Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Development ; 146(21)2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31597659

RESUMO

A dense local vascular network is crucial for pancreatic endocrine cells to sense metabolites and secrete hormones, and understanding the interactions between the vasculature and the islets may allow for therapeutic modulation in disease conditions. Using live imaging in two models of vascular disruption in zebrafish, we identified two distinct roles for the pancreatic vasculature. At larval stages, expression of a dominant negative version of Vegfaa (dnVegfaa) in ß-cells led to vascular and endocrine cell disruption with a minor impairment in ß-cell function. In contrast, expression of a soluble isoform of Vegf receptor 1 (sFlt1) in ß-cells blocked the formation of the pancreatic vasculature and drastically stunted glucose response, although islet architecture was not affected. Notably, these effects of dnVegfaa or sFlt1 were not observed in animals lacking vegfaa, vegfab, kdrl, kdr or flt1 function, indicating that they interfere with multiple ligands and/or receptors. In adults, disrupted islet architecture persisted in dnVegfaa-expressing animals, whereas sFlt1-expressing animals displayed large sheets of ß-cells along their pancreatic ducts, accompanied by impaired glucose tolerance in both models. Thus, our study reveals novel roles for the vasculature in patterning and function of the islet.


Assuntos
Ilhotas Pancreáticas/citologia , Pâncreas/irrigação sanguínea , Animais , Glicemia/análise , Regulação da Expressão Gênica no Desenvolvimento , Glucose/metabolismo , Teste de Tolerância a Glucose , Proteínas de Fluorescência Verde/metabolismo , Ligantes , Microscopia de Fluorescência , Mutação , Pâncreas/embriologia , Transgenes , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
2.
Diabetologia ; 58(6): 1239-49, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25773404

RESUMO

AIMS/HYPOTHESIS: Beta cell death is a hallmark of diabetes. It is not known whether specific cellular stresses associated with type 1 or type 2 diabetes require specific factors to protect pancreatic beta cells. No systematic comparison of endogenous soluble factors in the context of multiple pro-apoptotic conditions has been published. METHODS: Primary mouse islet cells were cultured in conditions mimicking five type 1 or type 2 diabetes-related stresses: basal 5 mmol/l glucose, cytokine cocktail (25 ng/ml TNF-α, 10 ng/ml IL-1ß, 10 ng/ml IFN-γ), 1 µmol/l thapsigargin, 1.5 mmol/l palmitate and 20 mmol/l glucose (all in the absence of serum). We surveyed the effects of a library of 206 endogenous factors (selected based on islet expression of their receptors) on islet cell survival through multi-parameter, live-cell imaging. RESULTS: Our survey pointed to survival factors exhibiting generalised protective effects across conditions meant to model different types of diabetes and stages of the diseases. For example, our survey and follow-up experiments suggested that OLFM1 is a novel protective factor for mouse and human beta cells across multiple conditions. Most strikingly, we also found specific protective survival factors for each model stress condition. For example, semaphorin4A (SEMA4A) was toxic to islet cells in the serum-free baseline and serum-free 20 mmol/l glucose conditions, but protective in the context of lipotoxicity. Rank product testing supported the consistency of our observations. CONCLUSIONS/INTERPRETATION: Collectively, our survey reveals previously unidentified islet cell survival factors and suggest their potential utility in individualised medicine.


Assuntos
Apoptose , Diabetes Mellitus Experimental/fisiopatologia , Células Secretoras de Insulina/citologia , Animais , Células Cultivadas , Biologia Computacional , Glucose/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Insulina/metabolismo , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Pessoa de Meia-Idade , Palmitatos/metabolismo , Transdução de Sinais , Tapsigargina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
BMC Cancer ; 14: 814, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25373319

RESUMO

BACKGROUND: Pancreatic adenocarcinoma is one of the most lethal cancers, yet it remains understudied and poorly understood. Hyperinsulinemia has been reported to be a risk factor of pancreatic cancer, and the rapid rise of hyperinsulinemia associated with obesity and type 2 diabetes foreshadows a rise in cancer incidence. However, the actions of insulin at the various stages of pancreatic cancer progression remain poorly defined. METHODS: Here, we examined the effects of a range of insulin doses on signalling, proliferation and survival in three human cell models meant to represent three stages in pancreatic cancer progression: primary pancreatic duct cells, the HPDE immortalized pancreatic ductal cell line, and the PANC1 metastatic pancreatic cancer cell line. Cells were treated with a range of insulin doses, and their proliferation/viability were tracked via live cell imaging and XTT assays. Signal transduction was assessed through the AKT and ERK signalling pathways via immunoblotting. Inhibitors of AKT and ERK signalling were used to determine the relative contribution of these pathways to the survival of each cell model. RESULTS: While all three cell types responded to insulin, as indicated by phosphorylation of AKT and ERK, we found that there were stark differences in insulin-dependent proliferation, cell viability and cell survival among the cell types. High concentrations of insulin increased PANC1 and HPDE cell number, but did not alter primary duct cell proliferation in vitro. Cell survival was enhanced by insulin in both primary duct cells and HPDE cells. Moreover, we found that primary cells were more dependent on AKT signalling, while HPDE cells and PANC1 cells were more dependent on RAF/ERK signalling. CONCLUSIONS: Our data suggest that excessive insulin signalling may contribute to proliferation and survival in human immortalized pancreatic ductal cells and metastatic pancreatic cancer cells, but not in normal adult human pancreatic ductal cells. These data suggest that signalling pathways involved in cell survival may be rewired during pancreatic cancer progression.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Transformação Celular Neoplásica/metabolismo , Insulina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Benzilaminas/farmacologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Indóis/farmacologia , Modelos Biológicos , Ductos Pancreáticos , Neoplasias Pancreáticas/patologia , Fenóis/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/efeitos dos fármacos , Quinoxalinas/farmacologia
4.
Nat Biotechnol ; 32(11): 1121-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25211370

RESUMO

Transplantation of pancreatic progenitors or insulin-secreting cells derived from human embryonic stem cells (hESCs) has been proposed as a therapy for diabetes. We describe a seven-stage protocol that efficiently converts hESCs into insulin-producing cells. Stage (S) 7 cells expressed key markers of mature pancreatic beta cells, including MAFA, and displayed glucose-stimulated insulin secretion similar to that of human islets during static incubations in vitro. Additional characterization using single-cell imaging and dynamic glucose stimulation assays revealed similarities but also notable differences between S7 insulin-secreting cells and primary human beta cells. Nevertheless, S7 cells rapidly reversed diabetes in mice within 40 days, roughly four times faster than pancreatic progenitors. Therefore, although S7 cells are not fully equivalent to mature beta cells, their capacity for glucose-responsive insulin secretion and rapid reversal of diabetes in vivo makes them a promising alternative to pancreatic progenitor cells or cadaveric islets for the treatment of diabetes.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Diabetes Mellitus/terapia , Insulina/metabolismo , Células-Tronco Pluripotentes/transplante , Animais , Diferenciação Celular , Diabetes Mellitus/patologia , Células-Tronco Embrionárias/transplante , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/transplante , Camundongos , Pâncreas/metabolismo , Pâncreas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA