Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
iScience ; 27(5): 109693, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38689642

RESUMO

The USP7 deubiquitinase regulates proteins involved in the cell cycle, DNA repair, and epigenetics and has been implicated in cancer progression. USP7 inhibition has been pursued for the development of anti-cancer therapies. Here, we describe the discovery of potent and specific USP7 inhibitors exemplified by FX1-5303. FX1-5303 was used as a chemical probe to study the USP7-mediated regulation of p53 signaling in cells. It demonstrates mechanistic differences compared to MDM2 antagonists, a related class of anti-tumor agents that act along the same pathway. FX1-5303 synergizes with the clinically approved BCL2 inhibitor venetoclax in acute myeloid leukemia (AML) cell lines and ex vivo patient samples and leads to strong tumor growth inhibition in in vivo mouse xenograft models of multiple myeloma and AML. This work introduces new USP7 inhibitors, differentiates their mechanism of action from MDM2 inhibition, and identifies specific opportunities for their use in the treatment of AML.

2.
iScience ; 27(5): 109741, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38706871

RESUMO

Pancreatic cancer (PC) is a lethal disease and associated with metabolism dysregulation. Nogo-B is related to multiple metabolic related diseases and types of cancers. However, the role of Nogo-B in PC remains unknown. In vitro, we showed that cell viability and migration was largely reduced in Nogo-B knockout or knockdown cells, while enhanced by Nogo-B overexpression. Consistently, orthotopic tumor and metastasis was reduced in global Nogo knockout mice. Furthermore, we indicated that glucose enhanced cell proliferation was associated to the elevation expression of Nogo-B and nuclear factor κB (NF-κB). While, NF-κB, glucose transporter type 1 (GLUT1) and sterol regulatory element-binding protein 1 (SREBP1) expression was reduced in Nogo-B deficiency cells. In addition, we showed that GLUT1 and SREBP1 was downstream target of NF-κB. Therefore, we demonstrated that Nogo deficiency inhibited PC progression is regulated by the NF-κB/GLUT1 and SREBP1 pathways, and suggested that Nogo-B may be a target for PC therapy.

3.
Oncol Lett ; 28(1): 295, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38737975

RESUMO

Apolipoprotein A-I (APOA1) performs different roles in different subtypes of breast cancer. It is hypothesized to function as a tumor suppressor in basal-like breast cancer (BLBC). However, the specific role of APOA1 in BLBC and its underlying mechanisms remain unknown. The findings of the present study demonstrated a positive correlation between the expression level of APOA1 and the overall survival of patients with BLBC. Ectopic expression of APOA1 effectively inhibits the proliferation and metastasis of BLBC cells in vitro, and these effects are closely related to DNA methylation. To the best of our knowledge, the present study is the first to report increased methylation of the promoter region and decreased methylation of the structural genes of APOA1 in BLBC cells. These alterations resulted in the downregulation of APOA1 expression and suppression of BLBC tumor growth. Collectively, the results of the present study suggested that APOA1 mRNA expression is negatively regulated by DNA methylation in BLBC. Therefore, low expression of APOA1 may be a potential risk biomarker to predict survival in patients with BLBC.

4.
Comput Struct Biotechnol J ; 23: 2057-2066, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38783901

RESUMO

Intronic polyadenylation (IPA) refers to a particular type of alternative polyadenylation where a gene makes use of a polyadenylation site located within its introns. Aberrant IPA events have been observed in various types of cancer. IPA can produce noncoding transcripts or truncated protein-coding transcripts with altered coding sequences in the resulting protein product. Therefore, IPA events hold the potential to act as a reservoir of tumor neoantigens. Here, we developed a computational method termed DIPAN, which incorporates IPA detection, protein fragmentation, and MHC binding prediction to predict IPA-derived neoantigens. Utilizing RNA-seq from breast cancer cell lines and ovarian cancer clinical samples, we demonstrated the significant contribution of IPA events to the neoantigen repertoire. Through mass spectrometry immunopeptidome analysis, we further illustrated the processing and presentation of IPA-derived neoantigens on the surface of cancer cells. While most IPA-derived neoantigens are sample-specific, shared neoantigens were identified in both cancer cell lines and clinical samples. Furthermore, we demonstrated an association between IPA-derived neoantigen burden and overall survival in cancer patients.

5.
Res Sq ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38659849

RESUMO

Carbon monoxide (CO) is an endogenous produced molecule and has shown efficacy in animal models of inflammation, organ injury, colitis and cancer metastasis. Because of its gaseous nature, there is a need for developing efficient CO delivery approaches, especially those capable of targeted delivery. In this study, we aim to take advantage of a previously reported approach of enrichment-triggered prodrug activation to achieve targeted delivery by targeting the folate receptor. The general idea is to exploit folate receptor-mediated enrichment as a way to accelerate a biomolecular Diels-Alder reaction for prodrug activation. In doing so, we first need to find ways to tune the reaction kinetics in order to ensure minimal rection without enrichment and optimal activation upon enrichment. In this feasibility study, we synthesized two diene-dienophile pairs and studied their reaction kinetics and ability to target the folate receptor. We found that folate conjugation significantly affects the reaction kinetics of the original diene-dienophile pairs. Such information will be very useful in future designs of similar targeted approaches of CO delivery.

6.
Cell Biol Toxicol ; 40(1): 23, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630355

RESUMO

Cytosolic thiouridylase 2 (CTU2) is an enzyme modifying transfer RNAs post-transcriptionally, which has been implicated in breast cancer and melanoma development. And we found CTU2 participated in hepatocellular carcinoma (HCC) progression here. HepG2 cells as well as xenograft nude mice model were employed to investigate the role of CTU2 in HCC development in vitro and in vivo respectively. Further, we defined CTU2 as a Liver X receptor (LXR) targeted gene, with a typical LXR element in the CTU2 promoter. CTU2 expression was activated by LXR agonist and depressed by LXR knockout. Interestingly, we also found CTU2 took part in lipogenesis by directly enhancing the synthesis of lipogenic proteins, which provided a novel mechanism for LXR regulating lipid synthesis. Meanwhile, lipogenesis was active during cell proliferation, particularly in tumor cells. Reduction of CTU2 expression was related to reduced tumor burden and synergized anti-tumor effect of LXR ligands by inducing tumor cell apoptosis and inhibiting cell proliferation. Taken together, our study identified CTU2 as an LXR target gene. Inhibition of CTU2 expression could enhance the anti-tumor effect of LXR ligand in HCC, identifying CTU2 as a promising target for HCC treatment and providing a novel strategy for the application of LXR agonists in anti-tumor effect.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores X do Fígado , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama , Carcinoma Hepatocelular/genética , Modelos Animais de Doenças , Neoplasias Hepáticas/genética , Receptores X do Fígado/genética , Camundongos Nus
7.
Phytomedicine ; 128: 155489, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569295

RESUMO

BACKGROUND AND PURPOSE: Atherosclerosis is the primary pathological basis of cardiovascular disease. Ferroptosis is a regulated form of cell death, a process of lipid peroxidation driven by iron, which can initiate and promote atherosclerosis. STAT6 is a signal transducer that shows a potential role in regulating ferroptosis, but, the exact role in ferroptosis during atherogenesis remains unclear. The Traditional Chinese Medicine Maijitong granule (MJT) is used for treating cardiovascular disease and shows a potential inhibitory effect on ferroptosis. However, the antiatherogenic effect and the underlying mechanism remain unclear. In this study, we determined the role of STAT6 in ferroptosis during atherogenesis, investigated the antiatherogenic effect of MJT, and determined whether its antiatherogenic effect was dependent on the inhibition of ferroptosis. METHODS: 8-week-old male LDLR-/- mice were fed a high-fat diet (HFD) at 1st and 10th week, respectively, to assess the preventive and therapeutic effects of MJT on atherosclerosis and ferroptosis. Simultaneously, the anti-ferroptotic effects and mechanism of MJT were determined by evaluating the expression of genes responsible for lipid peroxidation and iron metabolism. Subsequently, we reanalyzed microarray data in the GSE28117 obtained from cells after STAT6 knockdown or overexpression and analyzed the correlation between STAT6 and ferroptosis. Finally, the STAT6-/- mice were fed HFD and injected with AAV-PCSK9 to validate the role of STAT6 in ferroptosis during atherogenesis and revealed the antiatherogenic and anti-ferroptotic effect of MJT. RESULTS: MJT attenuated atherosclerosis by reducing plaque lesion area and enhancing plaque stability in both preventive and therapeutic groups. MJT reduced inflammation via suppressing inflammatory cytokines and inhibited foam cell formation by lowering the LDL level and promoting ABCA1/G1-mediated lipid efflux. MJT ameliorated the ferroptosis by reducing lipid peroxidation and iron dysregulation during atherogenesis. Mechanistically, STAT6 negatively regulated ferroptosis by transcriptionally suppressing SOCS1/p53 and DMT1 pathways. MJT suppressed the DMT1 and SOCS1/p53 via stimulating STAT6 phosphorylation. In addition, STAT6 knockout exacerbated atherosclerosis and ferroptosis, which abolished the antiatherogenic and anti-ferroptotic effects of MJT. CONCLUSION: STAT6 acts as a negative regulator of ferroptosis and atherosclerosis via transcriptionally suppressing DMT1 and SOCS1 expression and MJT attenuates atherosclerosis and ferroptosis by activating the STAT6-mediated inhibition of DMT1 and SOCS1/p53 pathways, which indicated that STAT6 acts a novel promising therapeutic target to ameliorate atherosclerosis by inhibiting ferroptosis and MJT can serve as a new therapy for atherosclerosis treatment.


Assuntos
Aterosclerose , Proteínas de Transporte de Cátions , Medicamentos de Ervas Chinesas , Ferroptose , Fator de Transcrição STAT6 , Proteína 1 Supressora da Sinalização de Citocina , Animais , Ferroptose/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Fator de Transcrição STAT6/metabolismo , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores de LDL/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Cell Biol Toxicol ; 40(1): 10, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319449

RESUMO

Lung cancer is the most common cause of cancer-related deaths worldwide and is caused by multiple factors, including high-fat diet (HFD). CD36, a fatty acid receptor, is closely associated with metabolism-related diseases, including cardiovascular disease and cancer. However, the role of CD36 in HFD-accelerated non-small-cell lung cancer (NSCLC) is unclear. In vivo, we fed C57BL/6J wild-type (WT) and CD36 knockout (CD36-/-) mice normal chow or HFD in the presence or absence of pitavastatin 2 weeks before subcutaneous injection of LLC1 cells. In vitro, A549 and NCI-H520 cells were treated with free fatty acids (FFAs) to mimic HFD situation for exploration the underlying mechanisms. We found that HFD promoted LLC1 tumor growth in vivo and that FFAs increased cell proliferation and migration in A549 and NCI-H520 cells. The enhanced cell or tumor growth was inhibited by the lipid-lowering agent pitavastatin, which reduced lipid accumulation. More importantly, we found that plasma soluble CD36 (sCD36) levels were higher in NSCLC patients than those in healthy ones. Compared to that in WT mice, the proliferation of LLC1 cells in CD36-/- mice was largely suppressed, which was further repressed by pitavastatin in HFD group. At the molecular level, we found that CD36 inhibition, either with pitavastatin or plasmid, reduced proliferation- and migration-related protein expression through the AKT/mTOR pathway. Taken together, we demonstrate that inhibition of CD36 expression by pitavastatin or other inhibitors may be a viable strategy for NSCLC treatment.


Assuntos
Antígenos CD36 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ácidos Graxos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt , Antígenos CD36/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-38326979

RESUMO

BACKGROUND AND AIM: The study aims to evaluate the feasibility of body mass index (BMI)-based individualized small bowel preparation for computed tomography enterography (CTE). METHODS: In this prospective randomized controlled study, patients undergoing CTE were randomly assigned to the individualized group or standardized group. Those in individualized group were given different volumes of mannitol solution based on BMI (1000 mL for patients with BMI < 18.5 kg/m2 , 1500 mL for patients with 18.5 kg/m2  ≤ BMI < 25 kg/m2 and 2000 mL for patients with BMI ≥ 25 kg/m2 ) while patients in the standardized group were all asked to consume 1500-mL mannitol solution. CTE images were reviewed by two experienced radiologists blindly. Each segment of the small bowel was assessed for small bowel image quality and disease detection rates. Patients were invited to record a diary regarding adverse events and acceptance. RESULTS: A total of 203 patients were enrolled and randomly divided into two groups. For patients with BMI < 18.5 kg/m2 , 1000-mL mannitol solution permitted a significantly lower rate of flatulence (P = 0.045) and defecating frequency (P = 0.011) as well as higher acceptance score (P = 0.015), but did not affect bowel image quality and diseases detection compared with conventional dosage. For patients with BMI ≥ 25 kg/m2 , 2000-mL mannitol solution provided better overall image quality (P = 0.033) but comparable rates of adverse events and patients' acceptance compared with conventional dosage. CONCLUSIONS: Individualized bowel preparation could achieve both satisfactory image quality and patients' acceptance thus might be an acceptable alternative in CTE.

10.
Genome Med ; 16(1): 30, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347596

RESUMO

BACKGROUND: Biological processes are controlled by groups of genes acting in concert. Investigating gene-gene interactions within different cell types can help researchers understand the regulatory mechanisms behind human complex diseases, such as tumors. METHODS: We collected extensive single-cell RNA-seq data from tumors, involving 563 patients with 44 different tumor types. Through our analysis, we identified various cell types in tumors and created an atlas of different immune cell subsets across different tumor types. Using the SCINET method, we reconstructed interactome networks specific to different cell types. Diverse functional data was then integrated to gain biological insights into the networks, including somatic mutation patterns and gene functional annotation. Additionally, genes with prognostic relevance within the networks were also identified. We also examined cell-cell communications to investigate how gene interactions modulate cell-cell interactions. RESULTS: We developed a data portal called CellNetdb for researchers to study cell-type-specific interactome networks. Our findings indicate that these networks can be used to identify genes with topological specificity in different cell types. We also found that prognostic genes can deconvolved into cell types through analyzing network connectivity. Additionally, we identified commonalities and differences in cell-type-specific networks across different tumor types. Our results suggest that these networks can be used to prioritize risk genes. CONCLUSIONS: This study presented CellNetdb, a comprehensive repository featuring an atlas of cell-type-specific interactome networks across 44 human tumor types. The findings underscore the utility of these networks in delineating the intricacies of tumor microenvironments and advancing the understanding of molecular mechanisms underpinning human tumors.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Redes Reguladoras de Genes , Microambiente Tumoral/genética
11.
Gynecol Obstet Invest ; 89(1): 1-10, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38081153

RESUMO

OBJECTIVE: This meta-analysis aimed to comprehensively evaluate the diagnostic use of erythrocyte membrane protein band 4.1like3 (EPB41L3) methylation detection in cervical cancer (CC) and its precancerous lesions. METHODS: CNKI, Wanfang, Cochrane Library, PubMed, and Ovid databases were searched using a combination of subject headings and free words. Pertinent data were retrieved after screening for inclusion and exclusion criteria, and the quality of the included studies was evaluated using QUADAS-2 criteria. The appropriate software was used for heterogeneity analysis and combined effect size calculation. Additionally, sensitivity analysis was used to evaluate the robustness of the combined results, and meta-regression and subgroup analysis were conducted to investigate the origins of heterogeneity. RESULTS: This meta-analysis included six studies, including 525 healthy individuals, 182 cervical intraepithelial neoplasia 1 (CIN1) samples, 182 CIN2 samples, 281 CIN3 samples, and 226 CC samples. EPB41L3 methylation detection for CIN2 and above lesions demonstrated combined sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR), and the area under the curve of the comprehensive receiver operating characteristic curve of 0.67, 0.76, 3.19, 0.41, 7.60, and 0.80, respectively; CIN3 and above lesions demonstrated these evaluations at 0.73, 0.84, 4.35, 0.33, 23.94, and 0.90, respectively. Meta-regression analysis revealed that the population, time, sample type, detection method, literature quality, and sample size were not significant sources of heterogeneity affecting the combined diagnostic efficacy of CIN2 and above lesions (p > 0.05). Subgroup analysis revealed higher combined diagnostic values of CIN2 and above lesions in retrospective studies, tissue samples, and Chinese populations, with DORs of 41.03, 14.59, and 13.70, respectively. CONCLUSION: EPB41L3 methylation demonstrated a relatively low diagnostic performance in CC and precancerous lesions. However, it merits further investigation as a potential biomarker. Integrating it with multiple gene detection, human papillomavirus testing, and ThinPrep liquid-based cytology test examination is recommended to explore improved diagnostic strategies for CC and its precancerous lesions.


Assuntos
Infecções por Papillomavirus , Lesões Pré-Cancerosas , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Estudos Retrospectivos , Metilação de DNA , Displasia do Colo do Útero/patologia , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/genética , Infecções por Papillomavirus/diagnóstico , Detecção Precoce de Câncer , Proteínas dos Microfilamentos/genética
12.
Gastrointest Endosc ; 99(2): 155-165.e4, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37820930

RESUMO

BACKGROUND AND AIMS: The lack of tissue traction and instrument dexterity to allow for adequate visualization and effective dissection were the main issues in performing endoscopic submucosal dissection (ESD). Robot-assisted systems may provide advantages. In this study we developed a novel transendoscopic telerobotic system and evaluated its performance in ESD. METHODS: A miniature dual-arm robotic endoscopic assistant for minimally invasive surgery (DREAMS) was developed. The DREAMS system contained the current smallest robotic ESD instruments and was compatible with the commercially available dual-channel endoscope. After the system was established, a prospective randomized controlled study was conducted to validate the performance of the DREAMS-assisted ESD in terms of efficacy, safety, and workload by comparing it with the conventional technique. RESULTS: Two robotic instruments can achieve safe collaboration and provide sufficient visualization and efficient dissection during ESD. Forty ESDs in the stomach and esophagus of 8 pigs were completed by DREAMS-assisted ESD or conventional ESD. Submucosal dissection time was comparable between the 2 techniques, but DREAMS-assisted ESD demonstrated a significantly lower muscular injury rate (15% vs 50%, P = .018) and workload scores (22.30 vs 32.45, P < .001). In the subgroup analysis of esophageal ESD, DREAMS-assisted ESD showed significantly improved submucosal dissection time (6.45 vs 16.37 minutes, P = .002), muscular injury rate (25% vs 87.5%, P = .041), and workload (21.13 vs 40.63, P = .001). CONCLUSIONS: We developed a novel transendoscopic telerobotic system, named DREAMS. The safety profile and technical feasibility of ESD were significantly improved with the assistance of the DREAMS system, especially in the narrower esophageal lumen.


Assuntos
Ressecção Endoscópica de Mucosa , Procedimentos Cirúrgicos Robóticos , Animais , Ressecção Endoscópica de Mucosa/instrumentação , Ressecção Endoscópica de Mucosa/métodos , Esôfago/cirurgia , Estudos Prospectivos , Estômago/cirurgia , Suínos , Resultado do Tratamento , Procedimentos Cirúrgicos Robóticos/instrumentação , Procedimentos Cirúrgicos Robóticos/métodos
13.
J Ethnopharmacol ; 321: 117292, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806537

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine views kidney shortage as a significant contributor to the aetiology of Parkinson's disease (PD), a neurodegenerative condition that is closely linked to aging. In clinical, patients with Parkinson's disease are often treated with Testudinis Carapax et Plastrum (Plastrum Testudinis, PT), a traditional Chinese medication that tonifies the kidney. Previous research has demonstrated that ethyl stearate (PubChem CID: 8122), an active component of Plastrum Testudinis Extracted with ethyl acetate (PTE), may encourage neural stem cells (NSCs) development into dopaminergic (DAergic) neurons. However, the effectiveness and mechanism of cotransplantation of ethyl stearate and NSCs in treating PD model rats still require further investigation. AIM OF THE STUDY: PD is a neurodegenerative condition marked by the loss and degradation of dopaminergic neurons in the substantia nigra of the midbrain. Synaptic damage is also a critical pathology in PD. Because of their self-renewal, minimal immunogenicity, and capacity to differentiate into dopaminergic (DAergic) neurons, NSCs are a prospective treatment option for Parkinson's disease cell transplantation therapy. However, encouraging transplanted NSCs to differentiate into dopaminergic neurons and enhancing synaptic plasticity in vivo remains a significant challenge in improving the efficacy of NSCs transplantation for PD. This investigation seeks to examine the efficacy of cotransplantation of NSCs and ethyl stearate in PD model rats and its mechanism related to synaptic plasticity. MATERIALS AND METHODS: On 6-hydroxydopamine-induced PD model rats, we performed NSCs transplantation therapy and cotransplantation therapy involving ethyl stearate and NSCs. Rotating behavior induced by apomorphine (APO) and pole climbing tests were used to evaluate behavioral changes. Using a variety of methods, including Western blotting (WB), immunofluorescence analysis, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction (qRT-PCR), we examined the function and potential molecular mechanisms of ethyl stearate in combined NSCs transplantation therapy. RESULTS: In the rat PD model, cotransplantation of ethyl stearate with NSCs dramatically reduced motor dysfunction, restored TH protein levels, and boosted dopamine levels in the striatum, according to our findings. Furthermore, the expression levels of SYN1 and PSD95, markers of synaptic plasticity, and BDNF, closely related to synaptic plasticity, were significantly increased. Cotransplantation with ethyl stearate and NSCs also increased the expression levels of Dopamine Receptor D1 (Drd1), an important receptor in the dopamine neural circuit, accompanied by an increase in MMP9 levels, ERK1/2 phosphorylation levels, and c-fos protein levels. CONCLUSIONS: According to the results of our investigation, cotransplantation of ethyl stearate and NSCs significantly improves the condition of PD model rats. We found that cotransplantation of ethyl stearate and NSCs may promote the expression of MMP9 by regulating the Drd1-ERK-AP-1 pathway, thus improving synaptic plasticity after NSCs transplantation. These findings provide new experimental support for the treatment of PD with the kidney tonifying Chinese medicine Plastrum Testudinis and suggest a potential therapeutic strategy for PD based on cotransplantation therapy.


Assuntos
Células-Tronco Neurais , Doença de Parkinson , Humanos , Ratos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fator de Transcrição AP-1/metabolismo , Sistema de Sinalização das MAP Quinases , Ratos Sprague-Dawley , Células-Tronco Neurais/metabolismo , Neurônios Dopaminérgicos/patologia , Modelos Animais de Doenças
14.
Int Immunopharmacol ; 125(Pt B): 111198, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37952482

RESUMO

Vascular calcification is an independent risk factor for cardiovascular disease. However, there is still a lack of adequate treatment. This study aimed to examine the potential of (E)-1-(5-(2-(4-fluorobenzyloxy)Styryl)-4,6-dimethoxyphenyl)-3-methyl-4,5-dihydro-1H-pyrazole-1-yl) ethyl ketone (Ptd-1) to alleviate vascular calcification. ApoE-deficient mice were fed a high-fat diet for 12/16 weeks to induce intimal calcification, and wild-type mice were induced with a combination of nicotine and vitamin D3 to induce medial calcification. Human aortic smooth muscle cells (HASMCs) and aortic osteogenic differentiation were induced in vitro with phosphate. In the mouse model of atherosclerosis, Ptd-1 significantly ameliorated the progression of atherosclerosis and intimal calcification, and there were significant reductions in lipid deposition and calcium salt deposition in the aorta and aortic root. In addition, Ptd-1 significantly improved medial calcification in vivo and osteogenic differentiation in vitro. Mechanistically, Ptd-1 reduced the levels of the inflammatory factors IL-1ß, TNFα and IL-6 in vivo and in vitro. Furthermore, we demonstrated that Ptd-1 could attenuate the expression of p-ERK1/2 and ß-catenin, and that the levels of inflammatory factors were elevated in the presence of ERK1/2 and ß-catenin agonists. Interestingly, we determined that activation of the ERK1/2 pathway promoted ß-catenin expression, which further regulated the IL-6/STAT3 signaling pathway. Ptd-1 blocked ERK1/2 signaling, leading to decreased expression of inflammatory factors, which in turn improved vascular calcification. Taken together, our study reveals that Ptd-1 ameliorates vascular calcification by regulating the production of inflammatory factors, providing new ideas for the treatment of vascular calcification.


Assuntos
Aterosclerose , Calcificação Vascular , Humanos , Animais , Camundongos , beta Catenina , Interleucina-6 , Osteogênese , Calcificação Vascular/tratamento farmacológico , Inflamação/tratamento farmacológico , Aterosclerose/tratamento farmacológico
15.
Int Immunopharmacol ; 125(Pt A): 111168, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939513

RESUMO

Triple negative breast cancer (TNBC) is regarded as one of the most aggressive forms of breast cancer. Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) has been used as a therapeutic agent for Niemann-Pick disease Type C (NPC). However, the exact actions and mechanisms of HP-ß-CD on TNBC are not fully understood. To examine the influence of HP-ß-CD on the proliferation and migration of TNBC cell lines, particularly 4T1 and MDA-MB-231 cells, a range of assays, including MTT, scratch, cell cycle, and clonal formation assays, were performed. Furthermore, the effectiveness of HP-ß-CD in the treatment of TNBC was assessed in vivo using a 4T1 tumor-bearing BALB/c mouse model. We demonstrated the anti-proliferation and anti-migration effect of HP-ß-CD on TNBC both in vitro and in vivo. High cholesterol diet can attenuate HP-ß-CD-inhibited TNBC growth. Mechanistically, HP-ß-CD reduced tumor cholesterol levels by increasing ABCA1 and ABCG1-mediated cholesterol reverse transport. HP-ß-CD promoted the infiltration of T cells into the tumor microenvironment (TME) and improved exhaustion of CD8+ T cells via reducing immunological checkpoint molecules expression. Additionally, HP-ß-CD inhibited the recruitment of tumor associated macrophages to the TME via reducing CCL2-p38MAPK-NF-κB axis. HP-ß-CD also inhibited the epithelial mesenchymal transition (EMT) of TNBC cells mediated by the TGF-ß signaling pathway. In summary, our study suggests that HP-ß-CD effectively inhibited the proliferation and metastasis of TNBC, highlighting HP-ß-CD may hold promise as a potential antitumor drug.


Assuntos
Neoplasias de Mama Triplo Negativas , Camundongos , Animais , Humanos , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Linfócitos T CD8-Positivos/metabolismo , NF-kappa B , Colesterol/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Movimento Celular , Microambiente Tumoral
16.
J Pharmacol Sci ; 153(1): 46-54, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37524454

RESUMO

Premature ovarian insufficiency (POI) is a clinical syndrome that declines ovarian function in women. Berberine (BBR) is a compound with anti-inflammatory, antioxidant, and anti-apoptotic activities. However, the role of BBR on POI is still unknown. In this study, we investigated the role of BBR on ovarian function decline by establishing a POI mouse model using cyclophosphamide (CTX) and busulfan (BU). Our results showed that POI was attenuated by BBR, which was evidenced by enhanced body weight and ovarian weight, improved morphology of ovary, increased the number of healthy follicles, decreased the production of atretic follicles and restored serum hormone levels, including estradiol, anti-Müllerian hormone and follicle-stimulating hormone. In addition, we showed that germ cell function markers, mouse vasa homologue (MVH) and octamer-binding transcription factor 4 (OCT4) were enhanced by BBR, at both protein and mRNA levels. Furthermore, our results revealed that BBR inhibited inflammation and oxidative stress by reducing nuclear factor kappa B (NF-κB) and enhancing nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. Taken together, we demonstrate that BBR can effectively improve ovarian function in POI mice, which is mainly mediated by reducing oxidative stress and inflammatory response. Our study also provides new strategy for POI treatment.


Assuntos
Berberina , Insuficiência Ovariana Primária , Camundongos , Feminino , Humanos , Animais , Bussulfano/efeitos adversos , Berberina/farmacologia , Berberina/uso terapêutico , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/prevenção & controle , Insuficiência Ovariana Primária/metabolismo , Ciclofosfamida/toxicidade , Estradiol
17.
Eur J Med Chem ; 258: 115602, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37406380

RESUMO

Pterostilbene is a demethylated resveratrol derivative with attractive anti-inflammatory, anti-tumor and anti-oxidative stress activities. However, the clinical use of pterostilbene is limited by its poor selectivity and druggability. Heart failure is a leading cause of morbidity and mortality worldwide, which is closely related to enhanced oxidative stress and inflammation. There is an urgent need for new effective therapeutic drugs that can reduce oxidative stress and inflammatory responses. Therefore, we designed and synthesized a series of novel pterostilbene chalcone and dihydropyrazole derivatives with antioxidant and anti-inflammatory activities by the molecular hybridization strategy. The preliminary anti-inflammatory activities and structure-activity relationships of these compounds were evaluated by nitric oxide (NO) inhibitory activity in lipopolysaccharide (LPS)-treated RAW264.7 cells, and compound E1 exhibited the most potent anti-inflammatory activities. Furthermore, pretreatment with compound E1 decreased reactive oxygen species (ROS) generation both in RAW264.7 and H9C2 cells by increasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), as well as downstream antioxidant enzymes superoxide dismutase 1 (SOD1), catalase (CAT) and glutathione peroxidase 1 (GPX1). In addition, compound E1 also significantly inhibited LPS or doxorubicin (DOX)-induced inflammation in both RAW264.7 and H9C2 cells through reducing the expression of inflammatory cytokines by inhibiting nuclear factor-κB (NF-κB) signaling pathway. Moreover, we found that compound E1 improved DOX-induced heart failure by inhibiting inflammation and oxidative stress in mouse model, which is mediated by the potential of antioxidant and anti-inflammatory activities. In conclusion, this study demonstrated the novel pterostilbene dihydropyrazole derivative E1 was identified as a promising agent for heart failure treatment.


Assuntos
Insuficiência Cardíaca , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Antioxidantes/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Transdução de Sinais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Estresse Oxidativo , Anti-Inflamatórios/efeitos adversos , Insuficiência Cardíaca/tratamento farmacológico , Doxorrubicina/farmacologia
18.
Hematology ; 28(1): 2231760, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37417449

RESUMO

BACKGROUND: This study aimed to investigate the potential of a NAD+ metabolism-related lncRNA signature as a reliable prognostic biomarker for acute myeloid leukemia (AML). METHODS: Transcriptome profiles and clinical data of AML patients were obtained from The Cancer Genome Atlas (TCGA) database. NAD+ metabolism-related genes (NMRGs) were identified from the KEGG and Reactome databases. Coexpression analysis was used to screen NAD+ metabolism-related lncRNAs. The NAD+ metabolismrelated lncRNA signature was constructed using univariate analysis, LASSO regression, and multivariate analysis. High- and low-risk groups were compared for survival, tumor mutation burden, immune cell infiltration, and response to immunotherapy. Enrichment analysis explored the biological functions. RESULTS: LINC01679, AC079922.2, TRAF3IP2-AS1, and LINC02465 were identified to construct the risk model. The model exhibited good predictive power and outperformed age and gender as an independent prognostic marker. High-risk patients showed poorer survival, distinct TP53 mutations, and altered immune cell infiltration compared to low-risk patients. Additionally, low-risk patients exhibited greater sensitivity to immunotherapy. Enriched biological functions included leukocyte migration and positive regulation of cytokine production. CONCLUSIONS: The NAD+ metabolism-related lncRNA signature shows promise in predicting clinical outcomes for AML patients.


Assuntos
Leucemia Mieloide Aguda , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , NAD , Leucemia Mieloide Aguda/genética , Prognóstico , Movimento Celular
19.
Cell Death Dis ; 14(6): 364, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328464

RESUMO

T-LAK-originated protein kinase (TOPK), a dual specificity serine/threonine kinase, is up-regulated and related to poor prognosis in many types of cancers. Y-box binding protein 1 (YB1) is a DNA/RNA binding protein and serves important roles in multiple cellular processes. Here, we reported that TOPK and YB1 were both highly expressed in esophageal cancer (EC) and correlated with poor prognosis. TOPK knockout effectively suppressed EC cell proliferation and these effects were reversible by rescuing YB1 expression. Notably, TOPK phosphorylated YB1 at Thr 89 (T89) and Ser 209 (S209) amino acid residues, then the phosphorylated YB1 bound with the promoter of the eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) to activate its transcription. Consequently, the AKT/mTOR signal pathway was activated by up-regulated eEF1A1 protein. Importantly, TOPK inhibitor HI-TOPK-032 suppressed the EC cell proliferation and tumor growth by TOPK/YB1/eEF1A1 signal pathway in vitro and in vivo. Taken together, our study reveals that TOPK and YB1 are essential for the growth of EC, and TOPK inhibitors may be applied to retard cell proliferation in EC. This study highlights the promising therapeutic potential of TOPK as a target for treatment of EC.


Assuntos
Neoplasias Esofágicas , Quinases de Proteína Quinase Ativadas por Mitógeno , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 1 de Elongação de Peptídeos/farmacologia , Transdução de Sinais
20.
Environ Pollut ; 332: 121958, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37286026

RESUMO

Hydrogen sulfide (H2S) is a multifunctional gaseous signaling molecule involved in the regulation of Cr stress responses. In the present study, we combined transcriptomic and physiological analyses to elucidate the mechanism underlying the mitigation of Cr toxicity by H2S in maize (Zea mays L.). We showed that treatment with sodium hydrosulfide (NaHS, a donor of H2S) partially alleviated Cr-induced growth inhibition. However, Cr uptake was not affected. RNA sequencing suggested that H2S regulates the expression of many genes involved in pectin biosynthesis, glutathione metabolism, and redox homeostasis. Under Cr stress, NaHS treatment significantly increased pectin content and pectin methylesterase activity; thus, more Cr was retained in the cell wall. NaHS application also increased the content of glutathione and phytochelatin, which chelate Cr and transport it into vacuoles for sequestration. Furthermore, NaHS treatment mitigated Cr-induced oxidative stress by enhancing the capacity of enzymatic and non-enzymatic antioxidants. Overall, our results strongly support that H2S alleviates Cr toxicity in maize by promoting Cr sequestration and re-establishing redox homeostasis rather than by reducing Cr uptake from the environment.


Assuntos
Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Zea mays/metabolismo , Cromo/toxicidade , Glutationa/metabolismo , Oxirredução , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA