) versus those in the CF treatment (2.01 and 10.10 mg kg-1 dry soil, respectively). Moreover, the rhizosphere bacterial community structure changed under FOF functions: the beneficial microbes Actinobacteria, Firmicutes, Streptomyces, and Bacillus increased, and the harmful microbes Acidobacteria and Gemmatimonadota decreased in abundance. There was a positive correlation between the tobacco leaf yield and soil NH4 +-N, TC content, and the relative abundance of Proteobacteria and Actinobacteriota. In summary, the application of VOF and WOF is a modest, practical, and environmentally friendly strategy to alleviate tobacco CCO from the standpoint of recycling solid waste.

10.
Sci Rep ; 12(1): 15317, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097148

RESUMO

Soil organic matter (SOM) is of vital importance to soil health, and also plays a crucial role in the quality of the crops such as tobacco. However, the link between tobacco quality and SOM chemical compositions is still not well understood. To fill the information gap, we analyzed the quality of tobacco leaves and the corresponding SOM molecular compositions by electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), that were collected from six different sites in Bijie, Guizhou Province, China. The tobacco quality variedin six sites based on their chemical compositions. SOM compounds had a remarked impact on the quality of tobacco leaves and a distinct difference in SOM composition between low-quality and high-quality tobacco leaves was observed as well. Specifically, 105 common molecular formulas were detected in three SOM compounds of high-quality tobacco, which were more than those in low-quality samples. Although amino sugar, proteins, lipids, tannins, and carbohydrates had a collective influence on the chemical composition of tobacco leaves, the effect contributed by amino sugar and tannins was more prominent. In summary, fully understanding the association between tobacco chemical composition and SOM compounds can provide new insight into the regulation of tobacco quality and the sustainable development of agriculture.


Assuntos
Nicotiana , Solo , Agricultura , Amino Açúcares , Compostos Orgânicos/análise , Solo/química , Taninos
11.
Environ Sci Pollut Res Int ; 29(60): 91255-91267, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35882734

RESUMO

Cadmium (Cd) and fluorine (F) often coexist in environment and are toxic to organisms; however, their combined effects on plants are still not well documented. In this study, the co-effects of Cd and F on germination, biomass, photosynthesis, and nutrients uptake of lettuce were carried out in hydroponic culture. The results showed that the seed germination and seedling biomass decreased with an increase in Cd and F supplementation. The root morphology verified these effects as excess combined Cd and F diminished the root tips and surface area of lettuce, while single Cd and F inhibited the growth by decreasing root length and average diameter, respectively. These effects were also consistence with a reduction in photosynthesis which was mainly regulated by reducing the quantum yield of PS II, electron transport activity, stomatal conductance, intercellular CO2 concentration, and transpiration rate in response to the pollutants. Moreover, when lettuce exposed to Cd and F stress, the accumulation of several essential elements in shoot decreased. In a sum, the synergistic negative effects of Cd and F on the seed germination and seedling growth of lettuce were observed, and these might be owed to nutrient absorption and translocation in the plant. These findings aid in understanding the harmful effects and specific mechanisms of action of Cd and F on plants.


Assuntos
Cádmio , Lactuca , Cádmio/toxicidade , Flúor
12.
Ecotoxicol Environ Saf ; 237: 113541, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483144

RESUMO

Combined bioaugmentation inoculants composed of two or more plant growth-promoting bacteria (PGPB) were more effective than single inoculants for plant growth and cadmium (Cd) removal in contaminated soils. However, the principles of consortia construction still need to be discovered. Here, a pot experiment with Cd natural polluted soil was conducted and PGPB consortia with different ecological niches from hyperaccumulator Sedum alfredii Hance were used to compare their effects and mechanisms on plant growth condition, Cd phytoextraction efficiency, soil enzymatic activities, and rhizospheric bacterial community of Brassica juncea L. The results showed that both rhizospheric and endophytic PGPB consortia inoculants promoted plant growth (6.9%-22.1%), facilitated Cd uptake (230.0%-350.0%) of oilseed rape, increased Cd phytoextraction efficiency (343.0%-441.0%), and enhanced soil Cd removal rates (92.0%-144.0%). PGPB consortia inoculants also enhanced soil microbial carbon by 22.2%-50.5%, activated the activities of soil urease and sucrase by 74.7%-158.4% and 8.4%-61.3%, respectively. Simultaneously, PGPB consortia inoculants increased the relative abundance of Flavobacterium, Rhodanobacter, Kosakonia, Pseudomonas and Paraburkholderia at the genus level, which may be beneficial to plant growth promotion and bacterial phytopathogen biocontrol. Although the four PGPB consortia inoculants promoted oilseed growth, amplified Cd phytoextraction, and changed bacterial community structure in rhizosphere soil, their original ecological niches were not a decisive factor for the efficiency of PGPB consortia. therefore, the results enriched the present knowledge regarding the significant roles of PGPB consortia as bioaugmentation agents and preliminarily explored construction principles of effective bioaugmentation inoculants, which will provide insights into the microbial responses to combined inoculation in the Cd-contaminated soils.


Assuntos
Inoculantes Agrícolas , Sedum , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Cádmio/análise , Mostardeira , Rizosfera , Sedum/microbiologia , Solo , Poluentes do Solo/análise
13.
Sci Rep ; 12(1): 2815, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181683

RESUMO

Soil microorganisms could affect the quality of tobacco leaves, however, little is known about the association of tobacco chemical components and soil fungal communities. In the present study, the relationship between soil fungi and tobacco quality based on chemical components in Bijie was investigated. The results showed that the total harmony scores (THS) of the analyzed tobacco leaves ranged from 46.55 ± 3.5 to 91.55 ± 2.25. Analyses of chemical components revealed that high contents of nicotine (≥ 1.06%) and sugar (total sugar: ≥ 22.96%, reducing sugar: ≥ 19.62%), as well as low potassium level (≤ 2.68%) were the main factors limiting the quality of flue-cured tobacco leaves. Pearson correlation analysis indicated that soil nitrate, available potassium/phosphorous, and organic matter significantly correlated with tobacco nicotine, potassium, and chloride levels (p < 0.05). Besides, the analysis of alpha- and beta-diversity of soil fungal communities implied that fungal structure rather than the richness affected the chemical quality of tobacco. In detail, the relative abundance of Humicola olivacea species in soils was positively correlated with the THS of tobaccos (r = 0.52, p < 0.05). Moreover, the species including Mortierella alpina, Mortierella hyalina, Tausonia pullulan, and Humicola olivacea were negatively correlated with tobacco sugar (r ≤ - 0.45, p < 0.05) while, Codinaea acaciae and Saitozyma podzolica species were negatively correlated with tobacco nicotine (r ≤ - 0.51, p < 0.05). The present study provides a preliminary basis for utilizing fungal species in soils to improve the chemical quality of tobacco in the studied area.


Assuntos
Micobioma/genética , Nicotiana/química , Folhas de Planta/química , Microbiologia do Solo , Gênero de Fungos Humicola/química , Fungos/química , Fungos/genética , Mortierella/química , Folhas de Planta/microbiologia , Potássio/metabolismo , Nicotiana/microbiologia , Produtos do Tabaco/análise
14.
Int J Phytoremediation ; 24(6): 600-609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34388062

RESUMO

Straw residues, as one of the conservation farming practices, are being strongly encouraged in China, including some cadmium-polluted areas. Nowadays, a portion of this plant residue is promoted to be removed for reducing excess metal(loid) in the soil and to be used for bioenergy production. Nevertheless, the possible influences of contaminated straw or the burial of its derived biochars on Cd accumulation in soil and data based on health risk assessment associated with different status and extent of soil contamination were relatively unknown. Thus it is important to provide a more systematical understanding of contaminated straw burial at specific contamination zones, which may provide useful guidance for straw utilization. In this study, we harvested two genotypes of rice straw from 6 contaminated levels among three soil types to comprehensively study the total Cd contents in straws and its derived biochars and correlate the sets of straw characteristics and Cd contents in three different contamination zones. The total Cd concentration in straws grew at a steady rate relatively with increasing soil Cd contamination levels, compared to those in biochars which performed more fluctuate due to the strong burning. According to correlational analyses, three-way ANOVA showed that the moisture, ash, volatile and fixed carbon were all significantly affected by straw CdTotal contents (p < 0.001). Such relationships were attributed to guide straw removal portions for gasification. Meanwhile, there was a significant correlation between straw Cd concentration and soil types (p < 0.001), confirming that it might be worth determining soil remediation by straw removal according to site-specific farmland conditions. This work will help to assess efforts toward predicting Cd concentration in the paddy soils related to kinds of contamination status and would also give useful guidance to make sustainable management strategies for crop straws in polluted regions.Novelty statement This work provided data on how much rice straw is needed to remove to ensure the minimal amount to control soil contamination and reduce costs according to site-specific conditions and soil Cd contamination status. It also explains the correlations between straw characteristics related to bioenergy use and soil conditions which would give guidance to balance using crop straw for increased bioenergy production and the need to also protect, preserve, and enhance soil resources.


Assuntos
Oryza , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Carvão Vegetal/química , Genótipo , Solo/química , Poluentes do Solo/análise
15.
J Environ Manage ; 303: 114148, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838377

RESUMO

In the present study, the viability of using manure (M), lime (L), and sepiolite (S) alone and in combinations (M/L, M/S, and M/L/S) was evaluated for the remediation of a red paddy soil artificially contaminated with three levels of cadmium (Cd- 0.6, 1, and 2 mg kg-1 soil). Experiments were performed in columns (to evaluate Cd leaching) and pots by growing rice plants (to study Cd accumulation in plants). Before their application, the tested amendments were thoroughly characterized using SEM, EDS and FT-IR spectroscopy. The leaching experiment indicates that the application of L or M/L significantly improved the pH of soil leachate collected at different time intervals. However, the use of M/L/S was found better in decreasing the Cd contents in collected leachate. The use of M/L efficiently decreased the DTPA metal extraction (0.19, 0.41, and 0.55 mg kg-1) as compared to the CK (0.35, 0.63, and 1.13 mg kg-1, respectively). The Cd speciation results depicted a 33% decrease in exchangeable Cd with M/L/S treatment when compared with control (55%). Moreover, the M/L/S treatment was more efficient in lowering the Cd phytoavailability and subsequent accumulation in rice grains (0.05, 0.09, and 0.08 mg kg-1). These findings demonstrate that the use of composite amendments is categorically effective as an in-situ remediation tool to decrease Cd leaching and availability in diverse contaminations.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Solo , Poluentes do Solo/análise , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Sci Total Environ ; 769: 145345, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33736242

RESUMO

To reduce cadmium (Cd) pollution of food chains, screening and breeding of low-Cd-accumulating genotypes have received increasing attention. However, the mechanisms involving Cd tolerance and accumulation are not fully understood. Here, we investigated the physiological responses and metabolomics profiling on two wheat (Triticum aestivum L.) genotypes, a low-Cd-accumulating genotype in grains (Aikang58, AK58) and a high-Cd-accumulating genotype in grains (Zhenmai10, ZM10), in hydroponic culture treated without/with Cd for 7 days. The results showed that AK58 was a Cd tolerant genotype with higher capacity of antioxidant systems in root. In addition, the concentrations of Cd bound to root cell walls were higher in AK58 than ZM10, of which pectin and hemicellulose played important roles in Cd binding. Moreover, subcellular distribution manifested that Cd sequestrated in the vacuoles was another tolerance mechanism in AK58. Simultaneously, metabolomics profiling showed that, in AK58, phenylalanine metabolism, alanine, aspartate and glutamate metabolism, isoquinoline alkaloid biosynthesis, arginine and proline metabolism, arginine biosynthesis and glyoxylate and dicarboxylate metabolism are highly related to antioxidant defense system, cell wall biosynthesis and metabolisms of phytochelatins together with other organic ligands, playing crucial roles in Cd tolerance and Cd fixation mechanisms in roots. These novel findings should be useful for molecular assisted screening and breeding of low Cd-accumulating genotypes for wheat crop.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Genótipo , Metabolômica , Melhoramento Vegetal , Raízes de Plantas/química , Poluentes do Solo/análise , Triticum/genética
17.
Environ Sci Pollut Res Int ; 28(28): 37716-37726, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33723773

RESUMO

Cadmium (Cd) pollution in cultivated soils has posed a great risk to human health through the soil-plant-human pathway. Therefore, it is important to derive soil thresholds for the low-Cd accumulating genotype of wheat (Triticum aestivum L.) to promote its application in agricultural production on Cd-contaminated sites. Here, a pot experiment was performed to explore the transfer characteristics of Cd in two contrasting wheat genotypes at three different soils and the effect of soil parameters together with soil safety Cd thresholds derivation. Generally, grain Cd highly accumulating wheat genotype (Zhenmai10, HT) showed higher Cd accumulation in grains than grain Cd weakly accumulating wheat genotype (Aikang58, LT). Stepwise multiple linear regression (SMLR) analysis (log-transformed Freundlich-type) indicated that Cd accumulation in wheat grains was strongly related to soil total Cd concentration and pH for both genotypes (R2 = 0.907*** for HT; R2 = 0.910*** for LT). Combining the simple regression model of soil-plant transfer system with the risk assessment method based on human health, soil total Cd thresholds for three soils were calculated with the values of 0.62, 0.82, and 0.62 mg kg-1 in LT genotype and 0.31, 0.77, and 0.49 mg kg-1 in HT genotype. Therefore, we suggested that when deducing soil thresholds, the ability of wheat genotypes to accumulate Cd and soil properties should be considered because of the large differences in soil thresholds between different genotypes and types of soils. We believe our results will promote the application of low-Cd wheat genotypes to agricultural production, thereby ensuring the safety of their products.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Inocuidade dos Alimentos , Humanos , Solo , Poluentes do Solo/análise , Triticum
18.
Environ Sci Pollut Res Int ; 28(20): 26112-26123, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33483930

RESUMO

Fluorosis is a chronic systemic disease induced by excessive intake of fluoride (F-). Fluoride in water and foods has been widely concerned, while limited reports focused on F- in soils and tobacco leaves which could transfer to human body. In the present study, we mainly focused on the distribution of F- in tobacco-planted soils and tobacco leaves in Bijie City, Southwest China. Soil total F- concentration ranged from 443.7 to 5,979 mg kg-1. The level of F- extracted by water (FH2O) and KCl solution (FKCl) ranged from 0.58 to 25.55 mg kg-1 and from 0.67 to 21.35 mg kg-1, respectively; hence, FH2O could be used to indicate the bioavailability of soil F- in the study area. The sequential extraction of F- show that the residual and exchangeable F- was the highest (97.44-99.73% of the total F-) and lowest (less than 0.25%) fractions of collected soil samples, respectively. According to the distribution of total and soluble F- in the soil profiles at the depth of 0-100 cm, soils were polluted mainly at the 0-40 cm layer. The soluble F- content in rhizosphere soils were higher than that in bulk soils, and tobacco leaves accumulated F- ranged from 16.73 to 111.3 mg kg-1 which was affected by soil pH and Ca content. Tobacco leaves F- level was related to the maturity of the leaves, with the F-content of medium leaves being higher than that of top leaves. More attention should be paid to tobacco with high F- content since F- pollution may transfer to human body via tobacco smoking.


Assuntos
Poluentes do Solo , Solo , China , Fluoretos/análise , Humanos , Folhas de Planta/química , Poluentes do Solo/análise , Nicotiana
19.
Front Microbiol ; 12: 785110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185815

RESUMO

Continuous cropping obstacle (CCO) is a common phenomenon in agricultural production and extremely threatens the sustainable development of agriculture. To clarify the potential keystone factors causing tobacco (Nicotiana tabacum L.) CCO, tobacco plants, topsoil, and rhizosphere soil were sampled from the fields with no, slight, and severe tobacco disease in Dali and Yuxi of Yunnan province in China. The physicochemical properties of topsoil and rhizosphere soil, the phenolic acids (PAs) contents in rhizosphere soil, and elemental contents in topsoil, rhizosphere soil, and tobacco plants were analyzed. Microbial diversity in rhizosphere soil was determined by the metagenomic sequencing method. The results showed that soil pH, texture, cation exchange capacity, organic matter, TC, TN, and available K contents showed a significant difference (p < 0.05) in soil physicochemical properties. There was a deficiency of B, K, Mg, and Mn contents in soil and/or tobacco plants. The contents of PAs, especially syringic acid in rhizosphere soil, varied significantly among the three sampling groups (p < 0.05). Meanwhile, microbial communities and functional genes changed from beneficial to harmful, showing an intimate correlation with soil pH and syringic acid content. It can be concluded that tobacco CCO could be allocated to the imbalance of soil micro-ecology, which possessed a regional feature at the two sampling sites.

20.
Sci China Life Sci ; 64(5): 720-738, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32949368

RESUMO

It is well established that an abnormal tetrahydrofolate (THF) cycle causes the accumulation of hydrogen peroxide (H2O2) and leaf senescence, however, the molecular mechanism underlying this relationship remains largely unknown. Here, we reported a novel rice tetrahydrofolate cycle mutant, which exhibited H2O2 accumulation and early leaf senescence phenotypes. Map-based cloning revealed that HPA1 encodes a tetrahydrofolate deformylase, and its deficiency led to the accumulation of tetrahydrofolate, 5-formyl tetrahydrofolate and 10-formyl tetrahydrofolate, in contrast, a decrease in 5,10-methenyl-tetrahydrofolate. The expression of tetrahydrofolate cycle-associated genes encoding serine hydroxymethyl transferase, glycine decarboxylase and 5-formyl tetrahydrofolate cycloligase was significantly down-regulated. In addition, the accumulation of H2O2 in hpa1 was not caused by elevated glycolate oxidation. Proteomics and enzyme activity analyses further revealed that mitochondria oxidative phosphorylation complex I and complex V were differentially expressed in hpa1, which was consistent with the H2O2 accumulation in hpa1. In a further feeding assay with exogenous glutathione (GSH), a non-enzymatic antioxidant that consumes H2O2, the H2O2 accumulation and leaf senescence phenotypes of hpa1 were obviously compensated. Taken together, our findings suggest that the accumulation of H2O2 in hpa1 may be mediated by an altered folate status and redox homeostasis, subsequently triggering leaf senescence.


Assuntos
Ácido Fólico/metabolismo , Formiato-Tetra-Hidrofolato Ligase/metabolismo , Homeostase , Peróxido de Hidrogênio/metabolismo , Oryza , Folhas de Planta/metabolismo , Senescência Vegetal , Antioxidantes , Genes de Plantas , Glutationa , Mutação , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA