Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Sci Rep ; 14(1): 11079, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745047

RESUMO

N-acetyl glucosamine (NAG) is a natural amino sugar found in various human tissues with previously described anti-inflammatory effects. Various chemical modifications of NAG have been made to promote its biomedical applications. In this study, we synthesized two bi-deoxygenated NAG, BNAG1 and BNAG2 and investigated their anti-inflammatory properties, using an in vivo and in vitro inflammation mouse model induced by lipopolysaccharide (LPS). Among the parent molecule NAG, BNAG1 and BNAG2, BNAG1 showed the highest inhibition against serum levels of IL-6 and TNF α and the leukocyte migration to lungs and peritoneal cavity in LPS challenged mice, as well as IL-6 and TNF α production in LPS-stimulated primary peritoneal macrophages. BNAG2 displayed an anti-inflammatory effect which was comparable to NAG. These findings implied potential application of these novel NAG derivatives, especially BNAG1, in treatment of certain inflammation-related diseases.


Assuntos
Acetilglucosamina , Anti-Inflamatórios , Lipopolissacarídeos , Macrófagos Peritoneais , Fator de Necrose Tumoral alfa , Animais , Acetilglucosamina/farmacologia , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-6/sangue , Inflamação/tratamento farmacológico , Masculino , Modelos Animais de Doenças
2.
Life Sci ; 344: 122583, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508232

RESUMO

AIMS: Formyl peptide receptor 1 (FPR1), from a G-protein coupled receptor family, was previously well-characterized in immune cells. But the function of FPR1 in osteogenesis and fracture healing was rarely reported. This study, using the FPR1 knockout (KO) mouse, is one of the first studies that try to investigate FPR1 function to osteogenic differentiation of bone marrow-derived stem cells (BMSCs) in vitro and bone fracture healing in vivo. MATERIALS AND METHODS: Primary BMSCs were isolated from both FPR1 KO and wild type (WT) mice. Cloned mouse BMSCs (D1 cells) were used to examine role of FoxO1 in FPR1 regulation of osteogenesis. A closed, transverse fracture at the femoral midshaft was created to compare bone healing between KO and WT mice. Biomechanical and structural properties of femur were compared between healthy WT and KO mice. KEY FINDINGS: FPR1 expression increased significantly during osteogenesis of both primary and cloned BMSCs. Compared to BMSCs from FPR1 KO mice, WT BMSCs displayed considerably higher levels of osteogenic markers as well as mineralization. Osteogenesis by D1 cells was inhibited by either an FPR1 antagonist cFLFLF or a specific inhibitor of FoxO1, AS1842856. In addition, the femur from WT mice had better biomechanical properties than FPR1 KO mice. Furthermore, bone healing in WT mice was remarkably improved compared to FPR1 KO mice analyzed by X-ray and micro-CT. SIGNIFICANCE: These findings indicated that FPR1 played a vital role in osteogenic differentiation and regenerative capacity of fractured bone, probably through the activation of FoxO1 related signaling pathways.


Assuntos
Osteogênese , Receptores de Formil Peptídeo , Camundongos , Animais , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/metabolismo , Camundongos Knockout , Consolidação da Fratura , Fêmur/metabolismo , Diferenciação Celular , Células da Medula Óssea
3.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260564

RESUMO

Crohn's disease (CD) has been traditionally viewed as a chronic inflammatory disease that cause gut wall thickening and complications, including fistulas, by mechanisms not understood. By focusing on Parabacteroides distasonis (presumed modern succinate-producing commensal probiotic), recovered from intestinal microfistulous tracts (cavernous fistulous micropathologies CavFT proposed as intermediate between 'mucosal fissures' and 'fistulas') in two patients that required surgery to remove CD-damaged ilea, we demonstrate that such isolates exert pathogenic/pathobiont roles in mouse models of CD. Our isolates are clonally-related; potentially emerging as transmissible in the community and mice; proinflammatory and adapted to the ileum of germ-free mice prone to CD-like ileitis (SAMP1/YitFc) but not healthy mice (C57BL/6J), and cytotoxic/ATP-depleting to HoxB8-immortalized bone marrow derived myeloid cells from SAMP1/YitFc mice when concurrently exposed to succinate and extracts from CavFT-derived E. coli , but not to cells from healthy mice. With unique genomic features supporting recent genetic exchange with Bacteroides fragilis -BGF539, evidence of international presence in primarily human metagenome databases, these CavFT Pdis isolates could represent to a new opportunistic Parabacteroides species, or subspecies (' cavitamuralis' ) adapted to microfistulous niches in CD.

4.
Neoplasma ; 70(6): 777-786, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38247333

RESUMO

ChaC glutathione-specific γ-glutamylcyclotransferase 1 (CHAC1) is involved in intracellular glutathione depletion, ferroptosis, and tumorigenesis. The functional role of CHAC1 expression in thyroid carcinoma has not yet been established. The present study aimed to investigate the impact and mechanisms of CHAC1 on ferroptosis and radiation sensitivity in thyroid carcinoma. CHAC1 expression was examined in tumor tissue specimens and microarrays and thyroid carcinoma cell lines. CHAC1 was silenced or overexpressed by lentivirus transfection in thyroid carcinoma cells. Cell viability and lipid ROS levels were evaluated by Cell Counting Kit-8 and flow cytometry, respectively. The effect of CHAC1 on tumor growth in vivo was also measured. Ferroptosis-related proteins were measured by western blotting. CHAC1 expression was decreased in patients with thyroid carcinoma, and overexpression of CHAC1 suppressed cell viability of BCPAP cells and tumor growth in xenografted nude mice. Exposure to Ferrostatin-1, a ferroptosis inhibitor, significantly attenuated the inhibitory effects of CHAC1 overexpression on cell viability. In CHAC1-overexpressing BCPAP cells, ferroptosis was induced as indicated by increased lipid ROS production and PTGS2 expression. Knocking down of CHAC1 in K1 cells significantly induced cell viability, reduced lipid ROS production and PTGS2 expression, and enhanced GPX4 expression. Such effects were attenuated by RSL3, a ferroptosis inducer. Furthermore, we showed that CHAC1 overexpression enhanced radiation sensitivity in BCPAP cells as indicated by decreased cell viability, while CHAC1 knockdown had reversed effects in K1 cells as indicated by increased cell viability. Taken together, CHAC1 overexpression promoted ferroptosis and enhanced radiation sensitivity in thyroid carcinoma.


Assuntos
Ferroptose , Neoplasias da Glândula Tireoide , gama-Glutamilciclotransferase , Animais , Humanos , Camundongos , Ciclo-Oxigenase 2 , Ferroptose/genética , Glutationa , Lipídeos , Camundongos Nus , Espécies Reativas de Oxigênio , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/radioterapia , gama-Glutamilciclotransferase/genética , gama-Glutamilciclotransferase/metabolismo
5.
Hum Cell ; 35(6): 1900-1911, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36104652

RESUMO

Although PYCR1 is a well-recognized oncogenic gene for malignant tumors, the causal relationship of its expression with malignant growth and cytotoxic chemotherapeutics remains unclear. Therefore, this study aimed to clarify the role of PYCR1 and its interaction with SLC25A10 in a chemotherapeutic agent 5-fluorouracil (5-FU)'s toxicity to colorectal cancer cells. PYCR1 and SLC25A10 expressions were detected in The Cancer Genome Atlas database and colon adenocarcinoma (COAD) clinical samples. PYCR1 upregulation was associated with SLC25A10 expression and poor prognosis, and its high expression indicated decreased survival rates in patients with COAD. PYCR1 overexpression inhibited lipid reactive oxygen species production and promoted SLC25A10 expression in colorectal cancer cells. PYCR1 silencing enhanced the antitumor effects of 5-FU. Ferroptosis inhibitor deferoxamine suppressed the antitumor effects of PYCR1 silencing, whereas ferroptosis inducer erastin inhibited the protumor effects of PYCR1 overexpression. SLC25A10 overexpression reversed the antitumor effects of PYCR1 silencing in vitro and inhibited the antitumor effects of erastin in vivo. Therefore, PYCR1 is an oncogenic gene that promotes colorectal tumor growth and desensitizes colorectal cancer cells to 5-FU cytotoxicity by preventing apoptosis and ferroptosis.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Transportadores de Ácidos Dicarboxílicos , Ferroptose , Pirrolina Carboxilato Redutases , Adenocarcinoma , Apoptose/genética , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Transportadores de Ácidos Dicarboxílicos/genética , Ferroptose/genética , Fluoruracila/farmacologia , Humanos , Lipídeos/farmacologia , Lipídeos/uso terapêutico , Pirrolina Carboxilato Redutases/genética , Espécies Reativas de Oxigênio/metabolismo , delta-1-Pirrolina-5-Carboxilato Redutase
6.
Mol Imaging Biol ; 23(6): 895-904, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34031844

RESUMO

PURPOSE: Although inflammation has been recognized as a key process in the pathogenesis of osteoarthritis (OA), there remains no clinical noninvasive imaging modality that can specifically diagnose inflammatory activity of OA. In this study, a formyl peptide receptor 1 (Fpr1) targeting probe cFLFLF-PEG-HYNIC-99mTc and single-photon emission computed tomography (SPECT) imaging was used to detect inflammatory activity by targeting macrophages involved in the pathogenesis of OA. PROCEDURES: In vitro experiments were performed to evaluate Fpr1 expression during macrophage inflammatory response. In the in vivo studies, anterior cruciate ligament transection (ACLT) surgery was performed, and magnetic resonance imaging (MRI) and histological data were assessed to analyze the OA model in both mice and rats. The radioactive probe cFLFLF-PEG-HYNIC-99mTc and SPECT imaging were used to corroborate OA-related inflammation and compare ACLT vs sham knees. RESULTS: In vitro macrophage activation resulted in a remarkable increase in Fpr1 expression. In vivo experiments in mice and rats produced similar results. MRI and histological analysis demonstrated significant joint degeneration in the ACLT knee. The ACLT knee produced a much stronger signal from the probe when compared to the sham knee. It is important to note that the ratio of ACLT/sham knee signal intensity decreased with OA progression, indicating greater differences earlier in the progression of OA. CONCLUSION: The radioactive probe cFLFLF-PEG-HYNIC-99mTc and SPECT imaging are effective for detecting and monitoring inflammation during OA progression by targeting Fpr1 expression in the knee joint.


Assuntos
Osteoartrite , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Modelos Animais de Doenças , Inflamação/diagnóstico por imagem , Ativação de Macrófagos , Camundongos , Osteoartrite/diagnóstico por imagem , Peptídeos , Ratos , Tomografia Computadorizada de Emissão de Fóton Único/métodos
7.
Mol Med Rep ; 23(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760110

RESUMO

Corilagin, extracted from the Euphorbiaceae and Phyllanthus plants, inhibits the growth of a number of types of tumors. Compared with temozolomide, the traditional chemotherapy drug, corilagin has demonstrated stronger antitumor activity. However, the pharmaceutical mechanism of corilagin in glioma remains unclear. Nuclear factor erythroid 2 like 2 (NFE2L2 or NRF2) is positively associated with several types of tumor including glioma. In the present study, NRF2 expression was higher in glioma tissues compared with non­glioma specimens. Therefore, it was hypothesized that corilagin targets NRF2 regulation of U251 cell apoptosis. The present study used Hoechst 33258 staining to demonstrate that corilagin induced glioma cell apoptosis and observed that the expression of the apoptosis­related gene Bcl­2 was reduced. In addition, corilagin induced autophagy and promoted the conversion of light chain 3 (LC3) protein from LC3Ⅰ to LC3II. NRF2 expression was downregulated by corilagin stimulation. Furthermore, the gene expression pattern following knockdown of NRF2 in U251 cells using siRNA was consistent with corilagin stimulation. Therefore, it was preliminarily concluded that corilagin induces apoptosis and autophagy by reducing NRF2 expression.


Assuntos
Autofagia/efeitos dos fármacos , Glioma/tratamento farmacológico , Glucosídeos/farmacologia , Taninos Hidrolisáveis/farmacologia , Fator 2 Relacionado a NF-E2/genética , Adulto , Idoso , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/genética , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos , Temozolomida/farmacologia
8.
Immunopharmacol Immunotoxicol ; 42(5): 456-463, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32787484

RESUMO

OBJECTIVE: It has been reported that glutathione (GSH), the most abundant cellular antioxidant, can inhibit production of pro-inflammatory cytokines by activated macrophages. Bromosulfophthalein (BSP) has been recognized as an inhibitor of the efflux of reduced GSH from cells, leading to an increase in the intracellular GSH level. In this study, we evaluated, for the first time, whether BSP possessed anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated macrophages. MATERIALS AND METHODS: RAW 264.7 cells were treated with BSP and the levels of proinflammatory cytokines, GSH, and nitrite were assessed. Gene expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF α), interleukin-1beta (IL-1ß), and interleukin-6 (IL-6) was analyzed via quantitative RT-PCR. We also examined various inflammatory signaling pathways including Akt/forkhead box protein O1 (FoxO1)/toll-like receptor 4 (TLR4), mitogen-activated protein kinases (MAPKs), and Fas protein by Western blot and flow cytometry analysis. RESULTS: Our study demonstrated that BSP induced an increase in intracellular GSH level in LPS-stimulated macrophages. BSP inhibited production of nitric oxide and proinflammatory cytokines. BSP increased phosphorylation of Akt and nuclear exclusion of FoxO1 and suppressed TLR4 expression. Additionally, BSP decreased MAPKs activation and Fas expression. DISCUSSION AND CONCLUSION: Taken together, these data suggest that BSP can attenuate inflammation through multiple signaling pathways. These findings highlight the potential of BSP as a new anti-inflammatory agent.


Assuntos
Anti-Inflamatórios/farmacologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Sulfobromoftaleína/farmacologia , Animais , Citocinas/genética , Citocinas/metabolismo , Proteína Forkhead Box O1/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Receptor fas/metabolismo
9.
J Mater Chem B ; 8(25): 5483-5490, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32475994

RESUMO

Along with the development of controlled delivery systems for targeted therapy, 'single-strategy' therapy often fails to achieve the desired performance in real body internal environments. In such a case, it is necessary to develop synergistic therapy strategies. Herein, for the first time, we designed and synthesized hyaluronic acid (HA) modified Ag@S-nitrosothiol core-shell nanoparticles for synergistic tumor cell targeted therapy based on photothermal therapy (PTT) and nitric oxide (NO) based chemotherapy. Triggered by near-infrared irradiation (NIR), the Ag core nanoparticle would convert the light to cytotoxic heat via a surface plasmon resonance mechanism for cancer cell apoptosis. Meanwhile, responding to NIR as well as the generated heat, the S-nitrosothiol polymeric shells would give off free NO at high concentration, inducing NO based chemotherapy. Tumor cell selective cytotoxicity assay in vitro as well as tumor bearing mouse experiments in vivo demonstrated the effective photothermal and NO based chemical synergistic tumor targeted therapy. This spatiotemporally controllable system could provide a new option and era for tumor targeted therapy in the future.


Assuntos
Antineoplásicos/farmacologia , Nanopartículas/química , Terapia Fototérmica , S-Nitrosotióis/farmacologia , Prata/farmacologia , Enxofre/química , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Células Hep G2 , Humanos , Ácido Hialurônico/química , Raios Infravermelhos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Óxido Nítrico/análise , Tamanho da Partícula , S-Nitrosotióis/química , Prata/química , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
10.
Int J Nanomedicine ; 14: 4145-4155, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31239673

RESUMO

Background: There is emerging evidence which suggests that cellular ROS including nitric oxide (NO) are important mediators for inflammation and osteoarthritis (OA). Water-soluble polyhydroxylated fullerene C60 (fullerol) nanoparticle has been demonstrated to have an outstanding ability to scavenge ROS. Purpose: The objective of this study is to assess the effects of fullerol on inflammation and OA by in vitro and in vivo studies. Methods: For in vitro experiments, primary mouse peritoneal macrophages and a macrophage cell line RAW264.7 were stimulated to inflammatory phenotypes by lipopolysaccharide (LPS) in the presence of fullerol. For the animal study, OA model was created by intra-articular injection of monoiodoacetate into the knee joints of rats and fullerol was intravenously injected immediately after OA induction. Results: NO production and pro-inflammatory gene expression induced by LPS was significantly diminished by fullerol in both macrophage cell types. Meanwhile, fullerol could remarkably reduce phosphorylation of p38 mitogen-activated protein kinase, and protein level of transcription factors nuclear factor-kappaB and forkhead box transcription factor 1 within the nucleus. The animal study delineated that systematic administration of fullerol prevented OA, inhibiting inflammation of synovial membranes and the damage toward the cartilage chondrocytes in the OA joints. Conclusion: Antioxidative fullerol may have a potential therapeutic application for OA.


Assuntos
Antioxidantes/farmacologia , Fulerenos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Nanopartículas/química , Osteoartrite/patologia , Animais , Células Cultivadas , Feminino , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Articulações/efeitos dos fármacos , Articulações/patologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/patologia , Masculino , Camundongos , Modelos Biológicos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Osteoartrite/tratamento farmacológico , Células RAW 264.7 , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
11.
Colloids Surf B Biointerfaces ; 181: 400-407, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31174075

RESUMO

The external force guided targeting strategy, as well as the in vivo active targeting strategy based on "ligands-receptors" on the targeting cells and tissues have attracted much research interest. Herein, a kind of hyaluronic acid (HA) and folic acid (FA) modified magnetic S-nitrosothiols core-shell nanoparticles for nitric oxide (NO) control release as dual-tumor targeting theranostic platform were described, combining the external guidance and internal active targeting properties. Confocal microscopy assay and cells cytotoxicity experiments confirmed the active tumor cells targeting recognition, cells uptake, and NO initiated cytotoxicity of the HA-FA external functional layer modified S-nitrosothiols nanoparticles in vitro. In vivo magnetic resonance imaging (MRI) characterization, bio-distribution assay in organs and tumor, significant tumor inhibition efficacy, survival units of the mice bearing tumor, as well as the systemic toxicity assay demonstrated the efficiency of cooperative tumor targeting diagnosis and controlled NO-releasing chemotherapy. To the best of our knowledge, this is the first time of the external magnet and HA-FA actively induced synergistic effect tumor targeting systems based on NO chemotherapy in vivo, serving as a new theranostic system.


Assuntos
Antineoplásicos/farmacologia , Nanopartículas de Magnetita/química , S-Nitrosotióis/farmacologia , Nanomedicina Teranóstica , Animais , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Neoplasias Hepáticas Experimentais/diagnóstico por imagem , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Imageamento por Ressonância Magnética , Microscopia Confocal , Imagem Óptica , Tamanho da Partícula , S-Nitrosotióis/química , Propriedades de Superfície
12.
Colloids Surf B Biointerfaces ; 173: 356-365, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30316082

RESUMO

It is the goal for the development of cancer target chemotherapy with specific recognition, efficient killing the tumor cells and tissues to avoid the intolerable side effects. Molecular imprinted polymer (MIPs) nanoparticles could introduce kinds of specific bio-markers (template molecules) into the nanoparticles with the subsequent removal, leaving special holes in the structure with predictable recognition specificity with cells. Herein, we design and synthesize a kind of sialic acid (SA) over-expressed tumor target hollow double-layer imprinted polymer nanoparticles with S-nitrosothiols for nitric oxide (NO)-releasing as chemotherapy. Equilibrium/selective bindings properties and probe experimental results implies that the MIPs have an intelligently selective binding to cancer cells featuring high levels of SA glyans, providing precondition for the disulfide polymer assisted cell uptake, intracellular GSH induced decomposition and rapid NO-releasing. Cytotoxicity assay with kinds of cells demonstrates the intelligent in vitro SA over-expressed tumor cells targeting recognition, intracellular delivery and cytotoxicity. In vivo bio-distribution in tumor sites and major organs, significant suppression of tumor growth, tumor-bearing mice survival unit, and the systemic toxicity investigation experiments confirm the effective chemotherapy of the S-nitrosothiols MIPs nanoparticles for the target recognition and the controlled NO release for tumor treatment comparing to the results with S-nitrosothiols CPs as delivery system. The inevitable small amount of NO leakage from S-nitrosothiols MIPs would take part in normal physiological activities and not cause serious side effects. For the first time, this kind of nitric oxide based chemotherapy and molecular-imprinting cell recognition technique both in vitro and in vivo, might provide a solution for accurate therapy to various forms of cancer with specific markers and avoid the intolerable side effects of the traditional chemotherapy treatment.


Assuntos
Antineoplásicos/farmacologia , Impressão Molecular/métodos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Pró-Fármacos/farmacologia , S-Nitrosotióis/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Ácidos Borônicos/química , Linhagem Celular Tumoral , Portadores de Fármacos , Coração/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Células MCF-7 , Metacrilatos/química , Camundongos , Camundongos Nus , Nanopartículas/ultraestrutura , Neoplasias/metabolismo , Neoplasias/mortalidade , Neoplasias/patologia , Óxido Nítrico/biossíntese , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , S-Nitrosotióis/química , S-Nitrosotióis/farmacocinética , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Baço/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Compostos de Vinila/química , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Biomater Sci Polym Ed ; 30(2): 122-136, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30522414

RESUMO

A kind of tumor targeting nitric oxide donor nanoparticle with brushes is described in this paper. The poly(4-vinylphenylboronic acid) polymeric brush, which shows glucose and pH dual responsiveness, endows the ability of hollow S-nitrosothiols nanoparticle to accurate recognition and binding with the sialic acid over-expressed type tumor cells, such as HepG2 and MCF-7 cells. In vitro experiments, including cells capture and release experiments, confocal fluorescence microscope characterization, cytotoxicity assay with different cells, demonstrate the selective recognition and the controlled NO release to kill tumor cells for these S-nitrosothiols nanoparticles. Low concentration of the released NO from the S-nitrosothiols nanoparticles in the transmission would participate physiological activity and avoid serious side effects because the endogenous nature and the physiological necessity to regulate normal biological functions. To the best of our knowledge, this is the first report about polymer nanoparticles as NO donors with functional brushes to selectively identify tumor cells and release NO in a controlled manner.


Assuntos
Antineoplásicos/química , Nanopartículas/química , Doadores de Óxido Nítrico/química , Óxido Nítrico/química , Polímeros/química , S-Nitrosotióis/química , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Ácidos Borônicos/química , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/efeitos adversos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Células Hep G2 , Humanos , Células MCF-7 , Terapia de Alvo Molecular , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo , Óxido Nítrico/efeitos adversos , Óxido Nítrico/farmacologia , Porosidade , Compostos de Vinila/química
14.
J Mater Chem B ; 5(36): 7519-7528, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32264227

RESUMO

Tumor targeted hollow double-layered polymer nanoparticles (HDPNs) with S-nitrosothiols for nitric oxide (NO)-release as chemotherapy were described. Via a two-stage distillation precipitation co-polymerization, simple post-treatment and S-nitrosothiol modification, the S-nitroso HDPNs showed pH and glucose dual responsiveness. This would benefit accurate binding with the sialic acid over-expressed cancer cells, providing prerequisites for the disulfide polymer assisted cell uptake, intracellular GSH induced decomposition and rapid NO release. Confocal microscopy and cytotoxicity assay with normal versus tumor cells demonstrated in vitro recognition, intracellular delivery ability and tumor cell targeting cytotoxicity. Especially worth mentioning, the inevitable small amount of NO leakage in the transmission would take part in normal physiological activities and not cause serious side effects, providing a possible solution to avoid the intolerable side effects of traditional chemotherapy treatments for cancer.

15.
ACS Appl Mater Interfaces ; 8(41): 27622-27631, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27686162

RESUMO

In recent years, considerable efforts have been made for the development of multifunctional nanoparticles with diagnosis and therapy functions. To achieve enhanced CT imaging and photothermal therapy on the tumor, we employed iodinated nanoparticles as template to construct Au nanoshell structure and demonstrated a facile but effective approach to synthesize biocompatible and well-dispersed multifunctional nanoparticles by coating iodinated nanoparticles with Au nanoshell and subsequent surface modification by hyaluronic acid. The resultant poly(2-methacryl(3-amide-2,4,6-triiodobenzoic acid))/polyethylenimine/Au nanoshell/hyaluronic acid (PMATIB/PEI/Au nanoshell/HA) nanoparticles had relatively high X-ray attenuation coefficient and photothermal efficiency. After intravenous injection into MCF-7 tumor-bearing mice, PMATIB/PEI/Au nanoshell/HA nanoparticles were efficiently accumulated in the tumor, remarkably enhanced the tumor CT imaging, and selectively ablated the tumor through the thermal treatment of lesions under the NIR irradiation. Thus, PMATIB/PEI/Au nanoshell/HA nanoparticles displayed a great potential for CT diagnosis and CT-guided, focused photothermal tumor therapy.

16.
J Orthop Res ; 34(9): 1529-38, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26717557

RESUMO

Macrophages play a crucial role in the pathogenesis of osteoarthritis (OA). In this study, the feasibility of a formyl peptide receptor 1 (Fpr1)-targeting peptide probe cFLFLF-PEG-(64) Cu via positron emission tomography (PET) imaging was investigated for detection of macrophage activity during development of OA. Monoiodoacetate (MIA) was intraarticularly injected into the knee joint of Sprague-Dawley rats to induce OA. Five days later, cFLFLF-PEG-(64) Cu (∼7,400 kBq/rat) was injected into the tail vein and microPET/CT imaging was performed to assess the OA inflammation by detecting infiltration of macrophages by Fpr1 expression. In addition, a murine macrophage cell line RAW264.7 and two fluorescent probes cFLFLF-PEG-cyanine 7 (cFLFLF-PEG-Cy7) and cFLFLF-PEG-cyanine 5 (cFLFLF-PEG-Cy5) were used to define the binding specificity of the peptide to macrophages. It was found with the MIA model that the maximal standard uptake values (SUVmax ) for right (MIA treated) and left (control) knees were 17.96 ± 5.45 and 3.00 ± 1.40, respectively. Histological evaluation of cryomicrotome sections showed that Fpr1 expression, cFLFLF-PEG-Cy5 binding, and tartrate-resistant acid phosphatase activity were elevated in the injured synovial membranes. The in vitro experiments demonstrated that both fluorescent peptide probes could bind specifically to RAW264.7 cells, which was blocked by cFLFLF but not by the scramble peptide. The findings highlighted the use of cFLFLF-PEG-(64) Cu/PET as an effective method potentially applied for detection and treatment evaluation of OA. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1529-1538, 2016.


Assuntos
Artrite Experimental/diagnóstico por imagem , Macrófagos , Oligopeptídeos , Compostos Organometálicos , Osteoartrite/diagnóstico por imagem , Polietilenoglicóis , Receptores de Formil Peptídeo/análise , Animais , Artrite Experimental/imunologia , Estudos de Viabilidade , Feminino , Osteoartrite/imunologia , Tomografia por Emissão de Pósitrons , Ratos Sprague-Dawley
17.
Cell Tissue Res ; 362(3): 577-85, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26224539

RESUMO

Dimethyl sulfoxide (DMSO) is an FDA-approved organosulfur solvent that is reported to have therapeutic value in osteoarthritis and osteopenia. DMSO is used as a cryoprotectant for the cryopreservation of bone grafts and mesenchymal stem cells which are later used for bone repair. It is also used as a solvent in the preparation of various scaffolds used for bone tissue engineering purposes. DMSO has been reported to inhibit osteoclast formation in vitro but the mechanism involved has remained elusive. We investigated the effect of DMSO on osteoclast differentiation and function using a conventional model system of RAW 264.7 cells. The differentiation of RAW 264.7 cells was induced by adding 50 ng/ml RANKL and the effect of DMSO (0.01 and 1% v/v) on RANKL-induced osteoclastogenesis was investigated. Addition of 1% DMSO significantly inhibited RANKL-induced formation of TRAP+, multinucleated, mature osteoclasts and osteoclast late-stage precursors (c-Kit(-) c-Fms(+) Mac-1(+) RANK(+)). While DMSO did not inhibit proliferation per se, it did inhibit the effect of RANKL on proliferation of RAW 264.7 cells. Key genes related to osteoclast function (TRAP, Integrin αVß3, Cathepsin K and MMP9) were significantly down-regulated by DMSO. RANKL-induced expression of RANK gene was significantly reduced in the presence of DMSO. Our data, and reports from other investigators, that DMSO enhances osteoblastic differentiation of mesenchymal stem cells and also prevents bone loss in ovarietcomized rats, suggest that DMSO has tremendous potential in the treatment of osteoporosis and bone diseases arising from uncontrolled activities of the osteoclasts.


Assuntos
Dimetil Sulfóxido/farmacologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Fosfatase Ácida/metabolismo , Animais , Catepsina K/genética , Catepsina K/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Integrinas/genética , Integrinas/metabolismo , Isoenzimas/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/enzimologia , Ligante RANK/farmacologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fosfatase Ácida Resistente a Tartarato
18.
Int J Nanomedicine ; 9: 4023-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25187705

RESUMO

Antioxidants were implicated as potential reagents to enhance osteogenesis, and nano-fullerenes have been demonstrated to have a great antioxidative capacity by both in vitro and in vivo experiments. In this study, we assessed the impact of a polyhydroxylated fullerene, fullerol, on the osteogenic differentiation of human adipose-derived stem cells (ADSCs). Fullerol was not toxic against human ADSCs at concentrations up to 10 µM. At a concentration of 1 µM, fullerol reduced cellular reactive oxygen species after a 5-day incubation either in the presence or in the absence of osteogenic media. Pretreatment of fullerol for 7 days increased the osteogenic potential of human ADSCs. Furthermore, when incubated together with osteogenic medium, fullerol promoted osteogenic differentiation in a dose-dependent manner. Finally, fullerol proved to promote expression of FoxO1, a major functional isoform of forkhead box O transcription factors that defend against reactive oxygen species in bone. Although further clarification of related mechanisms is required, the findings may help further development of a novel approach for bone repair, using combined treatment of nano-fullerol with ADSCs.


Assuntos
Adipócitos/efeitos dos fármacos , Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fulerenos/farmacologia , Osteogênese/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/toxicidade , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Fulerenos/química , Fulerenos/toxicidade , Humanos , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo
19.
J Colloid Interface Sci ; 429: 34-44, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24935187

RESUMO

The folic acid (FA)-conjugated pH/temperature/redox multi-stimuli responsive poly(methacrylic acid-co-N,N-bis(acryloyl)cystamine/poly(N-isopropylacrylamide-co-glycidyl methacrylate-co-N,N-bis(acryloyl)cystamine) microspheres were prepared by a two-stage distillation-precipitation polymerization with subsequent surface modification with FA. The microspheres were characterized by transmission electron microscopy, dynamical light scattering, Fourier-transform infrared spectra, UV-vis spectra and elemental analysis. The degradation of the functional microspheres could be triggered by a reductive reagent, such as glutathione, due to presence of BAC crosslinker. The drug-loaded microspheres exhibited a pH/temperature/redox multi-stimuli responsive drug release character for doxorubicin hydrochloride as a model anti-cancer drug, which was efficiently loaded into the microspheres with a high loading capacity of 208.0% and an encapsulation efficiency of 85.4%. In vitro drug delivery study indicated that the FA-conjugated microspheres could deliver Dox into MCF-7 cells more efficiently than the microspheres without functionalization of FA. Furthermore, WST-1 assay showed that the microspheres had no obvious toxicity to MCF-7 cells even at a high concentration of 2000 µg mL(-1). The resultant microsphere may be a promising vector for delivery of anti-cancer drugs as it exhibits a low cytotoxicity and degradability, precise molecular targeting property and multi-stimuli responsively controlled drug release.


Assuntos
Antineoplásicos/administração & dosagem , Ácido Fólico/química , Microesferas , Polímeros/química , Portadores de Fármacos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
20.
Connect Tissue Res ; 55(2): 132-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24409809

RESUMO

Abstract Cell death (apoptosis and necrosis) and extracellular matrix destruction induced by oxidative stress have been suggested to be closely involved in the process of disc degeneration. Glutathione, a natural peptide as a powerful antioxidant in human cytoplasm, plays an important role in protecting living cells. This study is to investigate whether glutathione could retard degenerated phenotypes in cultured disc cells. Human nucleus pulposus cells were isolated and cultured in alginate beads and subsequently treated with a pro-oxidant H2O2 alone or a pro-inflammatory cytokine IL-1ß alone or either of them together with glutathione. It was shown that H2O2 dose-dependently promoted nucleus pulposus cell apoptosis detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining and decreased mRNA levels of matrix proteins aggrecan and type II collagen determined by quantitative reverse transcription-polymerase chain reaction (RT-PCR). IL-1ß could induce production of nitric oxide and decrease of proteoglycan, detected by the Griess reagent and the dimethyl methylene blue, respectively. The deleterious effects of either H2O2 or IL-1ß could be efficiently prevented by glutathione. These results indicated that glutathione might be considered as an option for intervention of disc degeneration.


Assuntos
Apoptose/efeitos dos fármacos , Colágeno Tipo II/biossíntese , Matriz Extracelular/metabolismo , Glutationa/farmacologia , Disco Intervertebral/metabolismo , Células Cultivadas , Criança , Matriz Extracelular/patologia , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Interleucina-1beta/farmacologia , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Masculino , Oxidantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA