Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virol J ; 17(1): 106, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677948

RESUMO

BACKGROUND: Long control region (LCR) of human papillomavirus (HPV) has shown multiple functions on regulating viral transcription. The variations of LCR related to different lineages/sub-lineages have been found to affect viral persistence and cervical cancer progression differently. In this study, we focused on gene polymorphism of HPV16/18/58 LCR to assess the effect variations caused on transcription factor binding sites (TFBS) and provided more data for further study of LCR in Southwest China. METHODS: LCR of HPV16/18/58 were amplified and sequenced to do polymorphic and phylogenetic anlysis. Sequences of each type were aligned with the reference sequence by MEGA 6.0 to identify SNPs. Neighbor-joining phylogenetic trees were constructed using MEGA 6.0. Transcription factor binding sites were predicted by JASPAR database. RESULTS: The prevalence of these three HPVs ranked as HPV16 (12.8%) > HPV58 (12.6%) > HPV18 (3.5%) in Chengdu, Southwest China. 59 SNPs were identified in HPV16-LCR, 18 of them were novel mutations. 30 SNP were found in HPV18-LCR, 8 of them were novel. 55 SNPs were detected in HPV58-LCR, 18 of them were novel. Also, an insertion (CTTGTCAGTTTC) was detected in HPV58-LCR between position 7279 and 7280. As shown in the neighbor-joining phylogenetic trees, most isolates of HPV16/18/58 were clustered into lineage A. In addition, one isolate of HPV16 was classified into lineage C and 3 isolates of HPV58 were classified as lineage B. JASPAR results suggested that TFBS were potentially influenced by 7/6 mutations on LCR of HPV16/18. The insertion and 5 mutations were shown effects in LCR of HPV58. CONCLUSION: This study provides more data for understanding the relation among LCR mutations, lineages and carcinogenesis. It also helps performing further study to demonstrate biological function of LCR and find potential marker for diagnosis and therapy.


Assuntos
Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Papillomaviridae/genética , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/virologia , Filogenia , Adulto , Sítios de Ligação , China/epidemiologia , Feminino , Regulação Viral da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Mutação , Papillomaviridae/classificação , Polimorfismo Genético , Prevalência , Lesões Intraepiteliais Escamosas/epidemiologia , Lesões Intraepiteliais Escamosas/virologia , Fatores de Transcrição/genética , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/virologia , Adulto Jovem
2.
Virol J ; 16(1): 72, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138240

RESUMO

BACKGROUND: Human papillomavirus (HPV) E6 and E7 oncoproteins play a crucial role in HPV-related diseases, such as cervical cancer, and can be used as ideal targets for therapeutic vaccines. Human leukocyte antigen (HLA) participates in the immune response to block HPV infection and invasion by its target/recognition function. HPV-33 and HPV-58 are highly prevalent among Chinese women. Therefore, it is of great significance to study the E6 and E7 region-specific gene polymorphisms of HPV-33 and HPV-58 in Southwest China and to identify ideal epitopes for vaccine design. Both HPV-33 and HPV-58 belong to α-9 genus HPV and are highly homologous, so their correlations are included in our research. METHODS: To study the E6 and E7 variations and polymorphisms of HPV-33 and HPV-58 in Southwest China, we collected samples, extracted and sequenced DNA, and identified variants. Nucleotide sequences were translated into amino acids by Mega 6.0 software. The physical/chemical properties, amino acid-conserved sequences and secondary structure of protein sequences were analysed by the Protparam server, ConSurf server and PSIPRED software. The T and B cell epitopes of the E6/E7 reference and variant sequences in HPV-33 and HPV-58 were predicted by the Immune Epitope Database (IEDB) analysis server and the ABCpred server, respectively. RESULTS: Five and seven optimal HLA-I restricted T cell epitopes were selected from HPV-33 and HPV-58 E6, respectively, and these optimal epitopes are mainly located in 41-58EVYDFAFADLTVVYREGN of HPV-33 E6 and 40-60SEVYDFVFADLRIVYRDGNPF of HPV-58 E6. Six optimal HLA-I-restricted T cell epitopes were selected from HPV-33 and HPV-58 E7, and these epitopes are mainly located in 77-90RTIQQLLMGTVNIV of HPV-33 E7 and 78-91RTLQQLLMGTCTIV of HPV-58 E7. CONCLUSIONS: HPV-33/HPV-58 E6/E7 gene polymorphisms and T/B cell epitopes of their reference and variant sequences were studied, and candidate epitopes were selected by bioinformatics techniques for therapeutic vaccine design for people in Southwest China. This study was the first to investigate the correlation of epitopes between HPV-33 and HPV-58. After experimental validation, these selected epitopes will be employed to induce a wide range of immune responses in heterogeneous HLA populations.


Assuntos
Epitopos/imunologia , Variação Genética , Papillomaviridae/imunologia , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/imunologia , Epitopos/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Infecções por Papillomavirus/epidemiologia , Filogenia , Neoplasias do Colo do Útero/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA