Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biol Drug Des ; 103(5): e14556, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772881

RESUMO

Histone deacetylase 6 (HDAC6), as the key regulatory enzyme, plays an important role in the development of the nervous system. More and more studies indicate that HDAC6 has become a promising therapeutic target for CNS diseases. Herein we designed and synthesized a series of novel HDAC6 inhibitors with benzothiadiazinyl systems as cap groups and evaluated their activity in vitro and in vivo. Among them, compound 3 exhibited superior selective inhibitory activity against HDAC6 (IC50 = 5.1 nM, about 30-fold selectivity over HDAC1). The results of docking showed that compound 3 can interact well with the key amino acid residues of HDAC6. Compound 3 showed lower cytotoxicity (20 µM to SH-SY5Y cells, inhibition rate = 25.75%) and better neuroprotective activity against L-glutamate-induced SH-SY5Y cell injury model in vitro. Meanwhile, compound 3 exhibited weak cardiotoxicity (10 µM hERG inhibition rate = 17.35%) and possess good druggability properties. Especially, compound 3 could significantly reduce cerebral infarction from 49.87% to 32.18%, and similar with butylphthalide in MCAO model, indicating potential clinical application prospects for alleviating ischemic stroke-induced brain infarction.


Assuntos
Desenho de Fármacos , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Animais , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Masculino , Camundongos , Sítios de Ligação , Ratos
2.
Exp Hematol Oncol ; 13(1): 48, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725070

RESUMO

BACKGROUND: Cancer is the leading cause of death among older adults. Although the integration of immunotherapy has revolutionized the therapeutic landscape of cancer, the complex interactions between age and immunotherapy efficacy remain incompletely defined. Here, we aimed to elucidate the relationship between aging and immunotherapy resistance. METHODS: Flow cytometry was performed to evaluate the infiltration of immune cells in the tumor microenvironment (TME). In vivo T cell proliferation, cytotoxicity and migration assays were performed to evaluate the antitumor capacity of tumor antigen-specific CD8+ T cells in mice. Real-time quantitative PCR (qPCR) was used to investigate the expression of IFN-γ-associated gene and natural killer (NK)-associated chemokine. Adoptive NK cell transfer was adopted to evaluate the effects of NK cells from young mice in overcoming the immunotherapy resistance of aged mice. RESULTS: We found that elderly patients with advanced non-small cell lung cancer (aNSCLC) aged ≥ 75 years exhibited poorer progression-free survival (PFS), overall survival (OS) and a lower clinical response rate after immunotherapy. Mechanistically, we showed that the infiltration of NK cells was significantly reduced in aged mice compared to younger mice. Furthermore, the aged NK cells could also suppress the activation of tumor antigen-specific CD8+ T cells by inhibiting the recruitment and activation of CD103+ dendritic cells (DCs). Adoptive transfer of NK cells from young mice to aged mice promoted TME remodeling, and reversed immunotherapy resistance. CONCLUSION: Our findings revealed the decreased sensitivity of elderly patients to immunotherapy, as well as in aged mice. This may be attributed to the reduction of NK cells in aged mice, which inhibits CD103+ DCs recruitment and its CD86 expression and ultimately leads to immunotherapy resistance.

3.
Front Immunol ; 15: 1371559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576625

RESUMO

Anti-PD-(L)1 therapy has shown great efficacy in some patients with cancer. However, a significant proportion of patients with cancer do not respond to it. Another unmet clinical need for anti-PD-(L)1 therapy is the dynamic monitoring of treatment effects. Therefore, identifying biomarkers that can stratify potential responders before PD-(L)1 treatment and timely monitoring of the efficacy of PD-(L)1 treatment are crucial in the clinical setting. The identification of biomarkers by liquid biopsy has attracted considerable attention. Among the identified biomarkers, circulating T cells are one of the most promising because of their indispensable contribution to anti-PD-(L)1 therapy. The present review aimed to thoroughly explore the potential of circulating T cells as biomarkers of anti-PD-(L)1 therapy and its advantages and limitations.


Assuntos
Neoplasias , Linfócitos T , Humanos , Biomarcadores , Imunoterapia , Neoplasias/tratamento farmacológico
4.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255764

RESUMO

Inflammatory bowel disease (IBD) is a group of intestinal inflammatory diseases characterized by chronic, recurrent, remitting, or progressive inflammation, which causes the disturbance of the homeostasis between immune cells, such as macrophages, epithelial cells, and microorganisms. Intestinal macrophages (IMs) are the largest population of macrophages in the body, and the abnormal function of IMs is an important cause of IBD. Most IMs come from the replenishment of blood monocytes, while a small part come from embryos and can self-renew. Stimulated by the intestinal inflammatory microenvironment, monocyte-derived IMs can interact with intestinal epithelial cells, intestinal fibroblasts, and intestinal flora, resulting in the increased differentiation of proinflammatory phenotypes and the decreased differentiation of anti-inflammatory phenotypes, releasing a large number of proinflammatory factors and aggravating intestinal inflammation. Based on this mechanism, inhibiting the secretion of IMs' proinflammatory factors and enhancing the differentiation of anti-inflammatory phenotypes can help alleviate intestinal inflammation and promote tissue repair. At present, the clinical medication of IBD mainly includes 5-aminosalicylic acids (5-ASAs), glucocorticoid, immunosuppressants, and TNF-α inhibitors. The general principle of treatment is to control acute attacks, alleviate the condition, reduce recurrence, and prevent complications. Most classical IBD therapies affecting IMs function in a variety of ways, such as inhibiting the inflammatory signaling pathways and inducing IM2-type macrophage differentiation. This review explores the current understanding of the involvement of IMs in the pathogenesis of IBD and their prospects as therapeutic targets.


Assuntos
Doenças Inflamatórias Intestinais , Monócitos , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/etiologia , Macrófagos , Mesalamina , Anti-Inflamatórios , Inflamação
5.
Eur J Med Chem ; 258: 115613, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37399711

RESUMO

Many populations worldwide are suffering from central nervous system (CNS) diseases such as brain tumors, neurodegenerative diseases (Alzheimer's disease, Parkinson's disease and Huntington's disease) and stroke. There is a shortage of effective drugs for most CNS diseases. As one of the regulatory mechanisms of epigenetics, the particular role and therapeutic benefits of histone deacetylases (HDACs) in the CNS have been extensively studied. In recent years, HDACs have attracted increasing attention as potential drug targets for CNS diseases. In this review, we summarize the recent applications of representative histone deacetylases inhibitors (HDACis) in CNS diseases and discuss the challenges in developing HDACis with different structures and better blood-brain barrier (BBB) permeability, hoping to promote the development of more effective bioactive HDACis for the treatment of CNS diseases.


Assuntos
Doenças do Sistema Nervoso Central , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Histona Desacetilases/química
6.
Int Immunopharmacol ; 121: 110453, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331300

RESUMO

Extracellular matrix (ECM) is a three-dimensional network entity composed of extracellular macromolecules. ECM in synovium not only supports the structural integrity of synovium, but also plays a crucial role in regulating homeostasis and damage repair response in synovium. Obvious disorders in the composition, behavior and function of synovial ECM will lead to the occurrence and development of arthritis diseases such as rheumatoid arthritis (RA), osteoarthritis (OA) and psoriatic arthritis (PsA). Based on the importance of synovial ECM, targeted regulation of the composition and structure of ECM is considered to be an effective measure for the treatment of arthritis disease. This paper reviews the current research status of synovial ECM biology, discusses the role and mechanism of synovial ECM in physiological status and arthritis disease, and summarizes the current strategies for targeting synovial ECM to provide information for the pathogenesis, diagnosis and treatment of arthritis disease.


Assuntos
Artrite Psoriásica , Artrite Reumatoide , Gota , Humanos , Artrite Psoriásica/patologia , Membrana Sinovial/patologia , Artrite Reumatoide/patologia , Gota/patologia , Matriz Extracelular , Homeostase
7.
Hum Cell ; 36(1): 163-177, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36224488

RESUMO

It has been proven that intra-articular injection of mesenchymal stromal cells (MSCs) can alleviate cartilage damage in osteoarthritis (OA) by differentiating into chondrocytes and protecting inherent cartilage. However, the mechanism by which the OA articular microenvironment affects MSCs' therapeutic efficiency is yet to be fully elucidated. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in various cellular processes, such as osteogenesis and immune regulation. Tryptophan (Trp) metabolites, most of which are endogenous ligand for AHR, are abnormally increased in synovial fluid (SF) of OA and rheumatoid arthritis (RA) patients. In this study, the effects of kynurenine (KYN), one of the most important metabolites of Trp, were evaluated on the chondrogenic and chondroprotective effects of human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs). hUC-MSCs were cultured in conditioned medium containing different proportions of OA/RA SF, or stimulated with KYN directly, and then, AHR activation, proliferation, and chondrogenesis of hUC-MSCs were measured. Moreover, the chondroprotective efficiency of short hairpin-AHR-UC-MSC (shAHR-UC-MSC) was determined in a rat surgical OA model (right hind joint). OA SF could activate AHR signaling in hUC-MSCs in a concentration-dependent manner and inhibit the chondrogenic differentiation and proliferation ability of hUC-MSCs. Similar results were observed in hUC-MSCs stimulated with KYN in vitro. Notably, shAHR-UC-MSC exhibited superior therapeutic efficiency in OA rat upon intra-articular injection. Taken together, this study indicates that OA articular microenvironment is not conducive to the therapeutic effect of hUC-MSCs, which is related to the activation of the AHR pathway by tryptophan metabolites, and thus impairs the chondrogenic and chondroprotective effects of hUC-MSCs. AHR might be a promising modification target for further improving the therapeutic efficacy of hUC-MSCs on treatment of cartilage-related diseases such as OA.


Assuntos
Artrite Reumatoide , Células-Tronco Mesenquimais , Osteoartrite , Receptores de Hidrocarboneto Arílico , Animais , Humanos , Ratos , Artrite Reumatoide/metabolismo , Diferenciação Celular , Condrogênese , Cinurenina/metabolismo , Cinurenina/farmacologia , Ligantes , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/metabolismo , Osteoartrite/terapia , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Triptofano/farmacologia , Cordão Umbilical/citologia
8.
Br J Cancer ; 127(12): 2108-2117, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36229578

RESUMO

BACKGROUND: Pancreatic cancer is among the most common malignant tumours, and effective therapeutic strategies are still lacking. While Corynoxine (Cory) can induce autophagy in neuronal cells, it remains unclear whether Cory has anti-tumour activities against pancreatic cancer. METHODS: Two pancreatic cancer cell lines, Patu-8988 and Panc-1, were used. Effects of Cory were evaluated by cell viability analysis, EdU staining, TUNEL assay, colony formation assay, and flow cytometry. Quantitative PCR and Western blot were performed to analyse mRNA and protein levels, respectively. In vivo anti-tumour efficacy of Cory was determined by a xenograft model. RESULTS: Cory treatment inhibited cell proliferation, induced endoplasmic reticulum (ER) stress, and triggered apoptosis in the pancreatic cancer cell lines. CHOP knockdown-mediated inhibition of ER stress alleviated the Cory-induced apoptosis but showed a limited effect on cell viability. Cory induced cell death partially via promoting reactive oxygen species (ROS) production and activating p38 signalling. Pretreatment with ROS scavenger N-acetylcysteine and p38 inhibitor SB203580 relieved the Cory-induced inhibition on cell growth. Cory remarkably blocked pancreatic tumour growth in vivo. CONCLUSIONS: Cory exerts an anti-tumour effect on pancreatic cancer primarily via ROS-p38-mediated cytostatic effects. Cory may serve as a promising therapeutic agent for pancreatic cancer.


Assuntos
Citostáticos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico
9.
Anal Chem ; 94(44): 15189-15197, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36301736

RESUMO

Soot, mainly derived from incomplete combustion of fossil fuel and biomass, exists ubiquitously in different environmental matrixes. To study the detrimental effects of soot on climate, air quality, and human health, accurate quantification of soot is an important prerequisite. However, until now, quantification of soot in environmental media, especially in carbonaceous media, is still very challenging. Here, we report a matrix-free laser desorption/ionization mass spectrometry (LDI-MS) method for in situ imaging of soot particles in size-segregated aerosol samples collected on filter membranes. A series of round-shaped sample spots in filter membranes were selected and subjected to MS imaging analysis, enabling direct in situ quantification of soot without solvent extraction or separation. Especially, the MS imaging with serial sample spots can overcome the problems of sweet-spot in LDI-MS and inhomogeneous distribution of soot in the filter membrane, thus greatly improving the precision of quantification. The limit of detection of soot was 4 ng/m2 and the recovery was 84.4-126%. By using this method, we found that a higher soot content was present in larger-sized particulate matter than smaller-sized particles, suggesting that aerosol soot was mainly derived from primary emission sources. Furthermore, this method also shows the potential to analyze nitrate and sulfate species in PM2.5. To the best of our knowledge, it is the first method capable of simultaneous analysis of inorganic salts and soot in air samples. It represents a novel strategy for in situ quantification of aerosol soot with the advantages of high specificity, high sensitivity, separation-, solvent- and matrix-free.


Assuntos
Poluentes Atmosféricos , Fuligem , Humanos , Fuligem/química , Poluentes Atmosféricos/análise , Material Particulado/análise , Aerossóis/análise , Espectrometria de Massas/métodos , Solventes/análise , Carbono/química , Monitoramento Ambiental
10.
J Oncol ; 2022: 3347235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799612

RESUMO

Background: Gliomas are primary malignant brain tumors. Despite recent advances in surgery and clinical neuro-oncology, the prognosis of patients with glioma is still poor. Therefore, there is an urgent need to find new therapeutic drugs. Methods: Here, we have studied the anticancer effect of maslinic acid in glioma and explored its potential molecular mechanism. CCK-8, Ki67 immunofluorescence, and colony formation tests are used to detect the proliferation of glioma cells. Transwell and migration experiments are used to detect the function of cell invasion and migration, and RNA-seq was performed to identify differentially expressed genes. Western blot analysis helps us identify important signaling pathways. Finally, the anticancer effect of maslinic acid was confirmed in vivo through tumor xenografting experiments. Results: Our experiments obtained high-throughput data on the treatment of maslinic acid in glioma. We found that maslinic acid significantly inhibits the proliferation, invasion, and migration of glioma cells and promotes the apoptosis of glioma cells via suppressing MAPK signaling. Conclusions: This is the first time to analyze the mechanism of maslinic acid against glioma based on transcription. Our experiments show that maslinic acid may be a useful natural product for the treatment of glioma.

11.
Exp Ther Med ; 24(2): 523, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35837026

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease. Enhanced G protein coupled receptor kinase 2 (GRK2) translocation and prostaglandin E4 receptor (EP4) desensitization play a critical role in fibroblast-like synoviocytes (FLS) dysfunction. Paeoniflorin-6'O-benzene sulfonate (CP-25) exerts a protective effect in arthritis in the RA animal models. To demonstrate the role of Gßγ in EP4 desensitization and the mechanisms of CP-25 that protects FLS in RA, RA-FLS and adjuvant-induced arthritis (AA-FLS) were isolated from synovium of RA patients and AA rats. RA-FLS, AA-FLS and MH7A were treated with CP-25, Gßγ agonist and antagonist. The cell membrane expression of EP4, GRK2, and Gßγ were detected using western blot analysis. Co-immunoprecipitation (Co-IP) and immunofluorescence were adopted to detect the interactions of GRK2-Gßγ, GRK2-EP4, and EP4-Gßγ. Cell Counting Kit-8 and Transwell assay were used to analyze the proliferation and migration of the FLS. An increased membrane expression of GRK2 and Gßγ, enhanced GRK2-Gßγ interaction and decreased EP4 membrane expression in the RA synovial tissue were identified. In vitro, prostaglandin E2 (PGE2) enhanced the proliferation and migration of FLS. CP-25 exhibited an inhibition effect similar to Gßγ inhibitor, which downregulated GRK2-EP4 interaction, blocked the translocation of GRK2, and reversed EP4 desensitization, leading to the suppression of the proliferation and migration induced by PGE2. These results elucidated that an enhanced GRK2-Gßγ interaction was involved in the EP4 desensitization and dysfunction. CP-25 regulated EP4-GRK2-Gßγ signaling and re-sensitized EP4 by inhibiting GRK2-Gßγ interaction. The regulation of EP4-Gßγ-GRK2 signaling may be a novel potential therapeutic target in RA.

12.
Chem Sci ; 13(6): 1648-1656, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35282611

RESUMO

Currently, almost all available cancer biomarkers are based on concentrations of compounds, often suffering from low sensitivity, poor specificity, and false positive or negative results. The stable isotopic composition of elements provides a different dimension from the concentration and has been widely used as a tracer in geochemistry. In health research, stable isotopic analysis has also shown potential as a new diagnostic/prognostic tool, which is still in the nascent stage. Here we discovered that bladder cancer (BCa) could induce a significant variation in the ratio of natural copper isotopes (65Cu/63Cu) in the blood of patients relative to benign and healthy controls. Such inherent copper isotopic signatures permitted new insights into molecular mechanisms of copper imbalance underlying the carcinogenic process. More importantly, to enhance the diagnostic capability, a machine learning model was developed to classify BCa and non-BCa subjects based on two-dimensional copper signatures (copper isotopic composition and concentration in plasma and red blood cells) with a high sensitivity, high true negative rate, and low false positive rate. Our results demonstrated the promise of blood copper signatures combined with machine learning as a versatile tool for cancer research and potential clinical application.

13.
Environ Pollut ; 292(Pt A): 118312, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627962

RESUMO

Inhalation of respirable silica particles can cause serious lung diseases (e.g., silicosis and lung cancer), and the toxicity of respirable silica is highly dependent on its crystal form. Common combustion processes such as coal and biomass burning can provide high temperature environments that may alter the crystal forms of silica and thus affect its toxic effects. Although crystalline silica (i.e., quartz, tridymite, and cristobalite) were widely found at different temperatures during the burning processes, the sources and crystal transformation pathways of silica in the burning processes are still not well understood. Here, we investigate the crystal transformation of silica in the coal and biomass combustion processes and clarify the detailed transformation pathways of silica for the first time. Specifically, in coal burning process, amorphous silica can transform into quartz and cristobalite starting at 1100 °C, and quartz transforms into cristobalite starting at 1200 °C; in biomass burning process, amorphous silica can transform into cristobalite starting at 800 °C, and cristobalite transforms into tridymite starting at 1000 °C. These transformation temperatures are significantly lower than those predicted by the classic theory due to possibly the catalysis of coexisting metal elements (e.g., aluminum, iron, and potassium). Our results not only enable a deeper understanding on the combustion-induced crystal transformation of silica, but also contribute to the mitigation of population exposure to respirable silica.


Assuntos
Carvão Mineral , Dióxido de Silício , Alumínio , Biomassa , Quartzo
14.
IEEE J Biomed Health Inform ; 26(4): 1672-1683, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34735349

RESUMO

Atrial fibrillation (AF) is the most common arrhythmia, but an estimated 30% of patients with AF are unaware of their conditions. The purpose of this work is to design a model for AF screening from facial videos, with a focus on addressing typical motion disturbances in our real life, such as head movements and expression changes. This model detects a pulse signal from the skin color changes in a facial video by a convolution neural network, incorporating a phase-driven attention mechanism to suppress motion signals in the space domain. It then encodes the pulse signal into discriminative features for AF classification by a coding neural network, using a de-noise coding strategy to improve the robustness of the features to motion signals in the time domain. The proposed model was tested on a dataset containing 1200 samples of 100 AF patients and 100 non-AF subjects. Experimental results demonstrated that VidAF had significant robustness to facial motions, predicting clean pulse signals with the mean absolute error of inter-pulse intervals less than 100 milliseconds. Besides, the model achieved promising performance in AF identification, showing an accuracy of more than 90% in multiple challenging scenarios. VidAF provides a more convenient and cost-effective approach for opportunistic AF screening in the community.


Assuntos
Fibrilação Atrial , Algoritmos , Fibrilação Atrial/diagnóstico , Eletrocardiografia , Frequência Cardíaca , Humanos , Programas de Rastreamento/métodos , Redes Neurais de Computação
15.
Stem Cell Res Ther ; 12(1): 535, 2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627365

RESUMO

BACKGROUND: Tumor necrosis factor (TNF)-α inhibitors represented by Etanercept (a fusion protein containing soluble TNF receptor II (sTNFRII) and the Fc segment of human IgG1) play a pivotal role in Rheumatoid arthritis (RA) treatment. However, long-term use increases the risk of infection and tumors for their systemic inhibition of TNF-α, which disrupts the regular physiological function of this molecular. Mesenchymal stem cells (MSCs)-based delivery system provides new options for RA treatment with their "homing" and immune-regulation capacities, whereas inflammatory environment (especially TNF-α) is not conducive to MSCs' therapeutic effects by inducing apoptosis/autophagy. Here, we constructed a strain of sTNFRII-Fc-expressing MSCs (sTNFRII-MSC), aiming to offset the deficiency of those two interventions. METHODS: Constructed sTNFRII-Fc lentiviral vector was used to infect human umbilical cord-derived MSCs, and sTNFRII-MSC stable cell line was generated by monoclonal cultivation. In vitro and vivo characteristics of sTNFRII-MSC were assessed by coculture assay and an acute inflammatory model in NOD/SCID mice. The sTNFRII-MSC were transplanted into CIA model, pathological and immunological indicators were detected to evaluate the therapeutic effects of sTNFRII-MSC. The distribution of sTNFRII-MSC was determined by immunofluorescence assay. Apoptosis and autophagy were analyzed by flow cytometry, western blot and immunofluorescence. RESULTS: sTNFRII-Fc secreted by sTNFRII-MSC present biological activity both in vitro and vivo. sTNFRII-MSC transplantation effectively alleviates mice collagen-induced arthritis (CIA) via migrating to affected area, protecting articular cartilage destruction, modulating immune balance and sTNFRII-MSC showed prolonged internal retention via resisting apoptosis/autophagy induced by TNF-α. CONCLUSION: sTNFRII-Fc modification protects MSCs against apoptosis/autophagy induced by TNF-α, in addition to releasing sTNFRII-Fc neutralizing TNF-α to block relevant immune-inflammation cascade, and thus exert better therapeutic effects in alleviating inflammatory arthritis.


Assuntos
Artrite Experimental , Transplante de Células-Tronco Mesenquimais , Animais , Apoptose , Autofagia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fator de Necrose Tumoral alfa/genética
16.
Environ Sci Technol ; 55(4): 2440-2451, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33535745

RESUMO

There is an urgent need for reliable and effective models to study air pollution health effects on human lungs. Here, we report the utilization of human pluripotent stem cell (hPSC) induction models for human lung progenitor cells (hLPs) and alveolar type 2 epithelial cell-like cells (ATLs) for the toxicity assessment of benzo(a)pyrene, nano-carbon black, and nano-SiO2, as common air pollutants. We induced hPSCs to generate ATLs, which recapitulated key features of human lung type 2 alveolar epithelial cells, and tested the induction models for cellular uptake of nanoparticles and toxicity evaluations. Our findings reveal internalization of nano-carbon black, dose-dependent uptake of nano-SiO2, and interference with surfactant secretion in ATLs exposed to benzo(a)pyrene/nano-SiO2. Thus, hLP and ATL induction models could facilitate the evaluation of environmental pollutants potentially affecting the lungs. In conclusion, this is one of the first studies that managed to adopt hPSC pulmonary induction models in toxicology studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Nanopartículas , Poluentes Atmosféricos/análise , Humanos , Pulmão , Fuligem/toxicidade
17.
Acta Pharmacol Sin ; 41(11): 1387-1394, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32884075

RESUMO

Total glycoside of paeony (TGP) has been widely used to treat inflammation and immune diseases in China. Paeoniflorin (Pae) is the major active component of TGP. Although TGP has few adverse drug reactions, the slow onset and low bioavailability of Pae limit its clinical use. Enhanced efficacy without increased toxicity is pursued in developing new agents for inflammation and immune diseases. As a result, paeoniflorin-6'-O-benzene sulfonate (CP-25) derived from Pae, is developed in our group, and exhibits superior bioavailability and efficacy than Pae. Here we describe the development process and research advance on CP-25. The pharmacokinetic parameters of CP-25 and Pae were compared in vivo and in vitro. CP-25 was also compared with the first-line drugs methotrexate, leflunomide, and hydroxychloroquine in their efficacy and adverse effects in arthritis animal models and experimental Sjögren's syndrome. We summarize the regulatory effects of CP-25 on inflammation and immune-related cells, elucidate the possible mechanisms, and analyze the therapeutic prospects of CP-25 in inflammation and immune diseases, as well as the diseases related to its potential target G-protein-coupled receptor kinases 2 (GRK2). This review suggests that CP-25 is a promising agent in the treatment of inflammation and immune diseases, which requires extensive investigation in the future. Meanwhile, this review provides new ideas about the development of anti-inflammatory immune drugs.


Assuntos
Anti-Inflamatórios/uso terapêutico , Glucosídeos/uso terapêutico , Fatores Imunológicos/uso terapêutico , Inflamação/tratamento farmacológico , Monoterpenos/uso terapêutico , Síndrome de Sjogren/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacocinética , Linhagem Celular Tumoral , Glucosídeos/farmacocinética , Humanos , Fatores Imunológicos/farmacocinética , Linfócitos/efeitos dos fármacos , Sistema Fagocitário Mononuclear/efeitos dos fármacos , Monoterpenos/farmacocinética
18.
Cell Prolif ; 53(7): e12854, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32530555

RESUMO

Macrophages maintain a dynamic balance in physiology. Various known or unknown microenvironmental signals influence the polarization, activation and death of macrophages, which creates an imbalance that leads to disease. Rheumatoid arthritis (RA) is characterized by the massive infiltration of a variety of chronic inflammatory cells in synovia. Abundant activated macrophages found in RA synovia are an early hallmark of RA, and the number of these macrophages can be decreased after effective treatment. In RA, the proportion of M1 (pro-inflammatory macrophages) is higher than that of M2 (anti-inflammatory macrophages). The increased pro-inflammatory ability of macrophages is related to their excessive activation and proliferation as well as an enhanced anti-apoptosis ability. At present, there are no clinical therapies specific to macrophages in RA. Understanding the mechanisms and functional consequences of the heterogeneity of macrophages will aid in confirming their potential role in inflammation development. This review will outline RA-related macrophage properties (focus on polarization, metabolism and apoptosis) as well as the origin of macrophages. The molecular mechanisms that drive macrophage properties also be elucidated to identify novel therapeutic targets for RA and other autoimmune disease.


Assuntos
Apoptose/fisiologia , Artrite Reumatoide/patologia , Macrófagos/patologia , Animais , Proliferação de Células/fisiologia , Humanos , Inflamação/patologia
19.
J Hazard Mater ; 386: 121659, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31776080

RESUMO

Although in-vivo exposure of PM2.5 has been suggested to initiate a disorder on vascular permeability, the effects and related mechanism has not been well defined. In this work, an obvious increase on vascular permeability has been confirmed in vivo by vein injection of PM2.5 into Balb/c mouse. Human umbilical vein vascular endothelial cells and the consisted ex-vivo vascular endothelium were used as model to investigate the effects of PM2.5 on the vascular permeability and the underlying molecular mechanism. Upon PM2.5 exposure, the vascular endothelial growth factor receptor 2 on cell membrane phosphorylates and activates the downstream mitogen-activated protein kinase (MAPK)/ERK signaling. The adherens junction protein VE-cadherin sheds and the intercellular junction opens, damaging the integrity of vascular endothelium via paracellular pathway. Besides, PM2.5 induces the intracellular reactive oxygen species (ROS) production and triggers the oxidative stress including activity decrease of superoxide dismutase, lactate dehydrogenase release and permeability increase of cell membrane. Taken together, the paracellular and transcellular permeability enhancement jointly contributes to the significant increase of endothelium permeability and thus vascular permeability upon PM2.5 exposure. This work provides an insight into molecular mechanism of PM2.5 associated cardiovascular disease and offered a real-time screening method for the health risk of PM2.5.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Junções Aderentes/efeitos dos fármacos , Animais , Antígenos CD/metabolismo , Butadienos/farmacologia , Caderinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Junções Intercelulares/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nitrilas/farmacologia , Estresse Oxidativo/efeitos dos fármacos
20.
J Immunol ; 204(3): 518-530, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31843958

RESUMO

Tolerogenic dendritic cells (tolDCs) have received much attention because of their capacity to restore immune homeostasis. RNA interference techniques have been used in several studies to generate tolDCs by inactivating certain molecules that regulate DC maturation and immunologic function. BAFF is a key B cell survival factor that is not only essential for B cell function but also T cell costimulation, and DCs are the major source of BAFF. In this study, we determined whether BAFF gene silencing in mature DCs could lead to a tolerogenic phenotype as well as the potential therapeutic effect of BAFF-silenced DCs on collagen-induced arthritis (CIA) in mice. Meanwhile, CRISPR/Cas9-mediated BAFF-/- DC2.4 cells were generated to verify the role of BAFF in DC maturation and functionality. BAFF-silenced DCs and BAFF-/- DC2.4 cells exhibited an immature phenotype and functional state. Further, the transplantation of BAFF-silenced DCs significantly alleviated CIA severity in mice, which correlated with a reduction in Th17 populations and increased regulatory T cells. In vitro, BAFF-silenced DCs promoted Foxp3 mRNA and IL-10 expression but inhibited ROR-γt mRNA and IL-17A expression in CD4+ T cells. Together, BAFF-silenced DCs can alleviate CIA, partly by inducing Foxp3+ regulatory T cells and suppressing Th17 subsets. Collectively, BAFF plays an important role in interactions between DCs and T cells, which might be a promising genetic target to generate tolDCs for autoimmune arthritis treatment.


Assuntos
Artrite Experimental/imunologia , Fator Ativador de Células B/metabolismo , Células Dendríticas/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Tolerância Imunológica , Imunomodulação , Masculino , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA