Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Int J Biol Macromol ; 269(Pt 1): 131875, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677701

RESUMO

The aim of this study was to develop novel konjac glucomannan (KGM)-based highly antibacterial active films, where five types of films were prepared and compared. The microstructure results showed that KGM-based films loaded with thyme essential oil (TEO) through bacterial cellulose nanofibers/Ag nanoparticles (BCNs/Ag nanoparticles) stabilized Pickering emulsions (Type V films) displayed the smoothest surface and the most evenly dispersed TEO droplets as compared with the other four types of films. Moreover, Type V films showed the highest contact angle value (86.28°), the best thermal stability and mechanical properties. Furthermore, Type V films presented the highest total phenol content (13.23 mg gallic acid equivalent/g film) and the best antioxidant activity (33.96 %) as well as the best sustained-release property, thus showing the best antibacterial activity, which was probably due to that BCNs/Ag nanoparticles and TEO displayed a synergistic effect to some extent. Consequently, Type V film-forming solutions were used as coatings for tangerines. The results showed that the tangerines treated with Type V coatings displayed excellent fresh-keeping properties. Therefore, the coatings, KGM-based film-forming solutions loaded with TEO through BCNs/Ag nanoparticles stabilized Pickering emulsions, have great potential for the preservation of fruits and vegetables.

2.
J Agric Food Chem ; 72(13): 7397-7410, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38528736

RESUMO

This study was designed to elucidate the colon microbiota-targeted release of nonextractable bound polyphenols (NEPs) derived from Fu brick tea and to further identify the possible anti-inflammatory mechanism in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. 1.5% DSS drinking water-induced C57BL/6J mice were fed rodent chow supplemented with or without 8% NEPs or dietary fibers (DFs) for 37 days. The bound p-hydroxybenzoic acid and quercetin in NEPs were liberated up to 590.5 ± 70.6 and 470.5 ± 51.6 mg/g by in vitro human gut microbiota-simulated fermentation, and released into the colon of the mice supplemented with NEPs by 4.4- and 1.5-fold higher than that of the mice supplemented without NEPs, respectively (p < 0.05). Supplementation with NEPs also enhanced the colonic microbiota-dependent production of SCFAs in vitro and in vivo (p < 0.05). Interestingly, Ingestion of NEPs in DSS-induced mice altered the gut microbiota composition, reflected by a dramatic increase in the relative abundance of Dubosiella and Enterorhabdus and a decrease in the relative abundance of Alistipes and Romboutsia (p < 0.05). Consumption of NEPs was demonstrated to be more effective in alleviating colonic inflammation and UC symptoms than DFs alone in DSS-treated mice (p < 0.05), in which the protective effects of NEPs against UC were highly correlated with the reconstruction of the gut microbiome, formation of SCFAs, and release of bound polyphenols. These findings suggest that NEPs as macromolecular carriers exhibit targeted delivery of bound polyphenols into the mouse colon to regulate gut microbiota and alleviate inflammation.


Assuntos
Colite Ulcerativa , Colite , Microbiota , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Inflamação/tratamento farmacológico , Fibras na Dieta , Polifenóis , Colo , Chá , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/tratamento farmacológico
3.
Molecules ; 28(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836705

RESUMO

Peanut meal (PM) is a by-product of extracting oil from peanut kernels. Although peanut meal contains protein, carbohydrates, minerals, vitamins, and small amounts of polyphenols and fiber, it has long been used as a feed in the poultry and livestock industries due to its coarse texture and unpleasant taste. It is less commonly utilized in the food processing industry. In recent years, there has been an increasing amount of research conducted on the deep processing of by-products from oil crops, resulting in the high-value processing and utilization of by-products from various oil crops. These include peanut meal, which undergoes treatments such as enzymatic hydrolysis in industries like food, chemical, and aquaculture. The proteins, lipids, polyphenols, fibers, and other components present in these by-products and hydrolysates can be incorporated into products for further utilization. This review focuses on the research progress in various fields, such as the food processing, breeding, and industrial fields, regarding the high-value utilization of peanut meal and its hydrolysates. The aim is to provide valuable insights and strategies for maximizing the utilization of peanut meal resources.


Assuntos
Arachis , Melhoramento Vegetal , Manipulação de Alimentos , Hidrolisados de Proteína , Indústria de Processamento de Alimentos , Polifenóis
4.
Int J Biol Macromol ; 247: 125623, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37392915

RESUMO

Food-grade Pickering emulsion gels with different oil phase fractions stabilized by Bacterial cellulose nanofibers/Soy protein isolate complex colloidal particles were prepared by one-step method. The properties of Pickering emulsion gels with different oil phase fractions (5 %, 10 %, 20 %, 40 %, 60 %, 75 %, v/v) and their applications in ice cream were investigated in the present study. The microstructural results showed that Pickering emulsion gels with the low oil phase fractions (5 %-20 %) were an emulsion droplet-filled gel, where the oil droplets were embedded in the network structure of cross-linked polymer, while Pickering emulsion gels with higher oil phase fractions (40 %-75 %) were an emulsion droplet-aggregated gel, which formed a network structure by flocculated oil droplets. The rheology result showed that the low oil Pickering emulsion gels had the same excellent performance as the high oil Pickering emulsion gels. Furthermore, the low oil Pickering emulsion gels showed good environmental stability under harsh conditions. Consequently, Pickering emulsion gels with 5 % oil phase fraction were used as fat replacers in ice cream and ice cream with different fat replacement rates (30 %, 60 % and 90 %, w/w) was prepared in this work. The results showed the appearance and texture of the ice cream with low oil Pickering emulsion gels as fat replacers was similar to that of the ice cream with no fat replacers, and the melting rate of the ice cream with low oil Pickering emulsion gels as fat replacers showed the lowest value of 21.08 % during the 45 min of melting experiment, as the fat replacer rate in the ice cream reached to 90 %. Therefore, this study demonstrated that low oil Pickering emulsion gels were excellent fat replacers and had great potential application in low calorie food production.


Assuntos
Sorvetes , Nanofibras , Emulsões/química , Celulose/química , Proteínas de Soja , Géis/química , Bactérias
5.
J Agric Food Chem ; 71(6): 2898-2913, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36728562

RESUMO

Fu brick tea theabrownin (FBTB) is a kind of biomacromolecule produced by oxidative polymerization of tea polyphenols. Although a variety of diseases can be alleviated by TB, its ability to treat ulcerative colitis (UC) is still worth exploring. A dextran sulfate sodium (DSS)-induced chronic UC mouse model was designed to first explore the alleviatory effect of FBTB on UC and its underlying mechanism by the sequencing of fecal 16S rRNA genes, metabolomics, and fecal microbiota transplantation (FMT). Administration of FBTB at 400 mg/kg bw in DSS-damaged mice could effectively reduce colonic damage and inflammation and improve colonic antioxidant capacity to relieve the UC-caused symptoms. FBTB could correct the disrupted gut microbiota caused by UC and contribute to the proliferation of Lactobacillus and Parasutterella. FMT in combination with antibiotic treatment showed that FBTB could elevate the levels of microbial tryptophan metabolites, including indole-3-acetaldehyde (IAld) and indole-3-acetic acid (IAA), by selectively promoting the growth of Lactobacillus. Importantly, FBTB-elevated IAld and IAA could activate aromatic hydrocarbon receptors (AhRs) and enhance interleukin-22 production to repair the intestinal barrier. These findings demonstrated that FBTB alleviated UC mainly by targeting the gut microbiota involved in the AhR pathway for prophylactic and therapeutic treatment of UC.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Colo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Fluoruracila , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S , Chá , Triptofano
6.
J Agric Food Chem ; 71(2): 1201-1213, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36621895

RESUMO

Ulcerative colitis has been consistently associated with gut microbiota imbalance and disturbed immune system. Emerging research suggests a protective function of polyphenols on prevention and treatment of ulcerative colitis, yet underlying mechanisms remain unclear. Fu brick tea, a postfermented tea, contains abundant polyphenols with anti-inflammatory and antioxidant properties. In the present study, we found that prophylactic supplementation of polyphenols extracted from Fu brick tea (FBTP) dose-dependently alleviated colitis symptoms, immune cells infiltration, and pro-inflammatory cytokines secretion in mice suffering dextran sulfate sodium induced murine colitis. FBTP substantially reshaped gut microbiota and promoted microbial transformation of tryptophan into indole-3-acetic acid (I3A), thereafter leading to aryl hydrocarbon receptor (AHR)-mediated protection from colitis through enhanced expressions of IL-22 and tight junction proteins (i.e., ZO-1, occluding and claudin-1) in colon. Multiomics integration analyses revealed strong connections between I3A, tryptophan-metabolizing bacteria, AHR activity, and pathological phenotypes of colitis. Notably, FBTP failed to significantly alleviate colitis symptoms in the absence of gut microbiota, while intragastric administration of I3A could imitate benefits of FBTP on colitis alleviation and intestinal epithelial homeostasis through a direct enhancement in AHR activity in microbiota-depleted mice. These findings further determine the key role of gut microbiota controlled I3A-AHR signaling in mediating the FBTP on colitis alleviation. This study provides the first data proposing the FBTP as a natural prebiotic for colitis alleviation through the gut microbiota-dependent modulation of the AHR pathway. Most importantly, we also identified I3A as a key microbial metabolite targeted by FBTP for exhibiting health-promoting effects.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Triptofano/metabolismo , Polifenóis/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Colo/microbiologia , Bactérias/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
7.
Food Sci Nutr ; 10(9): 2956-2968, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36171788

RESUMO

The antitumor effects of Lycium ruthenicum Murr. polysaccharides (LRPS) and Lycium ruthenicum Murr. anthocyanins (LRAC) were comprehensively investigated in this study. LPRS was obtained by water extraction and alcohol precipitation and further purified using diethylaminoethyl cellulose (DEAE-Cellulose) and Sephadex G-75 columns. High-performance liquid chromatography (HPLC) and Fourier transform-infrared (FT-IR) spectroscopy were used to characterize the purified LRPS. The results showed that the purified LRPS contained heteropolysaccharides, mainly composed of arabinose, galactose, and glucose with weight percentage of 41.2%, 33.6%, and 10.8%, respectively. More importantly, LRPS (500 µg/ml) and LRAC (80 µg/ml) failed to impede the proliferation of tumor cells when applied solely (48 h incubation), yet remarkable antineoplastic effects were found once they were applied altogether, since the LoVo cells, a typical human colorectal carcinoma cell line, were significantly inhibited by the mixture of LRPS (150 µg/ml) and LRAC (20 µg/ml) (LRPS&AC) in 24 h. The antineoplastic activity resulted from the combination of both LRPS and LRAC (LRPS&AC), by means of blocking the cell cycle at the G0-G1 phase and inducing LoVo cell apoptosis via reactive oxygen species (ROS)-dependent pathway. The inhibitory effects of LRPS&AC were specific to the tumor cells, without imposing on the proliferation of normal cells. Western blotting revealed that the antitumor effect was related to the mitochondria-mediated apoptosis launched by the cross-action of PI3K/Akt (phosphatidylinositol 3-kinase/protein kinase B) and JAK2/STAT3 (janus kinase 2/signal transduction and activator of transcription 3) signaling pathways. These findings for the first time reveal the synergistic antitumor effects of LRPS&AC and the related mechanisms, which enable Lycium ruthenicum Murr. to serve as a natural source to develop therapeutic reagents and functional foods with antineoplastic properties.

8.
J Agric Food Chem ; 70(27): 8274-8287, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35767631

RESUMO

The antidiabetic effects of Fu brick tea aqueous extract (FTE) and its underlying molecular mechanism in type 2 diabetes mellitus (T2DM) mice were investigated. FTE treatment significantly relieved dyslipidemia, insulin resistance (IR), and hepatic oxidative stress caused by T2DM. FTE also ameliorated the T2DM-induced gut dysbiosis by decreasing the Firmicutes/Bacteroidota (F/B) ratio at the phylum level and promoting the proliferation of Bifidobacterium, Parabacteroides, and Roseburia at the genus level. Besides, FTE significantly improved colonic short-chain fatty acid levels of T2DM mice. Furthermore, the antidiabetic effects of FTE were proved to be mediated by the IRS1/PI3K/Akt and AMPK-mediated gluconeogenesis signaling pathways. Metabolomics analysis illustrated that FTE recovered the levels of 28 metabolites associated with T2DM to the levels of normal mice. Taken together, these findings suggest that FTE can alleviate T2DM by reshaping the gut microbiota, activating the IRS1/PI3K/Akt pathway, and regulating intestinal metabolites.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Chá
9.
Food Chem ; 384: 132426, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35202988

RESUMO

A new amine moiety-based near-infrared fluorescent probe (Probe-NH2) is developed for detection of formaldehyde in food samples and mice. Probe-NH2 is constructed and synthesized from the IR-780 via two-step reactions as a hemicyanine skeleton bearing an amino moiety. The response mechanism is based on Schiff base reaction that formaldehyde reacts with amine group to form the corresponding imines. Probe-NH2 for detection of formaldehyde exhibits excellent analytical performance, including near-infrared fluorescence emission at 708 nm, high selectivity and sensitivity, also provides a response time as low as 30 min with a detection limit of 1.87 µmolL-1. Notably, we constructed a simple, rapid and visual formaldehyde detection platform based on paper chips in the near-infrared region for the first time. The accurate detection of formaldehyde in real food samples is of great significance, Probe-NH2 was detected in dried beancurd sticks, endive sprout, frozen shrimp and squid, with good recoveries of 99.60%-112.72%, indicating the reliability of Probe-NH2 for spiked determination of formaldehyde in contaminated foods. More importantly, Probe-NH2 has been successfully applied to the detection of endogenous formaldehyde in mice.


Assuntos
Aminas , Corantes Fluorescentes , Animais , Fluorescência , Formaldeído , Células HeLa , Humanos , Limite de Detecção , Camundongos , Reprodutibilidade dos Testes , Alimentos Marinhos
10.
Foods ; 10(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34829091

RESUMO

Given the imperative of monitoring organophosphorus pesticides (OPs) residues in the ecosystem, here a novel, facile and sensitive fluorescence sensor is presented for the rapid detection of dimethoate. In this work, surface molecularly imprinted polymer (SMIP) and microfluidic technology had been introduced to enhance the selectivity and portability of the described methodology. Oil-soluble CdSe quantum dots (QDs) synthesized in a green way were used as fluorescent material for the selective detection of dimethoate on the basis of static quenching and photoinduced electron transfer mechanism. Among many kinds of paper materials, glass fiber paper was used as the novel substrate of paper chip due to low pristine fluorescence and better performance when combining CdSe QDs. In the process of molecular imprinting, the interaction between several functional monomers and dimethoate molecule was investigated and simulated theoretically by software to improve the selectivity of the sensor. Consequently, the fabricated novel detection platform could effectively respond to dimethoate in 10 min with the concentration range of 0.45-80 µmol/L and detection limit of 0.13 µmol/L. The recovery in the spiked experiment soybean sample was in an acceptable range (97.6-104.1%) and the accuracy was verified by gas chromatography-mass spectrometry, which signified the feasibility and potential in food sampling.

11.
Int J Biol Macromol ; 191: 1038-1045, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34599988

RESUMO

Lentinus edodes is the second-most popular and cultivated mushroom worldwide due to its nutritional and health-promoting benefit. However, the mushroom production generates vast amounts of spent L. edodes substrate (SLS) that is generally discharged into the environment, posing a great challenge within mushroom by-product valorization. In this work, SLS polysaccharide (SP) was ultrasonically extracted by optimizing the process conditions with response surface methodology. Using gradient ethanol precipitation, SP was separated into SP40, SP60 and SP80, and their monosaccharide composition, structural properties, and antioxidant potential were further characterized and compared. The results showed the total polysaccharide content reached up to 37.05 ± 0.31 mg/g under the optimal conditions including an extraction temperature of 50 °C, a liquid-solid ratio of 30 mL/g and an ultrasonic power of 120 W. SP and its fractional precipitations were heteropolysaccharides sharing a similar monosaccharide composition including L-rhamnose, D-glucuronic acid, D-galacturonic acid, d-glucose and D-xylose, and a typical infrared spectrum for polysaccharide. These fractions also varied in the surface morphology, where SP80 was looser and more porous than SP40 and SP60. Furthermore, SP and SP80 displayed the strongest antioxidant activities in vitro. This study identified a novel and practical strategy to valorize SLS for valuable polysaccharide.


Assuntos
Antioxidantes/química , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Cogumelos Shiitake/química , Monossacarídeos/química , Ramnose/química , Temperatura
12.
Food Funct ; 12(21): 10500-10511, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558577

RESUMO

High L-carnitine ingestion has been shown to cause liver injury, mechanically due to an elevated circulating level of trimethylamine-N-oxide (TMAO), a gut microbiota-derived metabolite from L-carnitine. This study aimed to investigate whether chlorogenic acid (CGA), a health-promoting polyphenol, could inhibit TMAO formation and thereafter might prevent L-carnitine-induced liver injury in mice. Feeding of mice with 3% L-carnitine in drinking water increased the serum and urinary levels of TMAO (p < 0.01 vs. Normal), whereas the serum and urinary TMAO formation was sharply reduced by CGA administration (p < 0.01). At the phylum level, CGA inhibited the L-carnitine-induced increase in the abundance of Firmicutes and Proteobacteria, while it promoted Bacteroidetes. At the genus level, CGA notably increased the abundance of Akkermansia and Bacteroides, but reduced the population of Erysipelatoclostridium, Faecalibaculum and Erysipelotrichaceae in high L-carnitine feeding mice. Meanwhile, CGA caused strong inhibition against the increase of liver injury markers (i.e. AST, ALT and ALP), hepatic inflammatory cytokines (i.e. IL-1, IL-6, TNF-α and TNF-ß) and dyslipidemia (i.e. TC, TG, LDL-C and HDL-C) in L-carnitine-fed mice (p < 0.05). These findings suggest that CGA holds great potential to alleviate liver dysfunction induced by high L-carnitine ingestion. The beneficial effect might be attributed to the protection against TMAO formation and the improvement of the health-promoting gut microbiota, as well as the antioxidant and anti-inflammatory properties of CGA.


Assuntos
Carnitina/administração & dosagem , Carnitina/metabolismo , Ácido Clorogênico/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hepatopatias/prevenção & controle , Metilaminas/metabolismo , Ração Animal , Animais , Modelos Animais de Doenças , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos
13.
Food Funct ; 12(18): 8467-8477, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34296715

RESUMO

Activating the thermogenic function of adipocytes is an attractive therapeutic strategy against obesity and its associated metabolic complications. Proanthocyanidins are a class of polyphenols which are widely found in plants and daily foods. This aim of this study is to investigate the modulatory effects of grape seed proanthocyanidin extract (GSPE) on brown adipose tissue (BAT) activity, browning of white adipose tissue (WAT) and microbiome regulation in high-fat diet (HFD)-fed mice and its associated molecular mechanism. An 8-week administration of GSPE at 200 mg per kg bw in mice significantly reduced their final body weight, antagonized their HFD-induced insulin resistance and elevated their levels of adiponectin and leptin, respectively (p < 0.05). GSPE significantly increased the expression levels of thermogenic marker UCP1 in BAT and elevated the expression of a key transcription factor of browning, PRDM16, and thermogenic markers UCP1 and PGC-1α in inguinal white adipose tissue (iWAT). The high doses of GSPE also increased the levels of acetic acid, propionic acid and butyric acid in the colon of HFD-fed mice (p < 0.05). Furthermore, GSPE normalized the colonic Firmicutes/Bacteroidetes ratios, reversed the relative abundance of Weissella, Faecalibaculum, Bacteroides, Akkermansia and Ruminococcus 1 induced by HFD, and improved the structural diversity of the gut microbiota in C57BL/6J mice.


Assuntos
Extrato de Sementes de Uva/farmacologia , Sobrepeso/tratamento farmacológico , Proantocianidinas/farmacologia , Tecido Adiposo Marrom , Tecido Adiposo Branco , Animais , Dieta Hiperlipídica , Microbioma Gastrointestinal/efeitos dos fármacos , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sobrepeso/induzido quimicamente , Termogênese/efeitos dos fármacos
14.
J Food Drug Anal ; 29(1): 87-97, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696221

RESUMO

This study examined the efficacy of non-digestive stachyose on enhancing the absorption of soy isoflavones to improve metabolic syndrome in C57/BL6 mice. UPLC-q/TOF-MS was employed to analyze the content of isoflavones in urine and faeces. Stachyose significantly increased urinary contents of total isoflavones, genistein, daidzein and glycitein in mice. Supplementation of stachyose, soybean isoflavones or a combination prevented high fat diet (HFD)-induced body weight gain, accumulated adipose, dyslipidemia and hyperglycemia in obese mice. Interestingly, co-supplementation of stachyose and isoflavones improved all the mentioned parameters more effectively than administration of stachyose or isoflavones alone. Histological observation of hepatic tissues also confirmed the beneficial effects of co-supplementation of stachyose and isoflavones. These findings suggest that co-ingestion of non-digestible oligosaccharides and polyphenols as normal diet is a promising potential strategy for managing or reducing the risk of metabolic syndrome, which will lead to new knowledge on whole soybean and have extensive application in development of healthy food.


Assuntos
Hiperglicemia , Hiperlipidemias , Isoflavonas , Síndrome Metabólica , Animais , Disponibilidade Biológica , Dieta Hiperlipídica/efeitos adversos , Hiperglicemia/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Síndrome Metabólica/tratamento farmacológico , Camundongos , Camundongos Obesos , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia
15.
J Food Biochem ; 44(11): e13462, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32954518

RESUMO

Colorectal cancer, the most common malignancy in Asian and west world, is listed as the fourth lethal neoplastic disease with increasing incidence worldwide. Recently, Ziziphus jujube were reported with hepatoprotective, antihypertensive, and hypoglycemic functions. The polysaccharides from Ziziphus jujube was considered as the main component for these bioactivities. In this study, polysaccharides from Ziziphus jujube cv. Goutouzao (GZSP) was comprehensively investigated, and characterized as a heteropolysaccharide with antioxidant activity. Besides, it can stimulate the viability of immune cells RAW 264.7, which in turn inhibited the proliferation of colorectal carcinoma cells (LoVo) by inducing apoptosis, arresting cell cycle in G0/G1, and increasing intracellular ROS, as demonstrated by Flow Cytometric analyses. The results suggest that, different from chemotherapeutic modalities, GZSP can exert antitumor effects by activating immune reaction, providing more evidence for the development of GZSP-based functional foods and anticancer drugs serving as human colon cancer prevention. PRACTICAL APPLICATIONS: Natural products from medicinal and edible plant are great sources of phytochemicals beneficial to human health, such as tea polyphenols, carotenoids, and phytosterols, etc. In this study, GZSP, the polysaccharides from a well-received fruit, Ziziphus jujube cv. Goutouzao, has been comprehensively investigated. The results show that GZSP fights against free radicals commonly found in human circulation, a property that enables it to be used as an antioxidant food additive with jujube flavor. More importantly, GZSP impedes neoplastic progression by activating immune response, as evidenced by the inhibition of colorectal carcinoma (LoVo) cells. Comparing with chemotherapies usually imposing cytotoxicity on normal tissues, natural product GZSP is able to exert the antiproliferative effects on carcinoma cells with minimal side-effects. Therefore, GZSP-based functional foods and anticancer drugs with the purpose of preventing human colon cancer formation are promising to be developed.


Assuntos
Neoplasias do Colo , Ziziphus , Antioxidantes/farmacologia , Frutas , Humanos , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia
16.
Int J Biol Macromol ; 156: 186-195, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32278604

RESUMO

Golden kiwifruit (Actinidia chinensis) peel is a by-product enriched with polyphenols. The effects of fleshes of two Actinidia chinensis fruits (ACF) and fleshes with peels of two Actinidia chinensis fruits (ACFP) on lipid homeostasis, fatty acid metabolism and gut microbiota was investigated in healthy rats. Intervention of ACF and ACFP for 4 weeks significantly reduced total cholesterol, total triglycerides, and increased the high-density lipoprotein levels in rats. ACF and ACFP ameliorated lipid peroxidation in rats, by the lowering hepatic MDA level and enhancing GSH-Px and SOD activities. In addition, ACFP significantly decreased the saturated fatty acids in serum and increased the polyunsaturated fatty acids in hepatic and serum of rats. Analysis of gut microbiota revealed that ACF and ACFP evidently increased the microbial richness and diversity of gut microbiota. The Firmicutes/Bacteroidetes ratio was significantly reduced from 3.04 in ND group to 1.34 and 2.12 in ACF and ACFP groups, respectively. Moreover, ACF and ACFP significantly increased the abundance of beneficial bacteria (Lactobacillus and Barnesiella) and reduced harmful bacteria (Enterococcus, Escherichia, and Staphylococcus). Overall, ACFP exerts more potent health-improving effects than ACF. Our study provides a scientific basis for the development of kiwifruit (including pericarp)-based novel natural products with significant health benefits.


Assuntos
Actinidia/química , Ácidos Graxos/metabolismo , Frutas/química , Microbioma Gastrointestinal , Metabolismo dos Lipídeos , Ração Animal , Animais , Antioxidantes/análise , Peso Corporal , Ácidos Graxos/análise , Alimento Funcional , Cromatografia Gasosa-Espectrometria de Massas , Glutationa Peroxidase/metabolismo , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Extratos Vegetais/análise , Extratos Vegetais/química , Polifenóis/análise , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
17.
J Agric Food Chem ; 68(3): 779-787, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31894986

RESUMO

The chain length of fructan determines its different physiological effects. This study is to explore the effects of low-performance inulin [LPI, degree of polymerization (DP) ≤ 9] and high-performance inulin (HPI, DP ≥ 23) on obesity-associated liver injury of high-fat diet (HFD) feeding mice and its underlying mechanism. Eight weeks of supplementation of C57BL/6J mice with HPI, relative to LPI (p < 0.05), caused the more efficient improvement against the HFD-induced liver insulin resistance through activating IRS1/PI3K/Akt pathway and reduced protein expressions of inflammatory factors nuclear factor-kappaB (NF-κB) and interleukin-6 (IL-6) in the liver. HPI exhibited the more positive effects on liver steatosis by inhibiting acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and sterol regulatory element binding protein 1 (SREBP1) in comparison with LPI (p < 0.05). HPI also increased acetic acid, propionic acid, and butyric acid levels in the colon of HFD-fed mice (p < 0.05). Compared to LPI, HPI feeding of HFD-fed mice led to the more effective decrease in the Firmicutes abundance from 72.1% to 34.5%, but a more significant increase in the Bacteroidetes population from 19.8 to 57.1% at the phyla level, and increased the abundance of Barnesiella, Bacteroides, and Parabacteroides at the genus level (p < 0.05). Depending on DP, HPI exerts the more positive regulation on liver injury and gut microbiota dysfunction than LPI.


Assuntos
Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Inulina/administração & dosagem , Inulina/química , Fígado/lesões , Obesidade/tratamento farmacológico , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais/análise , Disbiose/genética , Disbiose/metabolismo , Disbiose/microbiologia , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , NF-kappa B/genética , NF-kappa B/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade/microbiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Polimerização
18.
J Agric Food Chem ; 67(47): 13082-13092, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31671940

RESUMO

Elevated circulating level of the intestinal microbiota-derived l-carnitine metabolite trimethylamine-N-oxide (TMAO) has recently been linked to many chronic diseases. The purpose of our study was to investigate the effects of omega-7-enriched Decaisnea insignis seed oil (DISO) on reducing TMAO formation to prevent the l-carnitine-induced hepatic damage in mice. Feeding of mice with 3% l-carnitine in drinking water clearly increased the serum and urinary levels of TMAO (p < 0.05 vs Normal), whereas the serum and urinary TMAO formation was sharply reduced by DISO administration (p < 0.05). Meanwhile, DISO resulted in strong inhibition against the elevation of hepatic injury marker (AST, ALT, and ALP) activities and dyslipidemia (TC, TG, LDL-C, and HDL-C), as well as liver inflammatory cytokine (IL-1, IL-6, TNF-α, and TNF-ß) release in l-carnitine-fed mice (p < 0.05). As revealed by 16S rDNA gene sequencing, DISO significantly inhibited the l-carnitine-induced elevations in the abundance of Firmicutes, Proteobacteria, and Erysipelotrichaceae and the increases in the proportion of Lactobacillus and Akkermansia, revealing that DISO attenuated the l-carnitine-caused gut dysbiosis. These findings suggested that DISO could alleviate liver dysfunction in l-carnitine-fed mice, which might be due to the protection against TMAO formation by modulating the gut microbiota.


Assuntos
Carnitina/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Hepatopatias/tratamento farmacológico , Magnoliopsida/química , Óleos de Plantas/farmacologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Humanos , Interleucina-1/genética , Interleucina-1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias/metabolismo , Hepatopatias/microbiologia , Masculino , Metilaminas/efeitos adversos , Camundongos , Sementes/química
19.
Food Funct ; 10(10): 6385-6398, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31513213

RESUMO

This aim of this study is to assess the possible effects of dietary okra seed oil (OSO) consumption on attenuation of alcohol-induced liver damage and gut microbiota dysbiosis, and associated mechanisms in mice. Mice were orally administered alcohol alone or in combination with OSO at 400 and 800 mg per kg bw for 8 weeks. OSO caused a strong inhibition of abnormal weight loss and liver fat accumulation in alcohol-administered mice. Malonaldehyde production was also effectively antagonized, and glutathione peroxidase and superoxide dismutase activities were elevated by OSO treatment in ethanol-based mice (p < 0.05). Concentrations of hepatic TNF-α, IL-1 and IL-6 were decreased after OSO treatment when compared with alcohol-treated mice, respectively (p < 0.05). As revealed by 16S rDNA gene sequence analysis, OSO notably reduced the Proteobacteria proportion and enhanced the Bacteroidetes population of alcohol-treated mice, and a significant reduction in Clostridium XlVa and Staphylococcus was observed, revealing that OSO attenuated the alcohol-induced gut dysbiosis. OSO also attenuated lipid metabolic disorder by modulating metabolism of serum free fatty acids in ethanol-based mice, but had no significant difference in cecum total short-chain fatty acids among the tested mice. Amelioration of these parameters and liver injury via H&E staining examination demonstrated that OSO consumption could effectively protect against liver damage and maintain intestinal eubiosis in mice.


Assuntos
Abelmoschus/química , Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Hepatopatias Alcoólicas/tratamento farmacológico , Óleos de Plantas/administração & dosagem , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Disbiose/genética , Disbiose/metabolismo , Disbiose/microbiologia , Humanos , Interleucina-1/genética , Interleucina-1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/microbiologia , Masculino , Camundongos , Sementes/química
20.
J Agric Food Chem ; 67(38): 10667-10677, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31483636

RESUMO

This study investigated the modulatory effects of Decaisnea insignis seed oil (DISO), which was rich in palmitoleic acid (55.25%), palmitic acid (12.25%), and oleic acid (28.74%), on alcohol-induced metabolism disorder in mice. Fifty mice were orally administered with 38% alcohol (0.4 mL/day) and without or with DISO (3, 6, and 12 g/kg) for consecutive 12 weeks. DISO inhibited the alcohol-induced weight loss and liver function abnormality (p < 0.01) and shifted the profiles of cecal microbiome: elevating the abundance of Lactobacillus, Ruminoccoceae_UCG_004 (p < 0.05) and decreasing abundance of Parabacteroides (p < 0.05). This treatment also regulated metabolome response of amino acid and lipid metabolism in cecal content: upregulating 5-hydroxyindole-3-acetic acid (p < 0.05), 6-hydroxynicotinic acid, 5-methoxytryptamine, nicotinamide, and nicotinic acid (p < 0.1) and downregulating androsterone, tryptophan, and indole-3-acetamide (p < 0.05). DISO protected against alcoholic liver injury and gut microbiota dysbiosis by enriching the relative abundance of Lactobacillus, which was positively associated with the improvement of intestinal permeability and tryptophan metabolism.


Assuntos
Álcoois/efeitos adversos , Disbiose/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Hepatopatias Alcoólicas/prevenção & controle , Magnoliopsida/química , Óleos de Plantas/administração & dosagem , Consumo de Bebidas Alcoólicas/efeitos adversos , Aminoácidos/metabolismo , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Ceco/efeitos dos fármacos , Ceco/microbiologia , Disbiose/metabolismo , Disbiose/microbiologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/microbiologia , Masculino , Metaboloma/efeitos dos fármacos , Camundongos , Microbiota/efeitos dos fármacos , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA