Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
ACS Appl Mater Interfaces ; 16(3): 4071-4088, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194589

RESUMO

Surgical resection remains the most common method of tumor treatment; however, the high recurrence and metastasis after surgery need to be solved urgently. Herein, we report an injectable zwitterionic hydrogel based on "thiol-ene" click chemistry containing doxorubicin (DOX) and a macrophage membrane (MM)-coated 1-methyl-tryptophan (1-MT)-loaded polyamide-amine dendrimer (P-DOX/1MT) for preventing the postoperative recurrence of tumors. The results indicated that P-DOX/1MT@MM exhibited enhanced recognition and uptake of the dendrimer by tumor cells and induced the immunogenic cell death. In the mice tumor model, the P-DOX/1MT@MM-Gel exhibited high therapeutic efficiency, which could significantly reduce the recurrence of the tumor, including suppressing tumor growth, promoting dendritic cell maturation, and increasing tumor-infiltrating cytotoxic T lymphocytes. The mechanism analysis revealed that the hydrogel greatly reduces the side effects to normal tissues and significantly improves its therapeutic effect. 1MT in the hydrogel is released more rapidly, improving the tumor suppressor microenvironment and increasing the tumor cell sensitivity to DOX. Then, the DOX in the P-DOX/1MT@MM effectively eliminatedo the residual tumor cells and exerted enhanced toxicity. In conclusion, this novel injectable hydrogel that combines chemotherapy and immunotherapy has the property of sequential drug release and is a promising strategy for preventing the postoperative recurrence of tumors.


Assuntos
Dendrímeros , Neoplasias , Animais , Camundongos , Hidrogéis/química , Micelas , Dendrímeros/farmacologia , Dendrímeros/uso terapêutico , Neoplasias/tratamento farmacológico , Doxorrubicina/química , Imunoterapia , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Asian J Pharm Sci ; 18(5): 100851, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37915760

RESUMO

Growing evidence suggests that the presence of cancer stem cells (CSCs) is a major challenge in current tumor treatments, especially the transition from non-CSCs to differentiation of CSCs for evading conventional therapies and driving metastasis. Here we propose a therapeutic strategy of synergistic differentiation therapy and phototherapy to induce differentiation of CSCs into mature tumor cells by differentiation inducers and synergistic elimination of them and normal cancer cells through phototherapy. In this work, we synthesized a biomimetic nanoplatform loaded with IR-780 and all-trans retinoic acid (ATRA) via biomineralization. This method can integrate aluminum ions into small-sized protein carriers to form nanoclusters, which undergo responsive degradation under acidic conditions and facilitate deep tumor penetration. With the help of CSC differentiation induced by ATRA, IR-780 inhibited the self-renewal of CSCs and cancer progression by generating hyperthermia and reactive oxygen species in a synergistic manner. Furthermore, ATRA can boost immunogenic cell death induced by phototherapy, thereby strongly causing a systemic anti-tumor immune response and efficiently eliminating CSCs and tumor cells. Taken together, this dual strategy represents a new paradigm of targeted eradication of CSCs and tumors by inducing CSC differentiation, improving photothermal therapy/photodynamic therapy and enhancing antitumor immunity.

3.
ACS Nano ; 17(24): 24883-24900, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-37883579

RESUMO

Surgical resection is the first-line therapy for breast cancer. However, residual tumor cells and the highly immunosuppressive tumor microenvironment (TME) continue to have a serious impact on tumor recurrence and metastasis postresection. Implantation of an in situ hydrogel system postresection has shown to be an effective treatment with great clinical potential. Herein, an injectable zwitterionic hydrogel system was developed for local drug delivery with enhanced immune activation and prevention of tumor recurrence. Driven by electrostatic interactions, poly(sulfobetaine methacrylate) (PSBMA) self-assembles into a hydrogel in saline, achieving low protein adsorption and tunable biodegradability. The chemotherapy drug doxorubicin (DOX) was loaded into copper peroxide nanoparticles (CuO2/DOX), which were coated with macrophage membranes to form tumor-targeting nanoparticles (M/CuO2/DOX). Next, M/CuO2/DOX and the stimulator of interferon genes (STING) agonist 2',3'-cGAMP were coloaded into PSBMA hydrogel (Gel@M/CuO2/DOX/STING). The hydrophilic STING agonist was first released by diffusion from hydrogel to activate the STING pathway and upregulate interferon (IFN) signaling related genes, remodeling the immunosuppressive TME. Then, M/CuO2/DOX targeted the residual tumor cells, combining with DOX-induced DNA damage, immunogenic tumor cell death, and copper death. Hence, this work combines chemodynamic therapy with STING pathway activation in TME, encouraging residual tumor cell death, promoting the maturation of dendritic cells, enhancing tumor-specific CD8+ T cell infiltration, and preventing postoperative recurrence and metastasis.


Assuntos
Hidrogéis , Nanopartículas , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Cobre , Neoplasia Residual/tratamento farmacológico , Microambiente Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Interferons , Linhagem Celular Tumoral
4.
Biomater Sci ; 11(18): 6325-6341, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37555273

RESUMO

Triple-negative breast cancer (TNBC) is one of the most aggressive cancers with an immunosuppressive microenvironment, and achieving a satisfactory effect from monotherapies, such as chemotherapy, photodynamic therapy (PDT) or immunotherapy, remains difficult. To solve this puzzle, a deepening synergistic therapy strategy of DNA damage and immunogenic cell death (ICD) stimuli was proposed. We engineered a doxorubicin (DOX) and 4-(hydroxymethyl) phenylboronic acid pinacol ester (PBAP) prodrug polymer, and encapsulated chlorin e6 (Ce6) to obtain the hyaluronidase (HAase) and H2O2 dual-sensitive responsive nanoparticles (Ce6/HDP NPs). The NPs displayed efficient intratumoral accumulation and cellular internalization properties due to the active targeting of the hyaluronic acid (HA). The dual DNA damage of the chemotherapy and ROS production directly caused tumor cell apoptosis. The strong ICD stimuli, which were induced by ROS production and GSH depletion, generated an amplified immunogenicity to activate tumor immunotherapy in vivo. In this manner, the NPs could significantly inhibit primary tumor, abscopal tumor, pulmonary metastasis and recurrent tumor in a subcutaneous 4T1 tumor model, with effective biosafety. This study has provided a promising deepening synergistic therapy strategy against TNBC.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio , Morte Celular Imunogênica , Porfirinas/farmacologia , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes , Microambiente Tumoral
5.
ACS Nano ; 17(12): 11537-11556, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37272777

RESUMO

Ferroptosis activation has been considered a mighty weapon for cancer treatment, and growing attention is being paid to reinforcing tumor cells' sensitivity to ferroptosis. However, the existence of certain ferroptosis resistance mechanisms, especially the abnormal metabolism of tumor cells, has long been underestimated. We propose an enhanced ferroptosis-activating pattern via regulating tumor cells' glycometabolism and construct a nanoplatform named PMVL, which is composed of lonidamine (LND)-loaded tannic acid coordinated vanadium oxides with the camouflage of PD-L1 inhibiting peptide-modified tumor cell membrane. This work reveals that the mixed valence of vanadium (VIV and VV) in PMVL triggers ferroptosis due to the self-cyclic valence alteration of V, the process of which generates •OH for lipid peroxide accumulation (VIV → VV) and depletes glutathione (GSH) for glutathione peroxidase (GPX4) deactivation (VV → VIV). Notably, LND strengthens ferroptosis by dual suppression of glycolysis (decreasing ATP supply) and the pentose phosphate pathway (decreasing NADPH production), causing anabatic GSH consumption. Besides, the inhibited glycolysis generates less intracellular lactic acid and alleviates the acidity of tumor microenvironment, preventing immunosuppressive M2 macrophage polarization. In vitro and in vivo data demonstrate the glycometabolism-intervention-enhanced ferroptosis and boosted immunity activation, potentially providing opportunities and possibilities for synergetic cancer therapy.


Assuntos
Neoplasias , Vanádio , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Morte Celular , Glutationa Peroxidase/metabolismo , Glucose , Linhagem Celular Tumoral , Microambiente Tumoral
6.
Int J Pharm ; 641: 123069, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37225024

RESUMO

The application of variable novel drug delivery system has shown a flowering trend in recent years. Among them, the cell-based drug delivery system (DDS) utilizes the unique physiological function of cells to deliver drugs to the lesion area, which is the most complex and intelligent DDS at present. Compared with the traditional DDS, the cell-based DDS has the potential of prolonged circulation in body. Cellular DDS is expected to be the best carrier to realize multifunctional drug delivery. This paper introduces and analyzes common cellular DDSs such as blood cells, immune cells, stem cells, tumor cells and bacteria as well as relevant research examples in recent years. We hope that this review can provide a reference for future research on cell vectors and promote the innovative development and clinical transformation of cell-based DDS.


Assuntos
Sistemas de Liberação de Medicamentos
7.
Acta Biomater ; 157: 551-565, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36513248

RESUMO

Photodynamic therapy (PDT) is a minimally invasive and locally effective treatment method, which has been used in the clinical treatment of a variety of superficial tumors. In recent years, PDT has received extensive attention due to its induction of immunogenic cell death (ICD). However, the repair mechanism of tumor cells and low immune response limit the further development of PDT. To this end, a multifunctional biomimetic nanoplatform 4T1Mem@PGA-Ce6/Ola (MPCO) is developed to co-deliver the photosensitizer Chlorin e6 (Ce6) and Olaparib (Ola) with the function of preventing DNA repair. The nanoplatform shows efficient tumor targeting and cellular internalization properties due to cell membrane camouflage, and Ce6 and Ola produce a significant synergistic anti-tumor effect under laser irradiation. Meanwhile, the nanoplatform can also activate the cyclic guanosine monophosphate-adenosine monophosphate synthase-interferon gene stimulator signaling (cGAS-STING) pathway to produce cytokines. The damage-associated molecular patterns induced by ICD can work with these cytokines to recruit and stimulate the maturation of dendritic cells and induce the systemic anti-tumor immune response. Overall, this multifunctional biomimetic nanoplatform integrating PDT, chemotherapy, and immunotherapy is highlighted here to boost anti-tumor therapy. STATEMENT OF SIGNIFICANCE: Self-repair of DNA damage is the most important reason for the failure of primary tumor eradication and the formation of secondary and metastatic tumors. To address this issue, a multifunctional biomimetic nanoplatform 4T1Mem@PGA-Ce6/Ola (MPCO) was developed to integrate a photosensitizer Chlorine a6 and a poly (ADP-ribose) polymerase inhibitor Olaparib. With tumor targeting ability and controlled release of drugs, the MPCO was expected to enhance tumor immunogenicity and facilitate antitumor immunity through the induction of immunogenic cell death as well as the activation of the cGAS-STING pathway. This study develops a promising combination strategy against tumors and has substantial implications for the prognosis of patients with breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Fotoquimioterapia , Porfirinas , Humanos , Feminino , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Fotoquimioterapia/métodos , Biomimética , Antineoplásicos/uso terapêutico , Porfirinas/farmacologia , Reparo do DNA , Citocinas , Linhagem Celular Tumoral , Nanopartículas/uso terapêutico
8.
J Drug Target ; 31(4): 335-353, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36543743

RESUMO

Extracellular vesicles (EVs) could be produced by most cells and play an important role in disease development. As a subtype of EVs, exosomes exhibit suitable size, rich surface markers and diverse contents, making them more appealing as potential drug carriers. Compared with traditional synthetic nanoparticles, exosomes possess superior biocompatibility and much lower immunogenicity. This work reviewed the most up-to-date research progress of exosomes as carriers for nucleic acids, proteins and small molecule drugs for cancer and inflammation management. The drug loading strategies and potential cellular uptake behaviour of exosomes are highlighted, trying to provide reference for future exosome design and application.


Exosomes are secreted by a variety of cells and play an important role in the process of inter-cell communication.This paper provides a comprehensive review focussing on the up-to-date applications of exosomes as carriers of nucleic acids, proteins and small molecule drugs for cancer and inflammation management.This paper briefly introduces the basic properties of exosomes, from definition, biogenesis to cellular uptake manners.Various strategies to enable exosomes to efficiently load cargoes are highlighted.Problems to be solved when using exosomes to deliver drugs are discussed.


Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias , Humanos , Portadores de Fármacos/metabolismo , Exossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sistemas de Liberação de Medicamentos
9.
Acta Biomater ; 158: 239-251, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581005

RESUMO

Abdominal adhesions are a class of serious complications following abdominal surgery, resulting in a complicated and severe syndrome and sometimes leading to a Gordian knot. Traditional therapies employ hydrogels synthesized using complicated chemical formulations-often with click chemistry or thermal responsive hydrogel. The complicated synthesis process and severe conditions limit the extent of the hydrogels' applications. In this work, poly 3-[2-(methacryloyloxy)ethyl](dimethyl)-ammonio]-1-propanesulfonate (PSBMA) polymer was synthesized to self-assemble into physical hydrogels due to the inter- and intramolecular ion interactions. The strong static interaction bonding density has a substantial impact on the gelation and physicochemical properties, which is beneficial to clinical applications and offers a novel way to obtain the desired hydrogel for a specific biomedical application. Intriguingly, this PSBMA polymer can be customized into a transient network with outstanding antifouling capability depending on the ion concentration. As ion concentration increases, the PSBMA hydrogel dissociated completely, endowing it as a candidate for adhesion prevention. In the cecum-sidewall model, the PSBMA hydrogel demonstrated superior anti-adhesion properties than commercial HA hydrogel. Furthermore, we have demonstrated that this PSBMA hydrogel could inhibit the inflammatory response and encourage anti-fibrosis resulting in adhesion prevention. Most surprisingly, the recovered skins of cecum and sidewall are as smooth as the control skin without any scar and damage. In conclusion, a practical hydrogel was synthesized using a facile method based on purely zwitterionic materials, and this ion-sensitive, antifouling adjustable supramolecular hydrogel with great clinic transform potential is a promising barrier for preventing postoperative tissue adhesion. STATEMENT OF SIGNIFICANCE: The development of hydrogels with satisfactory coverage, long retention time, facile synthetic method, and good biocompatibility is vital for preventing peritoneal adhesions. Herein, we developed a salt sensitive purely zwitterionic physical hydrogel poly 3-[2-(methacryloyloxy)ethyl](dimethyl)-ammonio]-1-propanesulfonate (PSBMA) hydrogel to effectively prevent postoperative and recurrent abdominal adhesions. The hydrogel was simple to synthesize and easy to use. In the cecum-sidewall model, PSBMA hydrogel could instantaneously adhere and fix on irregular surfaces and stay in the wound for more than 10 days. The PSBMA hydrogel could inhibit the inflammatory response, encourage anti-fibrosis, and restore smoothness to damaged surfaces resulting in adhesion prevention. Overall, the PSBMA hydrogel is a promising candidate for the next generation of anti-adhesion materials to meet clinical needs.


Assuntos
Ácidos Alcanossulfônicos , Hidrogéis , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Aderências Teciduais/prevenção & controle , Polímeros
10.
Biomaterials ; 290: 121832, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228518

RESUMO

Photodynamic therapy (PDT) induces apoptosis of cancer cells by generating cytotoxic reactive oxygen species, the therapeutic effect of which, however, is impeded by intrinsic/inducible apoptosis-resistant mechanisms in cancer cells and hypoxia of tumor microenvironment (TME); also, PDT-induced anti-tumor immunity activation is insufficient. To deal with these obstacles, a novel biomimetic nanoplatform is fabricated for the precise delivery of photosensitizer chlorin e6 (Ce6), hemin and PEP20 (CD47 inhibitory peptide), integrating oxygen-boosted PDT, ferroptosis activation and CD47-SIRPα blockade. Hemin's catalase-mimetic activity alleviates TME hypoxia and enhances PDT. The nanoplatform activates ferroptosis via both classical (down-regulating glutathione peroxidase 4 pathway) and non-classical (inducing Fe2+ overload) modes. Besides the role of hemin in consuming glutathione and up-regulating heme oxygenase-1 expression, interestingly, we observe that Ce6 enhance ferroptosis activation via both classical and non-classical modes. The anti-cancer immunity is reinforced by combining PEP20-mediated CD47-SIRPα blockade and PDT-mediated T cell activation, efficiently suppressing primary tumor growth and metastasis. PEP20 has been revealed for the first time to sensitize ferroptosis by down-regulating system Xc-. This work sheds new light on the mechanisms of PDT-ferroptosis activation interplay and bridges immunotherapy and ferroptosis activation, laying the theoretical foundation for novel combinational modes of cancer treatment.


Assuntos
Clorofilídeos , Ferroptose , Fotoquimioterapia , Porfirinas , Humanos , Antígeno CD47 , Microambiente Tumoral , Oxigênio/farmacologia , Biomimética , Hemina/farmacologia , Clorofilídeos/farmacologia , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia , Hipóxia/tratamento farmacológico
11.
Int J Pharm ; 616: 121527, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35104594

RESUMO

Over activation of immune checkpoint pathways assists tumor cells to escape the surveillance of immune system, resulting in generation and development of tumor. Drugs blocking immune checkpoints target lymphocyte receptors or their ligands to enhance endogenous antitumor activity by activating the immune system. The drugs targeting PD-1/PD-L1 axis have achieved favourable clinical efficacy, less and controllable toxicity and side effects. However, only a part of patients benefit from immunotherapy, so the problem of increasing the response rate of patients is on the agenda. Meanwhile, there are still some problems such as how to achieve the long-term response to most metastatic or non operative malignant tumors, and minimize the side effects of immune checkpoint inhibitor (ICI). Therefore, scientists are actively exploring methods, such as combining anti-PD-1 therapy with various traditional or newly developed therapeutic methods and building a tumor targeted drug delivery system to maximize the efficacy of drugs and reduce side effects. In this review, we summarized the related concepts and mechanism of PD-1 and its ligands PD-L1, and introduced certain drugs targeting PD-1/PD-L1 axis, their clinical effects and safety issues. Finally, a variety of combination therapies based on PD-1/PD-L1 and the application of different nanocarriers aiming at reducing non-targeting effect and improving the efficacy were discussed.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Antígeno B7-H1 , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia/métodos , Neoplasias/patologia , Receptor de Morte Celular Programada 1/metabolismo
12.
Expert Opin Drug Deliv ; 19(3): 221-234, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35164610

RESUMO

INTRODUCTION: Compared with ordinary chemotherapeutic drugs, the variable-size nanoparticles (NPs) have better therapeutic effects and fewer side effects. AREAS COVERED: This review mainly summarizes the strategies used to construct smart, size-tunable nanocarriers based on characteristic factors of tumor microenvironment (TME) to dramatically increase the penetration and retention of drugs within tumors. EXPERT OPINION: Nanosystems with changeable sizes based on the TME have been extensively studied in the past decade, and their permeability and retention have been greatly improved, making them a very promising treatment for tumors.


Assuntos
Nanopartículas , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Microambiente Tumoral
13.
J Drug Target ; 30(1): 46-60, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33944641

RESUMO

Since the discovery of cell-penetrating peptides (CPP) in the 1980s, they have played a unique role in various fields owing to their excellent and unique cell membrane penetration function. In particular, in the treatment of tumours, CPPS have been used to deliver several types of 'cargos' to cancer cells. To address the insufficient targeting ability, non-selectivity, and blood instability, activatable cell-penetrating peptides, which can achieve targeted drug delivery in tumour treatment, enhance curative effects, and reduce toxicity have been developed. This study reviews the application of different cell-penetrating peptides in tumour-targeted delivery, overcoming multidrug resistance, organelle targeting, tumour imaging, and diagnosis, and summarises the different mechanisms of activatable cell-penetrating peptides in detail.


Assuntos
Peptídeos Penetradores de Células , Neoplasias , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
14.
Medicine (Baltimore) ; 101(52): e32064, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36596017

RESUMO

BACKGROUND: The prognostic value of Musashi-2 (MSI2) in human malignancies remains controversial. We thus conducted this meta-analysis to evaluate the association between MSI2 expression and prognosis of patients with malignancies. MATERIALS AND METHODS: We searched EMBASE, PubMed and Web of Science up to June 2021 for eligible studies. Hazard ratios (HRs) with 95% confidence intervals (CIs) were estimated to assess the prognostic value of MSI2 expression. Odds ratios (ORs) with 95% CIs were calculated to evaluate the association between MSI2 expression and clinicopathological traits. RESULTS: Sixteen studies involving 2203 patients were finally included in this meta-analysis. We found that high MSI2 expression might predict unfavorable OS (HR = 1.85, 95% CI: 1.62-2.10, P < .0001) and DFS/RFS (HR = 2.19, 95% CI: 1.87-2.57, P < .0001). Besides, the pooled results indicated that increased MSI2 expression correlated with large tumor size, poor tumor differentiation, positive lymph node metastasis and advanced tumor stage. CONCLUSIONS: Taken together, our data implies that MSI2 overexpression is related to poor survival outcomes in patients with malignancy. Therefore, MSI2 may serve as a novel prognostic biomarker and therapeutic target of malignancies. However, large-scale prospective and homogeneous investigations should be conducted in the future to further validate our findings.


Assuntos
Biomarcadores Tumorais , Neoplasias , Humanos , Prognóstico , Estudos Prospectivos , Biomarcadores Tumorais/metabolismo , Modelos de Riscos Proporcionais , Metástase Linfática , Proteínas de Ligação a RNA/genética
15.
J Nanobiotechnology ; 19(1): 428, 2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34923976

RESUMO

Molybdenum oxide (MoOx) nanosheets have drawn increasing attention for minimally invasive cancer treatments but still face great challenges, including complex modifications and the lack of efficient accumulation in tumor. In this work, a novel multifunctional degradable FA-BSA-PEG/MoOx nanosheet was fabricated (LA-PEG and FA-BSA dual modified MoOx): the synergistic effect of PEG and BSA endows the nanosheet with excellent stability and compatibility; the FA, a targeting ligand, facilitates the accumulation of nanosheets in the tumor. In addition, DTX, a model drug for breast cancer treatment, was loaded (76.49%, 1.5 times the carrier weight) in the nanosheets for in vitro and in vivo antitumor evaluation. The results revealed that the FA-BSA-PEG/MoOx@DTX nanosheets combined photothermal and chemotherapy could not only inhibit the primary tumor growth but also suppress the distant tumor growth (inhibition rate: 51.7%) and lung metastasis (inhibition rate: 93.6%), which is far more effective compared to the commercial Taxotere®. Exploration of the molecular mechanism showed that in vivo immune response induced an increase in positive immune responders, suppressed negative immune suppressors, and established an inflammatory tumor immune environment, which co-contributes towards effective suppression of tumor and lung metastasis. Our experiments demonstrated that this novel multifunctional nanosheet is a promising platform for combined chemo-photothermal therapy.


Assuntos
Materiais Biocompatíveis/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Molibdênio/química , Nanoestruturas/uso terapêutico , Óxidos/química , Animais , Materiais Biocompatíveis/farmacocinética , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Feminino , Ácido Fólico/química , Humanos , Hipertermia Induzida , Raios Infravermelhos , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos BALB C , Nanoestruturas/química , Nanoestruturas/toxicidade , Polietilenoglicóis/química , Soroalbumina Bovina/química , Ácido Tióctico/química , Distribuição Tecidual
16.
Biomaterials ; 278: 121135, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562837

RESUMO

The restricted tumor penetration has been regarded as the Achilles' Heels of most nanomedicines, largely limiting their efficacy. To address this challenge, a cluster-bomb-like nanoplatform named CPIM is prepared, which for the first time combines size-transforming and transcytosis strategies, thus enhancing both passive and active transport. For passive diffusion, the "cluster-bomb" CPIM (135 nm) releases drug-loaded "bomblets" (IR780/1-methyl-tryptophan (1 MT) loaded PAMAM, <10 nm) in response to the high reactive-oxygen-species (ROS) concentration in tumor microenvironment (TME), which promotes intratumoral diffusion. Besides, IR780 generates ROS upon NIR irradiation and intensifies this responsiveness; therefore, there exists a NIR-triggered self-destructive behavior, rendering CPIM spatiotemporal controllability. For active transport, the nanoplatform is proven to be delivered via transcytosis with/without NIR irradiation. Regarding the anti-cancer performance, CPIM strengthens the photodynamic therapy (PDT)/photothermal therapy (PTT) activity of IR780 and IDO pathway inhibition effect of 1 MT, thus exhibiting a strongest inhibitory effect on primary tumor. CPIM also optimally induces immunogenic cell death, reverses the "cold" TME to a "hot" one and evokes systemic immune response, thus exerting an abscopal and anti-metastasis effects. In conclusion, this work provides a facile, simple yet effective strategy to enhance the tumor penetration, tumor-killing effect and antitumor immunity of nanomedicines.


Assuntos
Nanopartículas , Fotoquimioterapia , Linhagem Celular Tumoral , Humanos , Fototerapia , Espécies Reativas de Oxigênio
17.
ACS Nano ; 15(8): 12567-12603, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34339170

RESUMO

Immunotherapy that harnesses the human immune system to fight cancer has received widespread attention and become a mainstream strategy for cancer treatment. Cancer immunotherapy not only eliminates primary tumors but also treats metastasis and recurrence, representing a major advantage over traditional cancer treatments. Recently with the development of nanotechnology, there exists much work applying nanomaterials to cancer immunotherapy on the basis of their excellent physiochemical properties, such as efficient tissue-specific delivery function, huge specific surface area, and controllable surface chemistry. Consequently, nanotechnology holds significant potential in improving the efficacy of cancer immunotherapy. Nanotechnology-based immunotherapy mainly manifests its inhibitory effect on tumors via two different approaches: one is to produce an effective anti-tumor immune response during tumorigenesis, and the other is to enhance tumor immune defense ability by modulating the immune suppression mechanism in the tumor microenvironment. With the success of tumor immunotherapy, understanding the interaction between the immune system and smart nanomedicine has provided vigorous vitality for the development of cancer treatment. This review highlights the application, progress, and prospect of nanomedicine in the process of tumor immunoediting and also discusses several engineering methods to improve the efficiency of tumor treatment.


Assuntos
Imunoterapia , Neoplasias , Humanos , Imunoterapia/métodos , Nanomedicina/métodos , Neoplasias/patologia , Nanotecnologia , Microambiente Tumoral , Fatores Imunológicos
18.
J Nanobiotechnology ; 19(1): 251, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34419071

RESUMO

BACKGROUND: Glioblastoma is a lethal neoplasm with few effective therapy options. As a mainstay in the current treatment of glioma at present, chemotherapeutic agents usually show inadequate therapeutic efficiency due to their low blood brain barrier traversal and brain targeting, together with tumor multidrug resistance. Novel treatment strategies are thus urgently needed to improve chemotherapy outcomes. RESULTS: Here, we report that nanomedicines developed by functionalizing the neurotropic rabies virus-derived polypeptide, RVG, and loading reduction-sensitive nanomicelles (polymer and doxorubicin) enable a highly specific and efficacious drug accumulation in the brain. Interestingly, curcumin serves as the hydrophobic core of the polymer, while suppressing the major efflux proteins in doxorubicin-resistant glioma cells. Studies on doxorubicin-resistant rat glioma cells demonstrate that the RVG-modified micelles exhibit superior cell entry and antitumor activity. In vivo research further showed that RVG modified nanomicelles significantly enhanced brain accumulation and tumor inhibition rate in mice, leading to a higher survival rate with negligible systemic toxicity. Moreover, effective suppression of recurrence and pulmonary metastatic nodules were also determined after the RVG-modified nanomicelles treatment. CONCLUSIONS: The potential of RVG-modified nanomicelles for glioma was demonstrated. Brain accumulation was markedly enhanced after intravenous administration. This unique drug delivery nanoplatform to the brain provides a novel and powerful therapeutic strategy for the treatment of central nervous system disorders including glioma.


Assuntos
Encéfalo/metabolismo , Doxorrubicina/administração & dosagem , Doxorrubicina/metabolismo , Micelas , Animais , Antineoplásicos , Materiais Biocompatíveis , Neoplasias Encefálicas/tratamento farmacológico , Sobrevivência Celular , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Glioblastoma , Glioma/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Tamanho da Partícula , Peptídeos/metabolismo , Ratos
19.
Adv Healthc Mater ; 10(13): e2100299, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34021717

RESUMO

To solve the problems of high toxicity and poor efficacy of existing tumor treatment methods, researchers have developed a variety of tumor immunotherapies. Among them, tumor vaccines activate antigen-presenting cells and T lymphocytes upstream of the cancer-immunity cycle are considered the most promising therapy to activate the immune system. Nanocarriers are considered the most promising tumor vaccine delivery vehicles, including polymer nanocarriers, lipid nanocarriers, inorganic nanocarriers, and biomimetic nanocarriers that have been developed for vaccine delivery. Based on the cascade reaction for tumor vaccines to exert their effects, this review summarizes the four key factors for the design and construction of nano-tumor vaccines. The composition and functional characteristics of the corresponding preferred nanocarriers are illustrated to provide a reference for the development of effective tumor vaccines. Finally, potential challenges and perspectives are illustrated in the hope of improving the efficacy of tumor vaccine immunotherapy and accelerating the clinical transformation of next-generation tumor vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Imunidade , Imunoterapia , Neoplasias/terapia
20.
J Control Release ; 335: 1-20, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-33991600

RESUMO

Multidrug resistance (MDR) of cancer is a persistent problem in chemotherapy. Scientists have considered the overexpressed efflux transporters responsible for MDR and chemotherapy failure. MDR extremely limits the therapeutic effect of chemotherapy in cancer treatment. Many strategies have been applied to solve this problem. Multifunctional nanoparticles may be one of the most promising approaches to reverse MDR of tumor. These nanoparticles can keep stability in the blood circulation and selectively accumulated in the tumor microenvironment (TME) either by passive or active targeting. The stimuli-sensitive or organelle-targeting nanoparticles can release the drug at the targeted-site without exposure to normal tissues. In order to better understand reversal of MDR, three main strategies are concluded in this review. First strategy is the synergistic effect of chemotherapeutic drugs and ABC transporter inhibitors. Through directly inhibiting overexpressed ABC transporters, chemotherapeutic drugs can enter into resistant cells without being efflux. Second strategy is based on nanoparticles circumventing over-expressed efflux transporters and directly targeting resistance-related organelles. Third approach is the combination of multiple therapy modes overcoming cancer resistance. At last, numerous researches demonstrated cancer stem-like cells (CSCs) had a deep relation with drug resistance. Here, we discuss two different drug delivery approaches of nanomedicine based on CSC therapy.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA