Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
NPJ Genom Med ; 9(1): 32, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811629

RESUMO

Incontinentia pigmenti (IP) is a rare X-linked dominant neuroectodermal dysplasia that primarily affects females. The only known causative gene is IKBKG, and the most common genetic cause is the recurrent IKBKG△4-10 deletion resulting from recombination between two MER67B repeats. Detection of variants in IKBKG is challenging due to the presence of a highly homologous non-pathogenic pseudogene IKBKGP1. In this study, we successfully identified four pathogenic variants in four IP patients using a strategy based on single-tube long fragment read (stLFR) sequencing with a specialized analysis pipeline. Three frameshift variants (c.519-3_519dupCAGG, c.1167dupC, and c.700dupT) were identified and subsequently validated by Sanger sequencing. Notably, c.519-3_519dupCAGG was found in both IKBKG and IKBKGP1, whereas the other two variants were only detected in the functional gene. The IKBKG△4-10 deletion was identified and confirmed in one patient. These results demonstrate that the proposed strategy can identify potential pathogenic variants and distinguish whether they are derived from IKBKG or its pseudogene. Thus, this strategy can be an efficient genetic testing method for IKBKG. By providing a comprehensive understanding of the whole genome, it may also enable the exploration of other genes potentially associated with IP. Furthermore, the strategy may also provide insights into other diseases with detection challenges due to pseudogenes.

2.
Int J Stem Cells ; 13(2): 246-256, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32323515

RESUMO

BACKGROUND AND OBJECTIVES: Adipose tissue is a source of mesenchymal stem cells, which have the potential to differentiate into various types of cells. Adipose-derived stem cells (ADSCs) are now recognized as an accessible, abundant, and reliable stem cells suitable for tissue engineering and regenerative medicine applications. However, few literatures gave a comprehensive report on the capacities of ADSCs harvested from different sites. Especially, the capacities of ADSCs from aged mice remained unclear. In this study, we investigated several main capacities of brown adipose derived stem cells (B-ADSCs) and white adipose derived stem cells (W-ADSCs) from both young and aged mice. METHODS AND RESULTS: When isolated from young mice, B-ADSCs showed a stronger proliferation rate and higher osteogenic, adipogenic and myocardial differentiation ability than W-ADSCs. Carboxy fluorescein diacetate succinimidyl ester (CFSE) labeling test suggested no significant difference in immunosuppression capacity between B-ADSCs and W-ADSCs. Similarly, no difference between these two were found in several immune related molecules, such as programmed death-ligand 1 (PD-L1), intercellular cell adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), inducible nitric oxide synthase (iNOS), tumour necrosis factor-α (TNF-α), interleukin 10 (IL10), and suppressor of cytokine signaling 1 (socs1). When isolated from aged mice, B-ADSCs also showed a stronger proliferation rate and higher osteogenic, adipogenic and myocardial differentiation ability than W-ADSCs; however, it demonstrated an attenuated immunosuppression capacity compared to W-ADSCs. CONCLUSIONS: In summary, our data showed that ADSCs' characteristics were tissue source dependent and changed with age. It provided evidence for choosing the right tissue-specific ADSCs for clinical application and fundamental research.

3.
J Zhejiang Univ Sci B ; 20(9): 753-765, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379145

RESUMO

Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are caused by mutations in the DMD gene. The aim of this study is to identify pathogenic DMD variants in probands and reduce the risk of recurrence of the disease in affected families. Variations in 100 unrelated DMD/BMD patients were detected by multiplex ligation-dependent probe amplification (MLPA) and next-generation sequencing (NGS). Pathogenic variants in DMD were successfully identified in all cases, and 11 of them were novel. The most common mutations were intragenic deletions (69%), with two hotspots located in the 5' end (exons 2-19) and the central of the DMD gene (exons 45-55), while point mutations were observed in 22% patients. Further, c.1149+1G>A and c.1150-2A>G were confirmed by hybrid minigene splicing assay (HMSA). This two splice site mutations would lead to two aberrant DMD isoforms which give rise to severely truncated protein. Therefore, the clinical use of MLPA, NGS, and HMSA is an effective strategy to identify variants. Importantly, eight embryos were terminated pregnancies according to prenatal diagnosis and a healthy boy was successfully delivered by preimplantation genetic diagnosis (PGD). Early and accurate genetic diagnosis is essential for prenatal diagnosis/PGD to reduce the risk of recurrence of DMD in affected families.


Assuntos
Processamento Alternativo , Sítios de Ligação , Variação Genética , Distrofia Muscular de Duchenne/genética , Biópsia , Creatina Quinase/sangue , Éxons , Saúde da Família , Feminino , Deleção de Genes , Duplicação Gênica , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mães , Fenótipo , Polimorfismo de Nucleotídeo Único , Gravidez
4.
Mol Biol Rep ; 46(4): 3991-3999, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31168669

RESUMO

Mesenchymal stem cells (MSCs) are self-renewing multipotent cells with immunoregulatory function, which makes them attractive candidates for regenerative medicine. However, the detailed mechanisms of their immunomodulatory capacity are not fully characterized. Here, we found that casein kinase 2 interacting protein-1 (CKIP-1) expression was induced in the murine MSC cell line C3H/10T1/2 by LPS. Knockdown of CKIP-1 did not cause significant differences on the cell cycle or immunophenotype of MSCs. However, MSCs with CKIP-1 knockdown showed enhanced immunosuppressive capacity. Real-time PCR and western blot analyses revealed that compared with the control group, MSCs with CKIP-1-knockdown exhibited higher IL-10 production and p38 MAPK phosphorylation following LPS treatment. Interestingly, the expression of CKIP-1 was decreased in MSCs following high glucose treatment. Furthermore, MSCs became more immunosuppressive after high glucose treatment, as shown by higher IL-10 production and enhanced inhibition of T cell proliferation. Collectively, our data reveal a novel role for CKIP-1 in regulating MSC-mediated immunomodulation, and indicate that MSCs become more immunosuppressive under high glucose conditions. These new insights may help in the development of future applications of MSCs.


Assuntos
Proteínas de Transporte/imunologia , Fatores Imunológicos/metabolismo , Células-Tronco Mesenquimais/imunologia , Animais , Proteínas de Transporte/metabolismo , Diferenciação Celular/imunologia , Linhagem Celular , Proliferação de Células/fisiologia , Citocinas/imunologia , Glucose/imunologia , Glucose/metabolismo , Imunomodulação/imunologia , Imunofenotipagem/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
5.
J Cell Mol Med ; 23(5): 3737-3746, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30895711

RESUMO

Adipose-derived stem cells (ASCs) are highly attractive for cell-based therapies in tissue repair and regeneration because they have multilineage differentiation capacity and are immunosuppressive. However, the detailed epigenetic mechanisms of their immunoregulatory capacity are not fully defined. In this study, we found that Mysm1 was induced in ASCs treated with inflammatory cytokines. Adipose-derived stem cells with Mysm1 knockdown exhibited attenuated immunosuppressive capacity, evidenced by less inhibition of T cell proliferation, more pro-inflammatory factor secretion and less nitric oxide (NO) production in vitro. Mysm1-deficient ASCs exacerbated inflammatory bowel diseases but inhibited tumour growth in vivo. Mysm1-deficient ASCs also showed depressed miR-150 expression. When transduced with Mysm1 overexpression lentivirus, ASCs exhibited enhanced miR-150 expression. Furthermore, Mysm1-deficient cells transduced with lentivirus containing miR-150 mimics produced less pro-inflammatory factors and more NO. Our study reveals a new role of Mysm1 in regulating the immunomodulatory activities of ASCs by targeting miR-150. These novel insights into the mechanisms through which ASCs regulate immune reactions may lead to better clinical utility of these cells.


Assuntos
Tecido Adiposo/citologia , Epigênese Genética/imunologia , MicroRNAs/imunologia , Células-Tronco/imunologia , Transativadores/imunologia , Proteases Específicas de Ubiquitina/imunologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Interferon gama/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Óxido Nítrico/imunologia , Óxido Nítrico/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Transativadores/genética , Transativadores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 26(5): 1507-1514, 2018 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-30295276

RESUMO

OBJECTIVE: To investigate the efficacy of hematopoietic stem cells cryopreserved by ladder-style freezing from low temperature refrigerator to liquid nitrogen in treatment of hematological malignancies, and to analyze the survival condition of patients after hematopoietic stem cell transplantation. METHODS: The coyoprotectant formed by 3% hydroxyethyl starch, 4% albumin and 5% dimethyl sulfoxide (DMSO) was need for cryopreservation of hematopoietic stem cells,which were first placed in -800C low temperature refrigerator and then were stored in -1960C liquid nitrogen tank. 98 cases of hemafologic malignancies (io cases of ALL, 24 cases of AML, L-cases of MM and 53 case of malignant lymphoma) were selected from January 2002 to December 2016, and recived transplantatin auto-hematopoiehc stem cells cryopresorved by above-mentined method. The overall survival rate (OS), progression-free survival (PFS) were analyzed statistically. RESULTS: One case failed in implantation due to intracranial hemorrhage and the other 97 cases all succeeded in hematopoietic reconstitution. The average time needed for neutrophil count ≥0.5×109/L was 9.24±1.89 d, and the average time needed for blood platelet ≥20×109/L without platelet transfusion for 3 days was 11.04±1.84 d. The median survival time was 47.6 months (1-80 months). The 3 and 5 year OS rates were (97.2±1.9) %, (84.2±4.6) % and (77.8±5.6) %, respectively. 3- and 5-year PFS of patients were (74.4±5.1)% and (61.2±6.2)%. CONCLUSION: ladder-style freezing from low temperature refrigerator to liquid nitrogen can reach the same clinical transplantation effect with traditional programmed cooling freezing method in autologous hematopoietic stem cells transplantation. moreover the incidence of complications after transpeantatim does not show increase.


Assuntos
Criopreservação , Congelamento , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Humanos , Nitrogênio , Temperatura , Transplante Autólogo , Resultado do Tratamento
7.
J Mol Histol ; 48(5-6): 427-436, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29094227

RESUMO

Mesenchymal stem cells (MSCs) can differentiate to osteocytes under suitable conditions. In recent years, micro-nucleotides have been progressively used to modulate gene expression in cells due to the consideration of safety. Our present study aimed to investigate whether co-delivery of Noggin-siRNA and antimiR-138 enhances the osteogenic effect of MSCs. Using a murine MSC line, C3H/10T1/2 cells, the delivery efficiency of Noggin-siRNA and antimiR-138 into MSCs was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Cell phenotype and proliferation capacity was assessed by flow cytometry and MTT assay respectively. The osteogenesis of MSCs was tested by Alkaline Phosphatase (ALP) staining, qRT-PCR, and western blot analyses. Our results demonstrated that the expression of Noggin and miR-138 were significantly silenced in MSCs by Noggin-siRNA and/or antimiR-138 delivery, while the phenotype and proliferation capacity of MSCs were not affected. Down-regulation of Noggin and miR-138 cooperatively promoted osteogenic differentiation of MSCs. The ALP positive cells reached about 83.57 ± 10.18%. Compared with single delivery, the expression of osteogenic related genes, such as Alp, Col-1, Bmp2, Ocn and Runx2, were the highest in cells with co-delivery of the two oligonucleotides. Moreover, the protein level of RUNX2, and the ratios of pSMAD1/5/SMAD1/5 and pERK1/2/ERK1/2 were significantly increased. The activation of Smad, Erk signaling may constitute the underlying mechanism of the enhanced osteogenesis process. Taken together, our study provides a safe strategy for the clinical rehabilitation application of MSCs in skeletal deficiency.


Assuntos
Proteínas de Transporte/metabolismo , Regulação para Baixo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteogênese , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células , Regulação para Baixo/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imunofenotipagem , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/enzimologia , Camundongos , MicroRNAs/genética , Oligonucleotídeos/metabolismo , Osteogênese/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo
8.
Mol Med Rep ; 16(4): 4493-4500, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28849053

RESUMO

Notch homolog 1 (Notch 1) signaling is regarded as a potential therapeutic target for modulating the inflammatory response and exhibiting neuroprotective effects in cerebral injury following stroke. N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t­butylester (DAPT) efficiently inhibits activation of the Notch 1 signaling pathway in microglia and may protect brain tissue from ischemic damage. However, the temporal proliferation and morphological alterations of microglia/macrophages throughout progression of the disease, as well as the comprehensive alterations of the whole brain following DAPT treatment, remain to be elucidated. The present study evaluated the temporal proliferation and the morphological alterations of microglia/macrophages over the period of the subacute and chronic stages, in addition to dynamic alterations of brain tissue, using the magnetic resonance imaging (MRI) method, following DAPT treatment. Sprague­Dawley rats (n=40) were subjected to 90 min of middle cerebral artery occlusion and were treated with DAPT (n=20) or acted as controls with no treatment (n=20). The two groups of rats underwent MRI scans prior to the induction of stroke symptoms and at 24 h, 7, 14, 21 and 28 days following the stroke. A total of five rats from each group were sacrificed at 7, 14, 21 and 28 days following induction of stroke. Compared with control rats, the MRI data of the ipsilateral striatum in treated rats revealed ameliorated brain edema at the subacute stage and recovered brain tissue at the chronic stage. In addition to this, treatment attenuated the round­shape and promoted a ramified­shape of microglia/macrophages. The present study confirmed the protective effect of DAPT treatment by dynamically monitoring the cerebral alterations and indicated the possibility of DAPT treatment to alter microglial characteristics to induce a protective effect, via inhibition of the Notch signaling pathway.


Assuntos
Isquemia Encefálica/diagnóstico , Isquemia Encefálica/metabolismo , Dipeptídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Isquemia Encefálica/tratamento farmacológico , Processamento de Imagem Assistida por Computador , Substâncias Protetoras/farmacologia , Ratos , Receptores Notch/metabolismo , Transdução de Sinais
9.
Int J Mol Med ; 39(5): 1155-1163, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28339032

RESUMO

Epidemiological investigations indicate that certain ingredients in tea bricks can antagonize the adverse effects of fluoride. Tea polyphenols (TPs), the most bioactive ingredient in tea bricks, have been demonstrated to be potent bone-supporting agents. ClC­7 is known to be crucial for osteoclast (OC) bone resorption. Thus, in this study, we investigated the potential protective effects of TPs against fluorosis using a mouse model and explored the underlying mechanisms with particular focus on ClC­7. A total of 40, healthy, 3­week­old male C57BL/6 mice were randomly divided into 4 groups (n=10/group) by weight as follows: distilled water (control group), 100 mg/l fluoridated water (F group), water containing 10 g/l TPs (TP group) and water containing 100 mg/l fluoride and 10 g/l TPs (F + TP group). After 15 weeks, and after the mice were sacrificed, the long bones were removed and bone marrow-derived macrophages were cultured ex vivo in order to perform several experiments. OCs were identified and counted by tartrate­resistant acid phosphatase (TRAP) staining. The consumption of fluoride resulted in severe fluorosis and in an impaired OC function [impaired bone resorption, and a low mRNA expression of nuclear factor of activated T-cells 1 (NFATc1), ATPase H+ transporting V0 subunit D2 (ATP6v0d2) and osteopetrosis­associated transmembrane protein 1 (Ostm1)]. In the F + TP group, fluorosis was attenuated and OC function was restored, but not the high bone fluoride content. Compared with the F group, mature OCs in the F + TP group expressed higher mRNA levels of ClC­7 and Ostm1; the transportation and retaining of Cl­ was improved, as shown by the fluorescence intensity experiment. On the whole, our findings indicate that TPs mitigate fluorosis in C57BL/6 mice by regulating OC bone resorption. Fluoride inhibits OC resorption by inhibiting ClC­7 and Ostm1, whereas TPs attenuate this inhibitory effect of fluoride.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Fluorose Dentária/genética , Proteínas de Membrana/genética , Polifenóis/farmacologia , Chá/química , Animais , Biomarcadores , Peso Corporal/efeitos dos fármacos , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Osso e Ossos/patologia , Osso e Ossos/ultraestrutura , Modelos Animais de Doenças , Fluorose Dentária/metabolismo , Fluorose Dentária/patologia , Fluorose Dentária/prevenção & controle , Expressão Gênica , Homeostase , Imuno-Histoquímica , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/ultraestrutura , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia
10.
Ann Surg Treat Res ; 92(2): 55-66, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28203552

RESUMO

PURPOSE: Insufficient sensitivity and specificity prevent the use of most existing biomarkers for early detection of breast cancer. Recently, it was reported that serum microRNAs (miRNAs) may be potential biomarkers in many cancer diseases. In this study, we investigated whether serum levels of 5 miRNAs including miR-21, miR-125b, miR-145, miR-155, and miR-365 could discriminate breast cancer patients and healthy controls. METHODS: Serum levels of miRNAs were measured by using quantitative real-time polymerase chain reaction in 99 breast cancer patients and 21 healthy controls. The abundance change of serum miRNAs were also evaluated following surgical resection in 20 breast cancer patients. Receiver operating characteristic (ROC) curve analysis was performed to assess the sensitivity and specificity of miRNAs as diagnostic biomarkers. RESULTS: Serum levels of miR-21 and miR-155 was significantly higher, while miR-365 was significantly lower in breast cancer as compared with healthy controls. The serum levels of miR-21 and miR-155 significantly decreased following surgical resection. Additionally, the serum level of miR-155 at stages I and II was significantly higher compared to stage III. The serum miR-145 level was remarkably higher in progesterone receptor (PR)-positive patients than PR-negative. The positivity of miR-21, miR-155, and miR-365 was high compared to CA 153 and CEA in breast cancer. ROC curve analyses of a combination of miR-21, miR-155, and miR-365 yielded much higher area under curve and enhanced sensitivity and specificity in comparison to each miRNA alone. CONCLUSION: The combination of serum miR-21/miR-155/miR-365 may potentially serve as a sensitive and specific biomarker that enables differentiation of breast cancer from healthy controls.

11.
Med Sci Monit ; 22: 5206-5217, 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28035134

RESUMO

BACKGROUND CC chemokine receptor 7 (CCR7) expression is vital for cell migration to secondary lymphoid organs (SLOs). Our previous work showed that inducing CCR7 expression enabled syngeneic mesenchymal stem cells (MSCs) to migrate into SLOs, resulting in enhanced immunosuppressive performance in mice. Given that human adipose-derived stem cells (hASCs) are widely used in clinical therapy, we further investigated whether upregulation of CCR7 enables xenogeneic hASCs to migrate to rat SLOs. MATERIAL AND METHODS hASCs rarely express CCR7; therefore, hASCs were transfected with lentivirus encoding rat CCR7 (rCCR7) plus green fluorescence protein (GFP) or GFP alone. CCR7 mRNA and cell surface expression of rCCR7-hASCs and GFP-hASCs were examined by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry (FCM), respectively. The phenotype, differentiation, and proliferation capacity of each cell type was also determined. To examine migration, rCCR7-hASCs and GFP-hASCs were injected intravenously into Lewis rats, and the proportion of GFP-positive cells in the spleen and lymph nodes was determined with FCM. RESULTS mRNA and cell surface protein expression of CCR7 was essentially undetectable in hASCs and GFP-ASCs; however, CCR7 was highly expressed in rCCR7-ASCs. rCCR7-hASCs, GFP-hASCs, and hASCs shared a similar immunophenotype, and maintained the ability of multilineage differentiation and proliferation. In addition, the average proportion of GFP-positive cells was significantly higher following transplantation of rCCR7-hASCs compared with GFP-hASCs (p<0.01). CONCLUSIONS These results suggest that upregulation of rat CCR7 expression does not change the phenotype, differentiation, or proliferation capacity of hASCs, but does enable efficient migration of hASCs to rat SLOs.


Assuntos
Tecido Adiposo/citologia , Movimento Celular , Tecido Linfoide/citologia , Células-Tronco Mesenquimais/citologia , Receptores CCR7/metabolismo , Transplante Heterólogo , Regulação para Cima , Animais , Diferenciação Celular , Proliferação de Células , Separação Celular , Forma Celular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lentivirus/metabolismo , Masculino , Fenótipo , Ratos Endogâmicos Lew
12.
Oncotarget ; 7(42): 68086-68096, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27590507

RESUMO

The aberrant expansion of B1a cells has been observed in several murine autoimmune disease models; however, the mechanism of such proliferation of B1a cells is still limited. Here, we identify that Myb Like, SWIRM And MPN Domains 1 (MYSM1), a histone H2A deubiquitinase, plays an intrinsic role in the proliferation of B1a cells where MYSM1 deficiency results in the increased proliferation of B1a cells in mice. We demonstrate that MYSM1 recruits c-Myc to the promoter of miR-150 and stimulates the transcription of miR-150. Our further investigation shows that miR-150 decreases FMS-like tyrosine kinase 3 (FLT3) in B1a cells. In agreement with our animal studies, the percentage of FLT3+ B1 cells in Systemic Lupus Erythematosus (SLE) patients is significantly higher than healthy control. Thus, this study uncovers a novel pathway MYSM1/miR-150/FLT3 that inhibits proliferation of B1a, which may be involved in the pathogenesis of SLE.


Assuntos
Linfócitos B/metabolismo , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , MicroRNAs/genética , Fatores de Transcrição/genética , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Linfócitos B/citologia , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transativadores , Fatores de Transcrição/metabolismo , Proteases Específicas de Ubiquitina , Tirosina Quinase 3 Semelhante a fms/metabolismo
13.
J Cell Mol Med ; 20(8): 1550-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27028905

RESUMO

Mesenchymal stem cells (MSCs) possess an immunoregulatory capacity and are a therapeutic target for many inflammation-related diseases. However, the detailed mechanisms of MSC-mediated immunosuppression remain unclear. In this study, we provide new information to partly explain the molecular mechanisms of immunoregulation by MSCs. Specifically, we found that A20 expression was induced in MSCs by inflammatory cytokines. Knockdown of A20 in MSCs resulted in increased proliferation and reduced adipogenesis, and partly reversed the suppressive effect of MSCs on T cell proliferation in vitro and inhibited tumour growth in vivo. Mechanistic studies indicated that knockdown of A20 in MSCs inhibited activation of the p38 mitogen-activated protein kinase (MAPK) pathway, which potently promoted the production of tumour necrosis factor (TNF)-α and inhibited the production of interleukin (IL)-10. Collectively, these data reveal a crucial role of A20 in regulating the immunomodulatory activities of MSCs by controlling the expression of TNF-α and IL-10 in an inflammatory environment. These findings provide novel insights into the pathogenesis of various inflammatory-associated diseases, and are a new reference for the future development of treatments for such afflictions.


Assuntos
Células-Tronco Mesenquimais/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Adipogenia , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Diferenciação Celular , Proliferação de Células , Forma Celular , Citocinas/metabolismo , Dinoprostona/metabolismo , Técnicas de Silenciamento de Genes , Terapia de Imunossupressão , Mediadores da Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , RNA Interferente Pequeno/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
14.
Sci Rep ; 6: 22211, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26915790

RESUMO

Deubiquitinase MYSM1 has been shown to play a critical role in hematopoietic cell differentiation and hematopoietic stem cell (HSC) maintenance. Mesenchymal stem cells (MSCs) are multipotent stromal cells within the bone marrow. MSCs are progenitors to osteoblasts, chondrocytes, adipocytes, and myocytes. Although, MSCs have been extensively studied, the roles of MYSM1 in these cells remain unclear. Here we describe the function of MYSM1 on MSC maintenance and differentiation. In this report, we found that Mysm1-/- mice had a lower bone mass both in long bone and calvaria compared with their control counterpart. Preosteoblasts from Mysm1-/- mice did not show changes in proliferation or osteogenesis when compared to WT mice. Conversely, Mysm1-/- MSCs showed enhanced autonomous differentiation and accelerated adipogenesis. Our results demonstrate that MYSM1 plays a critical role in MSC maintenance and differentiation. This study also underscores the biological significance of deubiquitinase activity in MSC function. Mysm1 may represent a potential therapeutic target for controlling MSC lineage differentiation, and possibly for the treatment of metabolic bone diseases such as osteoporosis.


Assuntos
Adipócitos/citologia , Adipogenia/genética , Endopeptidases/genética , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteogênese/genética , Células 3T3 , Animais , Densidade Óssea/genética , Osso e Ossos/anormalidades , Linhagem da Célula/genética , Endopeptidases/deficiência , Camundongos , Camundongos Knockout , Osteoporose/genética , Transativadores , Proteases Específicas de Ubiquitina
15.
Int J Biochem Cell Biol ; 68: 158-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26410621

RESUMO

Arsenic trioxide has been proven to trigger apoptosis in human hepatocellular carcinoma cells. Endoplasmic reticulum stress has been known to be involved in apoptosis through the induction of CCAAT/enhancer-binding protein homologous protein. However, it is unknown whether endoplasmic reticulum stress mediates arsenic trioxide-induced apoptosis in human hepatocellular carcinoma cells. Our data showed that arsenic trioxide significantly induced apoptosis in human hepatocellular carcinoma cells. Furthermore, arsenic trioxide triggered endoplasmic reticulum stress, as indicated by endoplasmic reticulum dilation, upregulation of glucose-regulated protein 78 and CCAAT/enhancer-binding protein homologous protein. We further found that 4-phenylbutyric acid, an inhibitor of endoplasmic reticulum stress, alleviated arsenic trioxide-induced expression of CCAAT/enhancer-binding protein homologous protein. More important, knockdown of CCAAT/enhancer-binding protein homologous protein by siRNA or inhibition of endoplasmic reticulum stress by 4-phenylbutyric acid alleviated apoptosis induced by arsenic trioxide. Consequently, our results suggested that arsenic trioxide could induce endoplasmic reticulum stress-mediated apoptosis in hepatocellular carcinoma cells, and that CCAAT/enhancer-binding protein homologous protein might play an important role in this process.


Assuntos
Apoptose/efeitos dos fármacos , Arsenicais/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Óxidos/farmacologia , Trióxido de Arsênio , Arsenicais/antagonistas & inibidores , Proteína beta Intensificadora de Ligação a CCAAT/antagonistas & inibidores , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Células Hep G2 , Humanos , Óxidos/antagonistas & inibidores , Fenilbutiratos/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator de Transcrição CHOP/antagonistas & inibidores , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
16.
Age (Dordr) ; 37(2): 16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25693923

RESUMO

Mesenchymal stem cells (MSCs) are known to have many notable features, especially their multiple differentiation ability and immunoregulatory capacity. MSCs are important stem cells in the bone marrow (BM), and their characteristics are affected by the BM microenvironment. However, effects of the BM microenvironment on the properties of MSCs are not well understood. In this study, we found that BM from aged mice decreased MSC colony formation. Flow cytometry data showed that the proportion of B220(+) cells in BM from aged mice was significantly lower than that in BM from young mice, while the proportion of CD11b(+), CD3(+), Gr-1(+), or F4/80(+) cells are on the contrary. CD11b(+), B220(+), and Ter119(+) cells from aged mice were not the subsets that decreased MSC colony formation. We further demonstrated that both BM from aged mice and young mice exhibited similar effects on the proliferation of murine MSC cell line C3H10T1/2. However, when cocultured with BM from aged mice, C3H10T1/2 showed slower migration ability. In addition, we found that phosphorylation of JNK (c-Jun N-terminal kinases) in C3H10T1/2 cocultured with BM from aged mice was lower than that in C3H10T1/2 cocultured with BM from young mice. Collectively, our data revealed that BM from aged mice could decrease the migration of MSCs from their niche through regulating the JNK pathway.


Assuntos
Envelhecimento/fisiologia , Células da Medula Óssea/citologia , Movimento Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Nicho de Células-Tronco/fisiologia , Animais , Células da Medula Óssea/fisiologia , Diferenciação Celular , Ensaios de Migração Celular , Técnicas de Cocultura , Feminino , Citometria de Fluxo , Proteínas Quinases JNK Ativadas por Mitógeno/análise , Masculino , Camundongos Endogâmicos C57BL , Fosforilação
17.
J Cancer Res Clin Oncol ; 141(4): 661-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25326896

RESUMO

BACKGROUND AND OBJECTIVES: Enhancer of zeste 2 (EZH2), embryonic ectoderm development (EED), and suppressor of zeste 12 homolog (SUZ12), the key component of polycomb repressive complex 2, are of great importance in human cancer pathogenesis. This study was designed to investigate the clinical and prognostic significances of EZH2, EED and SUZ12 in colorectal cancer (CRC) patients. METHODS: The expression of EZH2, EED and SUZ12 mRNA was evaluated in 82 primary CRC and paired non-cancerous mucosa samples by qRT-PCR. RESULTS: We found that overall EZH2, EED and SUZ12 mRNA expression in the CRC tissues was significantly increased than in the non-cancerous tissue (p < 0.05). Increased EZH2, EED and SUZ12 mRNA expression was directly correlated with primary tumor size, regional lymph node metastases, distant metastasis and AJCC stage. Furthermore, CRC patients with higher level of EED, SUZ12 or EZH2 showed a worse disease-free survival (DFS) (p < 0.01). In multivariate analysis, the increased EZH2 expression may be a risk factor for the patients' 3-year DFS (HR 2.517; 95% CI 1.104, 5.736; p = 0.028). Furthermore, the k-means cluster analysis showed that high mRNA expression of EED, SUZ12 and EZH2 was significantly correlated with the aggressive clinical behavior and poor prognosis. CONCLUSIONS: High expression of EED, SUZ12 and EZH2 might contribute to the CRC development/progression.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Complexo Repressor Polycomb 2/genética , Western Blotting , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Progressão da Doença , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Análise Multivariada , Proteínas de Neoplasias , Estadiamento de Neoplasias , Complexo Repressor Polycomb 2/metabolismo , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição
18.
Tumour Biol ; 35(10): 9619-25, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24964959

RESUMO

Mel-18 is a member of the polycomb group (PcG) of proteins, which are chromatin regulatory factors that play an important role in oncogenesis. This study was designed to investigate the clinical and prognostic significance of Mel-18 in colorectal cancer (CRC) patients. For this purpose, expression of Mel-18 mRNA was evaluated in 82 primary CRC and paired noncancerous mucosa samples by qRT-PCR and Western blotting. We found that overall Mel-18 mRNA expression in the CRC tissue was significantly lower than in the noncancerous mucosal tissue (p = 0.007, Wilcoxon matched-pairs signed-ranks test). Mel-18 was conversely correlated with the pathological classifications (p = 0.003 for T, p < 0.001 for N, and p = 0.015 for M classifications, respectively) and clinical AJCC stage (p < 0.001). Furthermore, CRC patients with a higher level of Mel-18 showed prolonged disease-free survivals (DFS) (p < 0.001). In multivariate analysis, the diminished Mel-18 expression may be a risk factor for the patients' 3-year DFS (HR = 1.895; 95 % CI 1.032, 3.477; p = 0.039). It was therefore concluded that the lower Mel-18 expression might contribute to the CRC development/progression.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Colorretais/metabolismo , Complexo Repressor Polycomb 1/biossíntese , Western Blotting , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Complexo Repressor Polycomb 1/análise , Prognóstico , Modelos de Riscos Proporcionais , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
PLoS One ; 9(5): e97256, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24826993

RESUMO

Mesenchymal stem cells (MSCs) have been shown to be highly immunosuppressive and have been employed to treat various immune disorders. However, the mechanisms underlying the immunosuppressive capacity of MSCs are not fully understood. We found the suppressor of cytokine signaling 1 (SOCS1) was induced in MSCs treated with inflammatory cytokines. Knockdown of SOCS1 did not bring much difference on the proliferation and differentiation properties of MSCs. However, MSCs with SOCS1 knockdown exhibited enhanced immunosuppressive capacity, showing as inhibiting T cell proliferation at extremely low ratio (MSC to T) in vitro, significantly promoting tumor growth and inhibiting delayed-type hypersensitivity response in vivo. We further demonstrated that SOCS1 inhibited the immunosuppressive capacity of MSCs by reducing inducible nitric oxide synthase (iNOS) expression. Additionally, we found the significantly lower SOCS1 expression and higher nitric oxide (NO) production in MSCs isolated from synovial fluid of rheumatoid arthritis patients. Collectively, our data revealed a novel role of SOCS1 in regulating the immune modulatory activities of MSCs.


Assuntos
Fatores Imunológicos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Óxido Nítrico/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Citocinas/genética , Citocinas/metabolismo , Humanos , Fatores Imunológicos/genética , Terapia de Imunossupressão/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Linfócitos T/metabolismo
20.
PLoS One ; 9(4): e95347, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24743346

RESUMO

A connection between colorectal carcinogenesis and inflammation is well known, but the underlying molecular mechanisms have not been elucidated. Chemically induced colitis-associated cancer (CAC) is an outstanding mouse model for studying the link between inflammation and cancer. Additionally, the CAC model is used for examining novel diagnostic, prognostic, and predictive markers for use in clinical practice. Here, a CAC model was established in less than 100 days using azoxymethane (AOM) with dextran sulfate sodium salt (DSS) in BALB/c mice. We examined the mRNA expression profiles of three groups: control untreated mice (K), DSS-induced chronic colitis mice (D), and AOM/DSS-induced CAC (AD) mice. We identified 6301 differentially expressed genes (DEGs) among the three groups, including 93 persistently upregulated genes and 139 persistently downregulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the most persistent DEGs were significantly enriched in metabolic or inflammatory components in the tumor microenvironment. Furthermore, several associated DEGs were identified as potential DEGs by protein-protein interaction (PPI) network analysis. We selected 14 key genes from the DEGs and potential DEGs for further quantitative real-time PCR (qPCR) verification. Six persistently upregulated, 3 persistently downregulated DEGs, and the other 3 genes showed results consistent with the microarray data. We demonstrated the regulation of 12 key genes specifically involved in Wnt signaling, cytokine and cytokine receptor interactions, homeostasis, and tumor-associated metabolism during colitis-associated CRC. Our results suggest that a close relationship between metabolic and inflammatory mediators of the tumor microenvironment is present in CAC.


Assuntos
Colite/metabolismo , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Animais , Azoximetano/toxicidade , Colite/induzido quimicamente , Neoplasias Colorretais/induzido quimicamente , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Estudo de Associação Genômica Ampla , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA