Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Microbiol ; 15: 1396663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873155

RESUMO

Klebsiella pneumoniae (K. pneumoniae) infection and the rapid spread of multi-drug resistant (MDR) bacteria pose a serious threat to global healthcare. Polymyxin E (colistin), a group of cationic antimicrobial polypeptides, is currently one of the last resort treatment options against carbapenem-resistant Gram-negative pathogens. The effectiveness of colistin has been compromised due to its intensive use. This study found that fingolimod (FLD), a natural product derivative, exhibited a significant synergistic bactericidal effect on K. pneumoniae when combined with colistin, both in vitro and in vivo. The checkerboard method was employed to assess the in vitro synergistic effect of FLD with colistin. FLD enhanced the susceptibility of bacteria to colistin and lowered effectively minimum inhibitory concentrations (MIC) when compared to colistin MIC, and the fractional inhibitory concentrations (FIC) value was less than 0.3. The time-kill curve demonstrated that the combination treatment of FLD and colistin had significant bactericidal efficacy. The in vitro concurrent administration of colistin and FLD resulted in heightening membrane permeability, compromising cell integrity, diminishing membrane fluidity, and perturbing membrane homeostasis. They also induced alterations in membrane potential, levels of reactive oxygen species, and adenosine triphosphate synthesis, ultimately culminating in bacterial death. Moreover, the combination of FLD with colistin significantly influenced fatty acid metabolism. In the mouse infection model, the survival rate of mice injected with K. pneumoniae was significantly improved to 67% and pathological damage was significantly relieved with combination treatment of FLD and colistin when compared with colistin treatment. This study highlights the potential of FLD in combining with colistin for treating infections caused by MDR isolates of K. pneumoniae.

2.
Clin Interv Aging ; 19: 219-227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352273

RESUMO

Background: Noradrenaline (NA) is commonly used intraoperatively to prevent fluid overload and maintain hemodynamic stability. Clinical studies provided inconsistent results concerning the effect of NA on postoperative outcomes. As aging is accompanied with various diseases and has the high possibility of the risk for postoperative complications, we hypothesized that intraoperative NA infusion in older adult patients undergoing major non-cardiac surgeries might potentially exert adverse outcomes. Methods: In this retrospective propensity score-matched cohort study, older adult patients undergoing major non-cardiac surgeries were selected, 1837 receiving NA infusion during surgery, and 1072 not receiving NA. The propensity score matching was conducted with a 1:1 ratio and 1072 patients were included in each group. The primary outcomes were postoperative in-hospital mortality and complications. Results: Intraoperative NA administration reduced postoperative urinary tract infection (OR:0.124, 95% CI:0.016-0.995), and had no effect on other postoperative complications and mortality, it reduced intraoperative crystalloid infusion (OR:0.999, 95% CI:0.999-0.999), blood loss (OR: 0.998, 95% CI: 0.998-0.999), transfusion (OR:0.327, 95% CI: 0.218-0.490), but increased intraoperative lactate production (OR:1.354, 95% CI:1.051-1.744), and hospital stay (OR:1.019, 95% CI:1.008-1.029). Conclusion: Intraoperative noradrenaline administration reduces postoperative urinary tract infection, and does not increase other postoperative complications and mortality, and can be safely used in older adult patients undergoing major non-cardiac surgeries.


Assuntos
Norepinefrina , Procedimentos Cirúrgicos Operatórios , Idoso , Humanos , Estudos de Coortes , Norepinefrina/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/prevenção & controle , Pontuação de Propensão , Estudos Retrospectivos , Infecções Urinárias/complicações
3.
Phytomedicine ; 116: 154875, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37263000

RESUMO

BACKGROUND: Osteoporosis (OP) is considered as one of the major comorbidities of rheumatoid arthritis (RA), and is responsible for fragility fracture. However, there is currently no effective treatment for RA complicated with OP. Tubson-2 decoction (TBD), a Mongolian medicine also known as Erwei Duzhong Decoction, has been shown to exert a preventive effect on post-menopausal osteoporosis (PMOP). The preventive effects of TBD on RA-induced OP, as well as the bioactive compound responsible and the underlying mechanisms, remain to be elucidated. OBJECTIVE: To explore the effects of TBD on RA-induced OP in vivo, and to elucidate the mechanism of isochlorogenic acid A (ICA), the effective component of TBD, in vitro. METHODS: To evaluate the anti-arthritic and anti-osteoporotic effects of TBD, we conducted H&E straining and safranine O/fast green, TEM, immunohistochemistry (IHC), bone histomorphometry, micro-CT imaging, and biomechanical testing in collagen induced arthritis (CIA) rats. The active ingredient in TBD was identified using network pharmacology and molecular docking. The identification was supported by in vivo IHC assay, and further confirmed using qRT-PCR, Western blot, and SEM analysis in TNF-α-treated MH7A cells and/or in LPS-exposed RAW264.7 cells. RESULTS: Oral administration of TBD attenuated the severity of arthritis and osteopenia as well as poor bone quality, in CIA rats. Additionally, TBD and the positive control, tripterygium glycosides (TG), exhibited similar effects in reducing inflammation in both the synovium and ankle joint. They also were both effective in improving bone loss, microarchitecture, and overall bone quality. TBD reduced the expression of MMP13, IL-17, and p-JNK protein in the synovium of CIA rats. ICA, which was screened, suppressed TNF-α or LPS-triggered inflammatory responses via down-regulating IL-17 signaling, involving in MMP13, IL-1ß, IL-23, and IL-17, and the MAPK pathway including p-ERK, p-JNK, and p-P38, both in MH7A cells and in RAW264.7 cells. Furthermore, ICA prevented osteoclasts from differentiating and bone resoprtion in a dose-dependent manner in vitro. CONCLUSION: This study provides the first evidence that TBD exerts intervening effects on RA-induced OP, possibly through the downregulation of the IL-17/MAPK signaling pathway by ICA. The findings of our study provides valuable insights for further research in this area.


Assuntos
Artrite Experimental , Artrite Reumatoide , Osteoporose , Ratos , Animais , Artrite Experimental/induzido quimicamente , Metaloproteinase 13 da Matriz , Fator de Necrose Tumoral alfa , Interleucina-17 , Lipopolissacarídeos/efeitos adversos , Simulação de Acoplamento Molecular , Citocinas/metabolismo , Artrite Reumatoide/tratamento farmacológico , Osteoporose/tratamento farmacológico
4.
Molecules ; 28(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375124

RESUMO

Resveratrol has anti-inflammatory, anti-cancer, and anti-aging pharmacological activities. There is currently a gap in academic research regarding the uptake, transport, and reduction of H2O2-induced oxidative damage of resveratrol in the Caco-2 cell model. This study investigated the role of resveratrol in the uptake, transport, and alleviation of H2O2-induced oxidative damage in Caco-2 cells. In the Caco-2 cell transport model, it was observed that the uptake and transport of resveratrol (10, 20, 40, and 80 µM) were time dependent and concentration dependent. Different temperatures (37 °C vs. 4 °C) could significantly affect the uptake and transportation of resveratrol. The apical to basolateral transport of resveratrol was markedly reduced by STF-31, a GLUT1 inhibitor, and siRNA intervention. Furthermore, resveratrol pretreatment (80 µM) improves the viability of Caco-2 cells induced by H2O2. In a cellular metabolite analysis combined with ultra-high performance liquid chromatography-tandem mass spectrometry, 21 metabolites were identified as differentials. These differential metabolites belong to the urea cycle, arginine and proline metabolism, glycine and serine metabolism, ammonia recycling, aspartate metabolism, glutathione metabolism, and other metabolic pathways. The transport, uptake, and metabolism of resveratrol suggest that oral resveratrol could prevent intestinal diseases caused by oxidative stress.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Humanos , Resveratrol/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Células CACO-2 , Transportador de Glucose Tipo 1/metabolismo , Peróxido de Hidrogênio/metabolismo , Transporte Biológico
5.
J Cardiothorac Vasc Anesth ; 36(12): 4393-4402, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36155718

RESUMO

OBJECTIVES: To develop and validate a nomogram for predicting postoperative pulmonary infection (PPI) in patients undergoing lung surgery. DESIGN: Single-center retrospective cohort analysis. SETTING: A university-affiliated cancer hospital PARTICIPANTS: A total of 1,501 adult patients who underwent lung surgery from January 2018 to December 2020. INTERVENTIONS: Observation for PPI within 7 days after lung surgery. MEASUREMENTS AND MAIN RESULTS: A complete set of demographics, preoperative variables, and postoperative follow-up data was recorded. The primary outcome was PPI; a total of 125 (8.3%) out of 1,501 patients developed PPI. The variables with p < 0.1 in univariate logistic regression were included in the multivariate regression, and multivariate logistic regression analysis showed that surgical procedure, surgical duration, the inspired fraction of oxygen in one-lung ventilation, and postoperative pain were independent risk factors for PPI. A nomogram based on these factors was constructed in the development cohort (area under the curve: 0.794, 95% CI 0.744-0.845) and validated in the validation cohort (area under the curve: 0.849, 95% CI 0.786-0.912). The calibration slope was 1 in the development and validation cohorts. Decision curve analysis indicated that when the threshold probability was within a range of 0.02-to-0.58 and 0.02-to-0.42 for the development and validation cohorts, respectively, the nomogram model could provide a clinical net benefit. CONCLUSIONS: The authors developed and validated a nomogram for predicting PPI in patients undergoing lung surgery. The prediction model can predict the development of PPI and identify high-risk groups.


Assuntos
Neoplasias Pulmonares , Nomogramas , Adulto , Humanos , Estudos Retrospectivos , Pulmão , Neoplasias Pulmonares/cirurgia , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia
6.
Front Immunol ; 13: 939106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967416

RESUMO

Aspirin eugenol ester (AEE) was a novel drug compound with aspirin and eugenol esterified. AEE had various pharmacological activities, such as anti-inflammatory, antipyretic, analgesic, anti-oxidative stress and so on. In this study, it was aimed to investigate the effect of AEE on the acute lung injury (ALI) induced by lipopolysaccharide (LPS) in rats. In vitro experiments evaluated the protective effect of AEE on the LPS-induced A549 cells. The tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) were measured in the cell supernatant. The Wistar rats were randomly divided into five groups (n = 8): control group, model group (LPS group), LPS + AEE group (AEE, 54 mg·kg-1), LPS + AEE group (AEE, 108 mg·kg-1), LPS + AEE group (AEE, 216 mg·kg-1). The lung wet-to-dry weight (W/D) ratio and immune organ index were calculated. WBCs were counted in bronchoalveolar lavage fluid (BALF) and total protein concentration was measured. Hematoxylin-Eosin (HE) staining of lung tissue was performed. Glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), antioxidant superoxide dismutase (SOD), total antioxidant capacity (T-AOC), lactate dehydrogenase (LDH), C-reactive protein (CRP), myeloperoxidase (MPO), malondialdehyde (MDA), macrophage mobility inhibitory factor (MIF), TNF-α, IL-6, and IL-1ß activity were measured. The metabolomic analysis of rat serum was performed by UPLC-QTOF-MS/MS. From the results, compared with LPS group, AEE improved histopathological changes, reduced MDA, CRP, MPO, MDA, and MIF production, decreased WBC count and total protein content in BALF, pro-inflammatory cytokine levels, immune organ index and lung wet-dry weight (W/D), increased antioxidant enzyme activity, in a dose-dependent manner. The results of serum metabolomic analysis showed that the LPS-induced ALI caused metabolic disorders and oxidative stress in rats, while AEE could ameliorate it to some extent. Therefore, AEE could alleviate LPS-induced ALI in rats by regulating abnormal inflammatory responses, slowing down oxidative stress, and modulating energy metabolism.


Assuntos
Lesão Pulmonar Aguda , Antioxidantes , Aspirina , Eugenol , Células A549/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Aspirina/análogos & derivados , Aspirina/farmacologia , Aspirina/uso terapêutico , Eugenol/análogos & derivados , Eugenol/farmacologia , Eugenol/uso terapêutico , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/metabolismo
7.
Front Nutr ; 9: 894117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685871

RESUMO

Naringenin, a flavanone, has been reported for a wide range of pharmacological activities. However, there are few reports on the absorption, transport and antioxidant effects of naringenin. The study was to explore the uptake, transport and antioxidant effects of naringenin in vitro. Cell transmembrane resistance, lucifer yellow transmission rate, and alkaline phosphatase activity were used to evaluate the successful construction of cell model. The results showed that the absorption and transport of naringenin by Caco-2 cells were time- and concentration-dependent. Different temperatures (37 and 4°C) had a significant effect on the uptake and transport of naringenin. Verapamil, potent inhibitor of P-glycoprotein, significantly inhibit naringenin transport in Caco-2 cells. The results revealed that naringenin was a moderately absorbed biological macromolecule and can penetrate Caco-2 cells, mainly mediated by the active transport pathway involved in P-glycoprotein. At the same time, naringenin pretreatment could significantly increase the viability of H2O2-induced Caco-2 cells. Twenty four differential metabolites were identified based on cellular metabolite analysis, mainly including alanine, aspartate and glutamate metabolism, histidine metabolism, taurine and hypotaurine metabolism, pyruvate metabolism, purine metabolism, arginine biosynthesis, citrate cycle, riboflavin metabolism, and D-glutamine and D-glutamate metabolism. We concluded that the transport of naringenin by Caco-2 cells is mainly involved in active transport mediated by P-glycoprotein and naringenin may play an important role in oxidative stress-induced intestinal diseases.

8.
Oxid Med Cell Longev ; 2021: 6697872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394831

RESUMO

Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. The aim of this study was to investigate the protective effect of AEE on paraquat- (PQ-) induced cell damage of SH-SY5Y human neuroblastoma cells and its potential molecular mechanism. There was no significant change in cell viability when AEE was used alone. PQ treatment reduced cell viability in a concentration-dependent manner. However, AEE reduced the PQ-induced loss of cell viability. Flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and 4'6-diamidino-2-phenylindole (DAPI) staining were used to evaluate cell apoptosis. Compared with the PQ group, AEE pretreatment could significantly inhibit PQ-induced cell damage. AEE pretreatment could reduce the cell damage of SH-SY5Y cells induced by PQ via reducing superoxide anion, intracellular reactive oxygen species (ROS), and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). At the same time, AEE could increase the activity of glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) and decrease the activity of malondialdehyde (MDA). The results showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of caspase-3 and Bax was significantly increased in the PQ group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of caspase-3 and Bax in SH-SY5Y cells. PI3K inhibitor LY294002 and the silencing of PI3K by shRNA could weaken the protective effect of AEE on PQ-induced SH-SY5Y cells. Therefore, AEE has a protective effect on PQ-induced SH-SY5Y cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.


Assuntos
Apoptose/efeitos dos fármacos , Aspirina/análogos & derivados , Eugenol/análogos & derivados , Paraquat/toxicidade , Substâncias Protetoras/farmacologia , Aspirina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromonas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Eugenol/farmacologia , Glutationa Peroxidase/metabolismo , Humanos , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Oxid Med Cell Longev ; 2021: 5527475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257805

RESUMO

Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. This study is aimed at identifying the protective effect of AEE against H2O2-induced apoptosis in rat adrenal pheochromocytoma PC12 cells and the possible mechanisms. The results of cell viability assay showed that AEE could increase the viability of PC12 cells stimulated by H2O2, while AEE alone had no significant effect on the viability of PC12 cells. Compared with the control group, the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were significantly decreased, and the content of malondialdehyde (MDA) was significantly increased in the H2O2 group. By AEE pretreatment, the level of MDA was reduced and the levels of SOD, CAT, and GSH-Px were increased in H2O2-stimulated PC12 cells. In addition, AEE could reduce the apoptosis of PC12 cells induced by H2O2 via reducing superoxide anion, intracellular ROS, and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). Furthermore, the results of western blotting showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of Caspase-3 and Bax was significantly increased in the H2O2 group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of Caspase-3 and Bax in PC12 cells stimulated with H2O2. The silencing of PI3K with shRNA and its inhibitor-LY294002 could abrogate the protective effect of AEE in PC12 cells. Therefore, AEE has a protective effect on H2O2-induced PC12 cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.


Assuntos
Anti-Infecciosos Locais/uso terapêutico , Aspirina/análogos & derivados , Eugenol/análogos & derivados , Peróxido de Hidrogênio/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Infecciosos Locais/farmacologia , Aspirina/farmacologia , Aspirina/uso terapêutico , Eugenol/farmacologia , Eugenol/uso terapêutico , Humanos , Peróxido de Hidrogênio/farmacologia , Células PC12 , Ratos , Transfecção
10.
Front Med (Lausanne) ; 7: 589011, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392217

RESUMO

Aspirin eugenol ester (AEE) possesses anti-inflammatory and anti-oxidative effects. The study was conducted to evaluate the protective effect of AEE on paraquat-induced acute liver injury (ALI) in rats. AEE was against ALI by decreasing alanine transaminase and aspartate transaminase levels in blood, increasing superoxide dismutase, catalase, and glutathione peroxidase levels, and decreasing malondialdehyde levels in blood and liver. A total of 32 metabolites were identified as biomarkers by using metabolite analysis of liver homogenate based on ultra-performance liquid chromatography-tandem mass spectrometry, which belonged to purine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, glycerophospholipid metabolism, primary bile acid biosynthesis, aminoacyl-tRNA biosynthesis, phenylalanine metabolism, histidine metabolism, pantothenate, and CoA biosynthesis, ether lipid metabolism, beta-Alanine metabolism, lysine degradation, cysteine, and methionine metabolism. Western blotting analyses showed that Bax, cytochrome C, caspase-3, caspase-9, and apoptosis-inducing factor expression levels were obviously decreased, whereas Bcl-2 expression levels obviously increased after AEE treatment. AEE exhibited protective effects on PQ-induced ALI, and the underlying mechanism is correlated with antioxidants that regulate amino acid, phospholipid and energy metabolism metabolic pathway disorders and alleviate liver mitochondria apoptosis.

11.
Artigo em Inglês | MEDLINE | ID: mdl-31832182

RESUMO

Purpose: Treatment of chronic osteomyelitis (bone infection) remains a clinical challenge. Our previous study had demonstrated that NEMO-binding domain (NBD) peptide effectively ameliorates the inhibition of osteoblast differentiation by TNF-α in vitro. In this work, NBD peptide was evaluated in vivo for treating chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA) in a rabbit model. Methods: Tibial osteomyelitis was induced in 50 New Zealand white rabbits by tibial canal inoculation of MRSA strain. After 3 weeks, 45 rabbits with osteomyelitis were randomly divided into four groups that correspondingly received the following interventions: 1) Control group (9 rabbits, no treatment); 2) Van group (12 rabbits, debridement and parenteral treatment with vancomycin); 3) NBD + Van group (12 rabbits, debridement and local NBD peptide injection, plus parenteral treatment with vancomycin); 4) NBD group (12 rabbits, debridement and local NBD peptide injection). Blood samples were collected weekly for the measurement of leucocyte count, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) levels. The rabbits in all four groups were sacrificed 6 weeks after debridement; the anti-infective efficacy was evaluated by radiological, histological, and microbiological examination, and promotion of bone remodeling was quantified by micro-CT using the newly formed bone. Results: Except two rabbits in the Control group and one in the NBD group that died from severe infection before the end point, the remaining 42 animals (7, 12, 12, 11 in the Control, Van, NBD + Van, and NBD group respectively) were sacrificed 6 weeks after debridement. In general, there was no significant difference in the leucocyte count, and ESR and CRP levels, although there were fluctuations throughout the follow-up period after debridement. MRSA was still detectable in bone tissue samples of all animals. Interestingly, treatment with NBD peptide plus vancomycin significantly reduced radiological and histological severity scores compared to that in other groups. The best therapeutic efficacy in bone defect repair was observed in the NBD peptide + Van group. Conclusions: In a model of osteomyelitis induced by MRSA, despite the failure in demonstrating antibacterial effectiveness of NBD peptide in vivo, the results suggest antibiotics in conjunction with NBD peptide to possibly have promising therapeutic potential in osteomyelitis.


Assuntos
Antibacterianos/uso terapêutico , Osteomielite/tratamento farmacológico , Peptídeos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Animais , Doença Crônica , Modelos Animais de Doenças , Staphylococcus aureus Resistente à Meticilina , NF-kappa B/antagonistas & inibidores , Osteomielite/microbiologia , Peptídeos/química , Coelhos , Distribuição Aleatória , Tíbia/patologia , Vancomicina/uso terapêutico
12.
Front Plant Sci ; 10: 1543, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827483

RESUMO

The tea cultivar 'Xiaoxueya', a temperature-sensitive albino mutant, is a rare tea germplasm because of its highly enriched amino acid content and brisk flavour. In comparison with green leaf tissues of 'Xiaoxueya', albino leaves show significant deficiency in chlorophylls and carotenoids and severely disrupted chloroplasts. Furthermore, the accumulation of quality-related secondary metabolites is altered in 'Xiaoxueya' albino leaf, with significantly increased contents of total amino acids, theanine, and glutamic acid and significantly decreased contents of alkaloids, catechins, and polyphenols. To uncover the molecular mechanisms underlying albinism and quality-related constituent variation in 'Xiaoxueya' leaves, expression profiles of pivotal genes involved in the biosynthetic pathways of pigments, caffeine, theanine, and catechins were investigated by quantitative real-time PCR technology. The results revealed that suppressed expression of the chloroplast-localized 1-deoxy-D-xylulose-5-phosphate synthase genes DXS1 and DXS2 involved in the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway and protochlorophyllide oxidoreductase genes POR1 and POR2 involved in the chlorophyll biosynthetic pathway is responsible for the pigment deficiency in 'Xiaoxueya' albino leaf. Additionally, the low expression of the tea caffeine synthase gene (TCS) involved in caffeine biosynthesis and the chalcone synthase genes CHS1, CHS2, and CHS3, the chalcone isomerase gene CHI, the flavonoid 3',5'-hydroxylase genes F3'5'H1 and F3'5'H2, and the anthocyanidin reductase genes ANR1 and ANR2 involved in the flavonoid pathway is related to the reduction in alkaloid and catechin levels in 'Xiaoxueya' albino leaves.

13.
Cancer Epidemiol Biomarkers Prev ; 28(12): 2014-2021, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31562207

RESUMO

BACKGROUND: To explore the relationship between family history of esophageal cancer, SNPs, and the risk of esophageal squamous cell carcinoma (ESCC), we performed a population-based case-control study and developed a genetic family history-related risk (GFR) score and non-family history-related risk (GnFR) score to quantify the cumulative number of risk genotypes carried by each individual. METHODS: We used data of 700 patients with nonfamilial ESCC, 341 patients with familial ESCC, 1,445 controls without a family history of esophageal cancer, and 319 controls with a family history. We genotyped 87 genetic variants associated with the risk for ESCC, and constructed GFR and GnFR scores for cases and controls. RESULTS: Our results show that ESCC risk increased with higher GFR score (P trend = 0.0096). Among the familial subgroup, we observed a nearly 7-fold [95% confidence interval (CI), 1.92-24.77] higher risk of ESCC in the highest GFR score group. The corresponding estimate was only 2-fold (95% CI, 1.41-3.93) higher risk of ESCC, in the stratum without a reported family history of esophageal cancer. Certain cell signaling pathways and immune-related pathways were enriched, specifically in familial ESCC. Results from a reconstructed cohort analysis demonstrated that cumulative risk to get esophageal cancer by age 75 years was 13.3%, 10.2%, 8.2%, and 5.1%, respectively, in four subgroups as defined by first-degree relatives of cases or controls with high or low genetic risk score. In particular, the cohort of relatives of ESCC cases with low genetic risk score exhibit a higher cumulative risk than the cohort of relatives of controls with high genetic risk score. It demonstrates that environmental factors play a major role in esophageal cancer. CONCLUSIONS: Further studies are warranted to dissect the mechanisms of shared environmental and genetic susceptibility affecting the risk of getting ESCC. IMPACT: Our study highlights that the need of preventive strategies to screen certain genetic polymorphisms, especially in individuals whose relatives had ESCC.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos de Coortes , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Seguimentos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco
14.
J Cell Physiol ; 234(10): 18075-18085, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30847950

RESUMO

Tumor necrosis factor-α (TNF-α) is a pluripotent signaling molecule. The biological effect of TNF-α includes slowing down osteogenic differentiation, which can lead to bone dysplasia in long-term inflammatory microenvironments. Signal transducer and activator of transcription 3 (STAT3)-interacting protein 1 (StIP1, also known as elongator complex protein 2, ELP2) play a role in inhibiting TNF-α-induced osteoblast differentiation. In the present study, we investigated whether and how ELP2 activation mediates the effects of TNF-α on osteoblastic differentiation. Using in vitro cell cultures of preosteoblastic MC3T3-E1 cells, we found that TNF-α inhibited osteoblastic differentiation accompanied by an increase in ELP2 expression and STAT3 activation. Forced ELP2 expression inhibited osteogenic differentiation of MC3T3-E1 cells, with a decrease in the expression of osteoblast marker genes, alkaline phosphatase activity, and matrix mineralization capacity. In contrast, ELP2 silencing ameliorated osteogenic differentiation in MC3T3-E1 cells, even after TNF-α stimulation. The TNF-α-induced inhibitory effect on osteoblastic differentiation was therefore mediated by ELP2, which was associated with Janus kinase 2 (JAK2)/STAT3 activation. These results suggest that ELP2 is upregulated at the differentiation of MC3T3-E1 cells into osteoblasts and inhibits osteogenic differentiation in response to TNF-α through STAT3 activation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Células 3T3 , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Janus Quinase 2/metabolismo , Camundongos , Osteoblastos/metabolismo , Transdução de Sinais
15.
Micromachines (Basel) ; 10(2)2019 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-30781548

RESUMO

Circulating fetal cells (CFCs) in maternal blood are rare but have a strong potential to be the target for noninvasive prenatal diagnosis (NIPD). "Cell RevealTM system" is a silicon-based microfluidic platform capable to capture rare cell populations in human circulation. The platform is recently optimized to enhance the capture efficiency and system automation. In this study, spiking tests of SK-BR-3 breast cancer cells were used for the evaluation of capture efficiency. Then, peripheral bloods from 14 pregnant women whose fetuses have evidenced non-maternal genomic markers (e.g., de novo pathogenic copy number changes) were tested for the capture of circulating fetal nucleated red blood cells (fnRBCs). Captured cells were subjected to fluorescent in situ hybridization (FISH) on chip or recovered by an automated cell picker for molecular genetic analyses. The capture rate for the spiking tests is estimated as 88.1%. For the prenatal study, 2⁻71 fnRBCs were successfully captured from 2 mL of maternal blood in all pregnant women. The captured fnRBCs were verified to be from fetal origin. Our results demonstrated that the Cell RevealTM system has a high capture efficiency and can be used for fnRBC capture that is feasible for the genetic diagnosis of fetuses without invasive procedures.

16.
Eur J Pharmacol ; 852: 1-13, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-30797789

RESUMO

Aspirin eugenol ester (AEE) was a promising drug candidate for treating inflammation, pain and fever and preventing cardiovascular diseases with fewer side effects than its precursors. Previous researches indicated that AEE could markedly inhibit agonist-induced platelet aggregation in vitro and ex vivo, however, the anti-platelet aggregation mechanisms of AEE remain to be defined. Here, AEE in vitro effects on agonist-induced granule-secretion, intercellular Ca2+ mobilization and thromboxane A2 (TXA2) generation were examined. Vasodilator-stimulated phosphoprotein (VASP), mitogen-activated protein kinase (MAPK), Akt, Sirt 1 and CD40L expressions were also studied. In agonist-activated platelets in vitro, AEE markedly attenuated granule secretion markers (P-selectin expression and ATP release), intercellular Ca2+ mobilization and thromboxane B2 (TXB2) formation. AEE also attenuated CD40L activation, suppressed extracellular-signal-regulated protein kinase 2 (ERK2), c-Jun N-terminal kinase 1 (JNK1) and Akt phosphorylation, and recovered Sirt1 expression, but the activation of p38, VASPSer157 and VASPSer239, and the levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were not affected by AEE. Overall, this study demonstrates that AEE inhibits agonist-induced platelet aggregation in vitro by regulating PI3K/Akt, MAPK and Sirt 1/CD40L pathways.


Assuntos
Aspirina/análogos & derivados , Ligante de CD40/metabolismo , Eugenol/análogos & derivados , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuína 1/metabolismo , Animais , Aspirina/farmacologia , Cálcio/metabolismo , Caspase 3/metabolismo , Moléculas de Adesão Celular/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Eugenol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Tromboxano A2/biossíntese
17.
RSC Adv ; 9(3): 1696-1704, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35518050

RESUMO

Tumour necrosis factor-α (TNF-α) is a pleiotropic cytokine that becomes elevated in chronic inflammatory states, including slowing down osteogenic differentiation, which leads to bone dysplasia in long-term inflammatory microenvironments. The elongator complex plays a role in gene regulation and association with various cellular activities, including the downstream signal transduction of TNF-α in osteogenic cells. To find an inhibitor of Elongator Protein 2 (Elp2), we performed a compound library screen and verified the pharmaceutical effects of candidate compounds on the mouse myoblast cell (C2C12) and mouse osteoblastic cells (MC3T3-E1). The commercial FDA-approved drug (FD) library and the bioactive compound (BC) library were used as candidate libraries. After a label-free, high-throughput affinity measurement with surface plasmon resonance (SPRi), seven kinds of compounds showed binding affinity with mouse Elp2 protein. The seven candidates were then used to perform an inhibition test with TNF-α-induced C2C12 and MC3T3-E1 cell lines. One candidate compound reduced the differentiation suppression caused by TNF-α with resuscitated alkaline phosphatase (ALP) activity, mineralization intensity and expression of osteogenic differentiation marker genes. The results of our study provide a competitive candidate to mitigate the TNF-α-induced osteogenic differentia.

18.
Planta ; 248(5): 1231-1247, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30097722

RESUMO

MAIN CONCLUSION: Four typical ALTERNATIVE OXIDASE genes have been identified in tea plants, and their sequence features and gene expression profiles have provided useful information for further studies on function and regulation. Alternative oxidase (AOX) is a terminal oxidase located in the respiratory electron transport chain. AOX catalyzes the oxidation of quinol and the reduction of oxygen into water. In this study, a genome-wide search and subsequent DNA cloning were performed to identify and characterize AOX genes in tea plant (Camellia sinensis (L.) O. Kuntze cv. Longjing43). Our results showed that tea plant possesses four AOX genes, i.e., CsAOX1a, CsAOX1d, CsAOX2a and CsAOX2b. Gene structure and protein sequence analyses revealed that all CsAOXs share a four-exon/three-intron structure with highly conserved regions and amino acid residues, which are necessary for AOX secondary structures, catalytic activities and post-translational regulations. All CsAOX were shown to localize in mitochondria using the green fluorescent protein (GFP)-targeting assay. Both CsAOX1a and CsAOX1d were induced by cold, salt and drought stresses, and with different expression patterns in young and mature leaves. Reactive oxygen species (ROS) accumulated strongly after 72 and 96 h cold treatments in both young and mature leaves, while the polyphenol and total catechin decreased significantly only in mature leaves. In comparison to AtAOX1a in Arabidopsis thaliana, CsAOX1a lost almost all of the stress-responsive cis-acting regulatory elements in its promoter region (1500 bp upstream), but possesses a flavonoid biosynthesis-related MBSII cis-acting regulatory element. These results suggest a link between CsAOX1a function and the metabolism of some secondary metabolites in tea plant. Our studies provide a basis for the further elucidation of the biological function and regulation of the AOX pathway in tea plants.


Assuntos
Camellia sinensis/genética , Genoma de Planta/genética , Proteínas Mitocondriais/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Camellia sinensis/enzimologia , Camellia sinensis/fisiologia , Clonagem Molecular , Sequência Conservada/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas Mitocondriais/fisiologia , Oxirredutases/fisiologia , Filogenia , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Estresse Fisiológico , Transcriptoma
19.
Oncol Lett ; 15(6): 9061-9068, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29805637

RESUMO

Engineering malignant cells to express a heterologous α-gal antigen can induce heterograft hyperacute rejection, resulting in complement-dependent cytolysis (CDC) of tumor cells, which has been considered as a novel strategy for antitumor therapy. A549 cells engineered to express Galα1-3Galß1-4GlcNAc-R (α-gal) epitope exhibited strong resistance to CDC treated by normal human serum (NHS) in a previous study. We hypothesized that the expression of membrane-bound complement regulatory proteins (mCRPs) decay accelerating factor (CD55) and protectin (CD59) influenced the efficacy of the α-gal/NHS-mediated antitumor effect to tumor cells in vitro. The present study confirmed that A549 cells expressed high levels of CD55 and CD59, whereas Lovo cells expressed relatively low levels of these proteins. A549 and Lovo cells transfected with plasmids containing or lacking the α-gal epitope were evaluated for their susceptibility to CDC by NHS and detected using a trypan blue exclusion assay. α-gal-expressing Lovo (Lovo-GT) cells were almost completely killed by α-gal-mediated CDC following incubation with 50% NHS, whereas no cytolysis was observed in α-gal expressing A549 (A549-GT) cells. Abrogating CD55 and CD59 function from A549-GT cells by various concentrations of phosphatidylinositol-specific phospholipase C (PI-PLC) or blocking antibodies increased the susceptibility of cells to CDC, and the survival rate decreased significantly comparing to the controls (P<0.05). The findings of the present study indicated that using the α-gal/NHS system to eliminate tumor cells via inducing the complement cascade reaction might represent a feasible approach for the treatment of cancer. However, high levels of mCRP expression may limit the efficacy of this approach. Therefore, an improved efficacy of cancer cell killing may be achieved by combining strategies of heterologous α-gal expression and mCRP downregulation.

20.
Acta Pharmacol Sin ; 39(4): 633-641, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29323335

RESUMO

Glucocorticoid (GC)-induced osteoporosis (GIO) is characterized by impaired bone formation, which can be alleviated by tanshinol, an aqueous polyphenol isolated from Salvia miltiorrhiza Bunge. In this study we investigated the molecular mechanisms underlying GC-induced modulation of osteogenesis as well as the possibility of using tanshinol to interfere with GIO. Female SD rats aged 4 months were orally administered distilled water (Con), prednisone (GC, 5 mg·kg-1·d-1), GC plus tanshinol (Tan, 16 mg·kg-1·d-1) or GC plus resveratrol (Res, 5 mg·kg-1·d-1) for 14 weeks. After the rats were sacrificed, samples of bone tissues were collected. The changes in bone formation were assessed using Micro-CT, histomorphometry, and biomechanical assays. Expression of Kruppel-like factor 15 (KLF15), peroxisome proliferator-activated receptor γ 2 (PPARγ 2) and other signaling proteins in skeletal tissue was measured with Western blotting and quantitative RT-PCR. GC treatment markedly increased the expression of KLF15, PPARγ2, C/EBPα and aP2, which were related to adipogenesis, upregulated FoxO3a pathway proteins (FoxO3a and Gadd45a), and suppressed the canonical Wnt signaling (ß-catenin and Axin2), which was required for osteogenesis. Thus, GC significantly decreased bone mass and bone quality. Co-treatment with Tan or Res effectively counteracted GC-impaired bone formation, suppressed GC-induced adipogenesis, and restored abnormal expression of the signaling molecules in GIO rats. We conclude that tanshinol counteracts GC-decreased bone formation by inhibiting marrow adiposity via the KLF15/PPARγ2/FoxO3a/Wnt pathway.


Assuntos
Adipogenia/efeitos dos fármacos , Ácidos Cafeicos/uso terapêutico , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Medula Óssea/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Regulação para Baixo , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Proteína Forkhead Box O3/genética , Fatores de Transcrição Kruppel-Like/genética , PPAR gama/genética , Prednisona/administração & dosagem , Prednisona/farmacologia , Ratos Sprague-Dawley , Resveratrol , Estilbenos/administração & dosagem , Estilbenos/farmacologia , Regulação para Cima , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA