Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Bioengineering (Basel) ; 11(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39061768

RESUMO

Automated detection of cervical lesion cell/clumps in cervical cytological images is essential for computer-aided diagnosis. In this task, the shape and size of the lesion cell/clumps appeared to vary considerably, reducing the detection performance of cervical lesion cell/clumps. To address the issue, we propose an adaptive feature extraction network for cervical lesion cell/clumps detection, called AFE-Net. Specifically, we propose the adaptive module to acquire the features of cervical lesion cell/clumps, while introducing the global bias mechanism to acquire the global average information, aiming at combining the adaptive features with the global information to improve the representation of the target features in the model, and thus enhance the detection performance of the model. Furthermore, we analyze the results of the popular bounding box loss on the model and propose the new bounding box loss tendency-IoU (TIoU). Finally, the network achieves the mean Average Precision (mAP) of 64.8% on the CDetector dataset, with 30.7 million parameters. Compared with YOLOv7 of 62.6% and 34.8M, the model improved mAP by 2.2% and reduced the number of parameters by 11.8%.

2.
Adv Sci (Weinh) ; : e2402913, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023169

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent malignancies with a 5-year survival rate of only 15% in patients with advanced diseases. Tumor protein 63 (TP63), a master transcription factor (TF) in ESCC, cooperates with other TFs to regulate enhancers and/or promoters of target oncogenes, which in turn promotes tumorigenesis. TAR-DNA-binding protein-43 (TDP-43) is an RNA/DNA binding protein with elevated expression in several neoplasms. However, it remains unclear how TDP-43 contributes to ESCC progression. In this study, TDP-43 is identified as a novel oncogene with markedly upregulated expression in ESCC tissues through profiling expression levels of one hundred and fifty canonical RNA binding protein (RBP) genes in multiple ESCC patient cohorts. Importantly, TDP-43 boosted TP63 expression via post-transcriptionally stabilizing TP63 mRNAs as a RBP and promoting TP63 transcription as a TF binding to the TP63 promoter in ESCC cells. In contrast, the master TF TP63 also bound to the TDP-43 promoter, accelerated TDP-43 transcription, and caused a noticeable increase in TDP-43 expression in ESCC cells. The findings highlight TDP-43 as a viable therapeutic target for ESCC and uncover a hitherto unrecognized TDP-43/TP63 circuit in cancer.

3.
Vet Microbiol ; 290: 110011, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310713

RESUMO

Senecavirus A (SVA)-associated porcine idiopathic vesicular disease (PIVD) and Pseudorabies (PR) are highly contagious swine disease that pose a significant threat to the global pig industry. In the absence of an effective commercial vaccine, outbreaks caused by SVA have occurred in many parts of the world. In this study, the PRV variant strain PRV-XJ was used as the parental strain to construct a recombinant PRV strain with the TK/gE/gI proteins deletion and the VP3 protein co-expression, named rPRV-XJ-ΔTK/gE/gI-VP3. The results revealed that PRV is a suitable viral live vector for VP3 protein expressing. As a vaccine, rPRV-XJ-ΔTK/gE/gI-VP3 is safe for mice, vaccination with it did not cause any clinical symptoms of PRV. Intranasal immunization with rPRV-XJ-ΔTK/gE/gI-VP3 induced strong cellular immune response and high levels of specific antibody against VP3 and gB and neutralizing antibodies against both PRV and SVA in mice. It provided 100% protection to mice against the challenge of virulent strain PRV-XJ, and alleviated the pathological lesion of heart and liver tissue in SVA infected mice. rPRV-XJ-ΔTK/gE/gI-VP3 appears to be a promising vaccine candidate against PRV and SVA for the control of the PRV variant and SVA.


Assuntos
Herpesvirus Suídeo 1 , Picornaviridae , Pseudorraiva , Doenças dos Roedores , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Camundongos , Proteínas do Envelope Viral , Anticorpos Antivirais , Vacinas contra Pseudorraiva
4.
Front Plant Sci ; 14: 1266797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155854

RESUMO

Introduction: Prunus pedunculata (Prunoideae: Rosaceae), a relic shrub with strong resistance and multiple application values, is endangered in China. Extensive research had been devoted to gene expression, molecular markers, plastid genome analysis, and genetic background investigations of P. pedunculata. However, the mitochondrial genome of this species has not been systematically described, owing to the complexity of the plant mitogenome. Methods: In the present research, the complete mitochondrial genome of P. pedunculata was assembled, annotated, and characterized. The genomic features, gene content and repetitive sequences were analyzed. The genomic variation and phylogenetic analysis have been extensively enumerated. Results and discussion: The P. pedunculata mitogenome is a circular molecule with a total length of 405,855 bp and a GC content of 45.63%, which are the smallest size and highest GC content among the known Prunus mitochondrial genomes. The mitogenome of P. pedunculata encodes 62 genes, including 34 unique protein-coding genes (PCGs, excluding three possible pseudogenes), three ribosomal RNA genes, and 19 transfer RNA genes. The mitogenome is rich in repetitive sequences, counting 112 simple sequence repeats, 15 tandem repeats, and 50 interspersed repetitive sequences, with a total repeat length of 11,793 bp, accounting for 2.91% of the complete genome. Leucine (Leu) was a predominant amino acid in PCGs, with a frequency of 10.67%, whereas cysteine (Cys) and tryptophan (Trp) were the least adopted. The most frequently used codon was UUU (Phe), with a relative synonymous codon usage (RSCU) value of 1.12. Selective pressure was calculated based on 20 shared PCGs in the mitogenomes of the 32 species, most of which were subjected to purifying selection (Ka/Ks < 1), whereas ccmC and ccmFn underwent positive selection. A total of 262 potential RNA editing sites in 26 PCGs were identified. Furthermore, 56 chloroplast-derived fragments were ascertained in the mitogenome, ranging from 30 to 858 bp, and were mainly located across IGS (intergenic spacer) regions or rRNA genes. These findings verify the occurrence of intracellular gene transfer events from the chloroplast to the mitochondria. Furthermore, the phylogenetic relationship of P. pedunculata was supported by the mitogenome data of 30 other taxa of the Rosaceae family. Understanding the mitochondrial genome characteristics of P. pedunculata is of great importance to promote comprehension of its genetic background and this study provides a basis for the genetic breeding of Prunus.

5.
Cancer Lett ; 575: 216402, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37741431

RESUMO

Lymph node metastases are commonly observed in diverse malignancies where they promote cancer progression and poor outcomes, although the molecular basis is incompletely understood. Thyroid cancer is the most prevalent endocrine neoplasm characterized by high frequency of lymph node metastases. Here, we uncover an inflammatory cytokines-controlled epigenetic program during thyroid cancer progression. LNCPTCTS acts as a novel tumor suppressive lncRNA with remarkably decreased expression in thyroid cancer specimens, especially in metastatic lymph nodes. Inflammatory cytokines TNFα or CXCL10, which are released from tumor microenvironment (TME), impair binding capabilities of the transcription factor (TF) EGR1 to the LNCPTCTS promoter and reduce the lncRNA expression in cells. Notably, LNCPTCTS binds to eEF1A2 protein and facilitates the interaction between eEF1A2 and Snail, which promotes Snail nucleus export via the RanGTP-Exp5-aa-tRNA-eEF1A2 complex. Loss of LNCPTCTS in tumors leads to accumulation of Snail in the nucleus, suppressed transcription of E-cadherin and PEBP1, reduced E-cadherin and PEBP1 protein levels, and activated epithelial-mesenchymal transition and MAPK signaling. Our results reveal what we believe to be a novel paradigm between TME and epigenetic reprogram in cancer cells which drives lymph node metastases, therefore illuminating the suitability of LNCPTCTS as a targetable vulnerability in thyroid cancer.


Assuntos
RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Humanos , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Metástase Linfática , Citocinas/metabolismo , Transporte Ativo do Núcleo Celular , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Caderinas/genética , Caderinas/metabolismo , Transição Epitelial-Mesenquimal , Microambiente Tumoral
6.
Chem Commun (Camb) ; 59(76): 11381-11384, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37665627

RESUMO

A novel biodegradable layered double hydroxide-copper selenide nanocomplex was prepared by anchoring copper selenide on manganese iron layered double hydroxide nanosheets. This nanocomplex can specifically release CuSe, Mn2+ and Fe3+ in the tumor microenvironment, which implements NIR-II photoacoustic imaging-guided synergistic cancer therapy under 1064 nm laser irradiation.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Humanos , Manganês , Cobre , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Hidróxidos , Ferro , Microambiente Tumoral
7.
Cell Rep ; 42(7): 112770, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37422761

RESUMO

Increased metabolic activity usually provides energy and nutrients for biomass synthesis and is indispensable for the progression of the cell cycle. Here, we find a role for α-ketoglutarate (αKG) generation in regulating cell-cycle gene transcription. A reduction in cellular αKG levels triggered by malic enzyme 2 (ME2) or isocitrate dehydrogenase 1 (IDH1) depletion leads to a pronounced arrest in G1 phase, while αKG supplementation promotes cell-cycle progression. Mechanistically, αKG directly binds to RNA polymerase II (RNAPII) and increases the level of RNAPII binding to the cyclin D1 gene promoter via promoting pre-initiation complex (PIC) assembly, consequently enhancing cyclin D1 transcription. Notably, αKG addition is sufficient to restore cyclin D1 expression in ME2- or IDH1-depleted cells, facilitating cell-cycle progression and proliferation in these cells. Therefore, our findings indicate a function of αKG in gene transcriptional regulation and cell-cycle control.


Assuntos
Ciclina D1 , Ácidos Cetoglutáricos , Ciclina D1/genética , Ciclina D1/metabolismo , Ácidos Cetoglutáricos/metabolismo , RNA Polimerase II , Ciclo Celular , Fase G1
8.
Mol Biomed ; 4(1): 19, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37353649

RESUMO

Continuous monitoring for immunosuppressive status, infection and complications are a must for kidney transplantation (KTx) recipients. Traditional monitoring including blood sampling and kidney biopsy, which caused tremendous medical cost and trauma. Therefore, a cheaper and less invasive approach was urgently needed. We thought that a breath test has the potential to become a feasible tool for KTx monitoring. A prospective-specimen collection, retrospective-blinded assessment strategy was used in this study. Exhaled breath samples from 175 KTx recipients were collected in West China Hospital and tested by online ultraviolet photoionization time-of-flight mass spectrometry (UVP-TOF-MS). The classification models based on breath test performed well in classifying normal and abnormal values of creatinine, estimated glomerular filtration rate (eGFR), blood urea nitrogen (BUN) and tacrolimus, with AUC values of 0.889, 0.850, 0.849 and 0.889, respectively. Regression analysis also demonstrated the predictive ability of breath test for clinical creatinine, eGFR, BUN, tacrolimus level, as the predicted values obtained from the regression model correlated well with the clinical true values (p < 0.05). The findings of this investigation implied that a breath test by using UVP-TOF-MS for KTx recipient monitoring is possible and accurate, which might be useful for future clinical screenings.

9.
Metabolites ; 13(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37110198

RESUMO

Cancer metastasis is still a major challenge in clinical cancer treatment. The migration and invasion of cancer cells into surrounding tissues and blood vessels is the primary step in cancer metastasis. However, the underlying mechanism of regulating cell migration and invasion are not fully understood. Here, we show the role of malic enzyme 2 (ME2) in promoting human liver cancer cell lines SK-Hep1 and Huh7 cells migration and invasion. Depletion of ME2 reduces cell migration and invasion, whereas overexpression of ME2 increases cell migration and invasion. Mechanistically, ME2 promotes the production of pyruvate, which directly binds to ß-catenin and increases ß-catenin protein levels. Notably, pyruvate treatment restores cell migration and invasion of ME2-depleted cells. Our findings provide a mechanistic understanding of the link between ME2 and cell migration and invasion.

10.
J Breath Res ; 17(3)2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37094569

RESUMO

Exhaled breath and gastric-endoluminal gas (volatile products of diseased tissues) contain a large number of volatile organic compounds, which are valuable for early diagnosis of upper gastrointestinal (UGI) cancer. In this study, exhaled breath and gastric-endoluminal gas of patients with UGI cancer and benign disease were analyzed by gas chromatography-mass spectrometry (GC-MS) and ultraviolet photoionization time-of-flight mass spectrometry (UVP-TOFMS) to construct UGI cancer diagnostic models. Breath samples of 116 UGI cancer and 77 benign disease subjects and gastric-endoluminal gas samples of 114 UGI cancer and 76 benign disease subjects were collected. Machine learning (ML) algorithms were used to construct UGI cancer diagnostic models. Classification models based on exhaled breath for distinguishing UGI cancer from the benign group have area under the curve (AUC) of receiver operating characteristic curve values of 0.959 and 0.994 corresponding to GC-MS and UVP-TOFMS analysis, respectively. The AUC values of models based on gastric-endoluminal gas for UGI cancer and benign group classification are 0.935 and 0.929 corresponding to GC-MS and UVP-TOFMS analysis, respectively. This work indicates that volatolomics analysis of exhaled breath and gastric-endoluminal diseased tissues have great potential in early screening of UGI cancer. Moreover, gastric-endoluminal gas can be a means of gas biopsy to provide auxiliary information for the examination of tissue lesions during gastroscopy.


Assuntos
Neoplasias Pulmonares , Compostos Orgânicos Voláteis , Humanos , Testes Respiratórios/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas , Compostos Orgânicos Voláteis/análise , Neoplasias Pulmonares/diagnóstico , Expiração
11.
Med Sci Monit ; 29: e939044, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36823968

RESUMO

BACKGROUND Fast-track surgery (FTS), also known as enhanced recovery after surgery (ERAS), includes a coordinated perioperative approach to patient care that aims to facilitate postoperative recovery. The role of nursing care is central to the concept of FTS. This retrospective study aimed to evaluate the effects of nursing care using an FTS approach in 49 patients with early-stage hepatocellular carcinoma (HCC) undergoing first-line treatment with radiofrequency ablation (RFA). MATERIAL AND METHODS A retrospective analysis was made of 49 patients with early-stage hepatocellular carcinoma who underwent first-line treatment with radiofrequency ablation in the Department of Hepatobiliary Surgery in our hospital from January 2020 to December 2021. The nurses have been nursing the patients in accordance with the requirements of FTS from 2021. Compared with the data of patients receiving traditional nursing, the detailed differences in postoperative recovery, pain score, complication rate, liver and kidney function, and nursing satisfaction were analyzed. RESULTS After applying the FTS nursing model, the patients had significantly shorter time to first flatus, infusion, postoperative hospital stay, and lower total hospitalization expenses (P<0.05). Moreover, the Numerical Pain Rating Scale score was lower than that in the control group, the postoperative complications in the 2021 group were lower than those in the 2020 group, and the nursing satisfaction was also better than that of the 2020 group (P<0.05). CONCLUSIONS Nursing care using a fast-track surgery approach with early-stage hepatocellular carcinoma patients undergoing first-line treatment with radiofrequency ablation is better than conventional nursing, and improves recovery of patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Cuidados de Enfermagem , Ablação por Radiofrequência , Humanos , Carcinoma Hepatocelular/patologia , Estudos Retrospectivos , Neoplasias Hepáticas/patologia , Tempo de Internação , Complicações Pós-Operatórias/etiologia , Dor/complicações , Resultado do Tratamento
12.
Front Immunol ; 14: 1089809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776858

RESUMO

Oxidative stress is an important pathogenic factor in ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC), further impairing the entire colon. Intestinal epithelial cells (IECs) are crucial components of innate immunity and play an important role in maintaining intestinal barrier function. Recent studies have indicated that microRNA-222-3p (miR-222-3p) is increased in colon of UC and colorectal cancer (CRC) patients, and miR-222-3p is a crucial regulator of oxidative stress. However, whether miR-222-3p influences IEC oxidative stress in UC and CAC remains unknown. This study investigated the effect of miR-222-3p on the regulation of IEC oxidative stress in UC and CAC. An in vitro inflammation model was established in NCM460 colonic cells, mouse UC and CAC models were established in vivo, and IECs were isolated. The biological role and mechanism of miR-222-3p-mediated oxidative stress in UC and CAC were determined. We demonstrated that miR-222-3p expression was notably increased in dextran sulfate sodium (DSS)-induced NCM460 cells and IECs from UC and CAC mice. In vitro, these results showed that the downregulation of miR-222-3p reduced oxidative stress, caspase-3 activity, IL-1ß and TNF-α in DSS-induced NCM460 cells. We further identified BRG1 as the target gene of miR-222-3p, and downregulating miR-222-3p alleviated DSS-induced oxidative injury via promoting BRG1-mediated activation Nrf2/HO-1 signaling in NCM460 cells. The in vivo results demonstrated that inhibiting miR-222-3p in IECs significantly relieved oxidative stress and inflammation in the damaged colons of UC and CAC mice, as evidenced by decreases in ROS, MDA, IL-1ß and TNF-α levels and increases in GSH-Px levels. Our study further demonstrated that inhibiting miR-222-3p in IECs attenuated oxidative damage by targeting BRG1 to activate the Nrf2/HO-1 signaling. In summary, inhibiting miR-222-3p in IECs attenuates oxidative stress by targeting BRG1 to activate the Nrf2/HO-1 signaling, thereby reducing colonic inflammation and tumorigenesis.


Assuntos
Colite Ulcerativa , Neoplasias Associadas a Colite , MicroRNAs , Animais , Camundongos , Colite Ulcerativa/complicações , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Inflamação , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
13.
Hum Mol Genet ; 32(11): 1814-1825, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36708028

RESUMO

The testis-specific adenosine deaminase domain-containing (ADAD) protein family, including ADAD1 and ADAD2, has been confirmed to be essential in mouse male fertility. However, the roles of ADAD1 and ADAD2 in human reproductive biology are unclear. Herein, whole-exome sequencing was conducted for 337 infertile patients to detect pathogenic variants in ADAD1 and ADAD2. Importantly, a novel deleterious biallelic variant of NM_001159285.2:c.1408G > T (p.V470F) and NM_001159285.2:c.1418A > G (p.E473G) in ADAD1 and a pathogenic homozygous missense variant of NM_001145400.2:c.1381C > T (p.R461W) in ADAD2 were identified in this infertile cohort with frequencies of 0.29 (1/337) and 0.59% (2/337), respectively. Electron microscopy revealed an abnormal morphology and severely disorganized ultrastructure of sperm from the patients. Immunofluorescence and western blotting showed a sharp decrease in ADAD1 and ADAD2 expression in sperm from the patients. Mechanistically, bioinformatics analysis suggested that ADAD2 interacts with DNAH17. Furthermore, we demonstrated that the expression of DNAH17 was markedly downregulated in the sperm of patients harboring ADAD2 variants. In addition, the expression of several autophagy regulators was significantly disrupted in the sperm of patients harboring ADAD2 variants. In conclusion, we identified novel ADAD1 and ADAD2 variants in three infertile patients from a large infertile cohort, first providing evidence that ADAD1 and ADAD2 variants might be a candidate genetic cause of human male infertility. Moreover, an important new dimension to our understanding of the genotype-phenotype correlations between the ADAD gene family and male infertility in humans has been uncovered, providing valuable information for the genetic diagnosis of male infertility.


Assuntos
Adenosina Desaminase , Infertilidade Masculina , Humanos , Masculino , Animais , Camundongos , Adenosina Desaminase/genética , Testículo/patologia , Sêmen , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Espermatozoides , Mutação de Sentido Incorreto/genética , Espermatogênese/genética
14.
Cell Death Differ ; 30(2): 500-514, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481789

RESUMO

The Cancer/Testis Antigen (CTA) genes comprise a group of genes whose expression under physiological conditions is restricted to the testis but is activated in many human cancers. Depending on the particular expression pattern, the CTA genes are speculated to play a role in spermatogenesis, but evidence is limited thus far. Here, we reported patients with a hemizygous nonsense mutation in cancer-testis antigen 55 (CT55) suffering from male infertility with extreme disruption in sperm production, morphology, and locomotion. Specifically, the insufficiency of sperm individualization, excessive residue of unnecessary cytoplasm, and defects in acrosome development were evident in the spermatozoa of the patients. Furthermore, mouse models with depletion of Ct55 showed accelerated infertility with age, mimicking the defects in sperm individualization, unnecessary cytoplasm removal, and meanwhile exhibiting the disrupted cumulus-oocyte complex penetration. Mechanistically, our functional experiments uncovered CT55 as a new autophagic manipulator to regulate spermatogenesis via selectively interacting with LAMP2 and GABARAP (which are key regulators in the autophagy process) and further fine-tuning their expression. Therefore, our findings revealed CT55 as a novel CTA gene involved in spermatogenesis due to its unprecedented autophagy activity.


Assuntos
Antígenos Nucleares , Infertilidade Masculina , Neoplasias , Animais , Humanos , Masculino , Camundongos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Neoplasias/metabolismo , Sêmen/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Antígenos Nucleares/metabolismo
15.
Molecules ; 27(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080487

RESUMO

Chlorfenapyr (CHL) is a type of insecticide with a wide range of insecticidal activities and unique targets. The extensive use of pesticides has caused an increase in potential risks to the environment and human health. However, the potential toxicity of CHL and its mechanisms of action on humans remain unclear. Therefore, human liver cells (HepG2) were used to investigate the cytotoxic effect and mechanism of toxicity of CHL at the cellular level. The results showed that CHL induced cellular toxicity in HepG2 cells and induced mitochondrial damage associated with reactive oxygen species (ROS) accumulation and mitochondrial calcium overload, ultimately leading to apoptosis and autophagy in HepG2 cells. Typical apoptotic changes occurred, including a decline in the mitochondrial membrane potential, the promotion of Bax/Bcl-2 expression causing the release of cyt-c into the cytosol, the activation of cas-9/-3, and the cleavage of PARP. The autophagic effects included the formation of autophagic vacuoles, accumulation of Beclin-1, transformation of LC3-II, and downregulation of p62. Additionally, DNA damage and cell cycle arrest were detected in CHL-treated cells. These results show that CHL induced cytotoxicity associated with mitochondria-mediated programmed cell death (PCD) and DNA damage in HepG2 cells.


Assuntos
Apoptose , Mitocôndrias , Autofagia , Dano ao DNA , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Piretrinas , Espécies Reativas de Oxigênio/metabolismo
16.
Pharmacol Res ; 177: 106128, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35150860

RESUMO

Dysfunction of p53 is observed in many malignant tumors, which is related to cancer susceptibility. In cervical cancer, p53 is primarily degradated through the complex of high-risk human papillomaviruses (HPV) oncoprotein E6 and E6-associated protein (E6AP) ubiquitin ligase. What is less clear is the mechanism and role of murine double minute X (MDMX) in cervical carcinogenesis due to the inactive status of murine double minute 2 (MDM2). In the current study, XI-011 (NSC146109), a small-molecule inhibitor of MDMX, showed robust anti-proliferation activity against several cervical cancer cell lines. XI-011 promoted apoptosis of cervical cancer cells via stabilizing p53 and activating its transcription activity. Moreover, XI-011 inhibited the growth of xenograft tumor in HeLa tumor-bearing mice, as well as enhanced the cytotoxic activity of cisplatin both in vitro and in vivo. Interestingly, MDMX co-localized with E6AP and seems to be a novel binding partner of E6AP to promote p53 ubiquitination. In conclusion, this work revealed a novel mechanism of ubiquitin-dependent p53 degredation via MDMX-E6AP axis in cervical carcinogenesis, and offered the first evidence that MDMX could be a viable drug target for the treatment of cervical cancer.


Assuntos
Proteínas Oncogênicas Virais , Neoplasias do Colo do Útero , Animais , Carcinogênese , Feminino , Humanos , Camundongos , Proteínas Oncogênicas Virais/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
17.
Ultrasound Q ; 38(2): 170-178, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33560105

RESUMO

ABSTRACT: The etiology of distal common bile duct (CBD) dilatation is complex. Linear-array endoscopic ultrasonography (EUS) can not only visualize the distal and surrounding structures of the bile duct closely but also obtain pathological specimens by fine-needle aspiration, which provides an important basis for the diagnosis and differential diagnosis. The purpose of this study was to evaluate the diagnostic value of linear-array EUS in the etiology of distal CBD dilatation. Patients with distal CBD dilatation underwent linear-array EUS in the endoscopic center of The Second Affiliated Hospital of Soochow University and Traditional Chinese Medicine Hospital of Kunshan were collected from January 2015 to June 2019. The pathology results after surgery, endoscopic pathology, computed tomography (CT), and magnetic resonance imaging (MRI) results were retrospectively analyzed. The diagnostic accuracy of linear-array EUS and CT or MRI was compared. For the diagnosis of choledocholithiasis, the diagnostic accuracy of linear-array EUS was 97.5%, which was significantly higher than that of MRI (86.36%) and CT (89.74) (P < 0.001 and 0.006, respectively). The diagnostic accuracy of linear-array EUS for periampullary tumors was 93.75%, which was higher than MRI and CT with an accuracy of 82.73% and 80.34% (P = 0.004 and 0.001, respectively). Linear EUS was effective for the etiological diagnosis of distal CBD dilatation.


Assuntos
Doenças do Ducto Colédoco , Endossonografia , Doenças do Ducto Colédoco/diagnóstico por imagem , Doenças do Ducto Colédoco/etiologia , Dilatação Patológica/diagnóstico por imagem , Dilatação Patológica/etiologia , Endossonografia/métodos , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos
18.
ACS Appl Mater Interfaces ; 14(1): 1092-1101, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34968036

RESUMO

Prussian blue analogues (PBAs) have been considered as promising cathodes for aqueous zinc-ion batteries because of their open framework for accommodating large ions, tunable valence state, and facile synthesis. Among PBAs, potassium manganese hexacyanoferrate (KMHCF) is favored due to its high working voltage, high specific capacity, and low cost. However, it suffers from severe capacity decay and poor rate capability, which are mainly a result of poor intrinsic conductivity, irreversible phase transition, transition metal dissolution, and structural collapse during charge/discharge cycling. These issues extremely limit its practical application. In order to solve these problems, conductive polypyrrole (PPy) was used to coat KMHCF microcubes to form KMHCF@PPy composites to achieve superior rate capability and prolonged cycle life. With the PPy coating, the KMHCF@PPy composite delivers a discharge capacity of 107.6 mA h g-1 after 100 cycles at 100 mA g-1, and even at 500 mA g-1 after 500 cycles, 64.2 mA h g-1 still remained. The excellent electrochemical performance can be attributed to the effects from PPy. On the one hand, PPy supplies an effective electronic transmission network for KMHCF to enhance the electronic conductivity. On the other hand, it plays the role of a protective layer to effectively inhibit the dissolution of Mn and the phase transition during the cycling.

19.
Front Pharmacol ; 12: 735731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552492

RESUMO

Background: Cisplatin is a valuable chemotherapeutic agent against malignant tumors. However, the clinical use of cisplatin is limited by its side effects such as renal injury. Pyxinol is an active constituent of Lichenes and its effects on cisplatin-induced nephrotoxicity is currently unknown. This study aims to examine the potential protective effects of pyxinol on cisplatin-induced renal injury and explore the underlying mechanisms. Methods: In vivo rat model of cisplatin-induced nephrotoxicity was induced by intraperitoneal (i.p) administration of cisplatin. The blood urea nitrogen and creatinine levels were measured and renal histological analysis was conducted to evaluate the renal function; The TUNEL staining, western blotting and real-time PCR assays were conducted to examine related molecular changes. Finally, the in vivo anti-tumor efficacy was examined in the xenograft tumor model using nude mice. Results: Pretreatment with pyxinol attenuated cisplatin-induced increase in blood urea nitrogen, creatinine and urinary protein excretion and the magnitude of injury in the renal tubules. Pyxinol ameliorated the activation of p53 via attenuating the DNA damage response, which then attenuated the tubular cell apoptosis. Finally, pyxinol could potentiate the in vivo anti-tumor efficacy of cisplatin against the xenograft tumor of cervical cancer cells in nude mice. Conclusions: Combining pyxinol with cisplatin could alleviate cisplatin-induced renal injury without decreasing its therapeutic efficacy, which might represent a beneficial adjunct therapy for cisplatin-based chemotherapeutic regimens in the clinic.

20.
PLoS One ; 16(5): e0252334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043726

RESUMO

Crohn's disease is a chronic inflammatory bowel disease and the NLRP3 inflammasome plays an important role in Crohn's disease. Previous studies have shown that Herb-partitioned moxibustion treating (at Qihai (CV 6) and Tianshu (ST 25)) prevented the excessive activation of the NLRP3 inflammasome and repaired damaged colonic mucosa in Crohn's disease. However, the mechanism by which Herb-partitioned moxibustion (at CV 6 and ST 25) regulates NLRP3 remains unclear. In this study, we treated Crohn's disease rats with herb-partitioned moxibustion (at CV 6 and ST 25) to investigate the mechanism by which Herb-partitioned moxibustion regulates the colonic NLRP3 inflammasome by observing colon length, the colon macroscopic damage indexes, and the expression of ATP, P2X7R, Pannexin-1, NF-κBp65, NLRP3, ASC, caspase-1, IL-1ß and IL-18 in the colon in Crohn's disease. Here, this study shows that herb-partitioned moxibustion (at CV 6 and ST 25) can reduce colon macroscopic damage indexes and colon histopathological scores, alleviate colon shortening and block the abnormal activation of the NLRP3 inflammasome by inhibiting the ATP content and the expression of P2X7R, Pannexin-1 and NF-κBp65, thereby reducing the release of the downstream inflammatory cytokine IL-1ß and ultimately suppressing colonic inflammation in Crohn's disease rats. This study for the first time identifies the mechanism by which herb-partitioned moxibustion (at CV 6 and ST 25) may inhibit the abnormal activation of the NLRP3 inflammasome by inhibiting the P2X7R-Pannexin-1 signaling pathway in Crohn's disease rats.


Assuntos
Conexinas/metabolismo , Doença de Crohn/terapia , Moxibustão/métodos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA